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Abstract.
The Kim mapping is a quadratic vectorial Boolean function of 6 variables that attracted
a lot of attention due to its CCZ-equivalence to the only known APN permutation in
even dimension. Several attempts have been made to identify remarkable properties
of this function, in the hope of finding useful generalizations that could work for
higher dimensions. While none has yielded a new APN permutation, it has been
found to have the so-called subspace property. It is also a cyclotomic map, and it is
known to be linearly equivalent to a homogenous bivariate function, as captured by
the so-called butterfly structure, or by the notion of biprojective mapping. It is also
a linearly self-equivalent mapping.
In this paper, we re-frame all these properties (and several others) in terms of linear
self-equivalence, each property corresponding to specific artifacts in the primary
rational canonical form of linear bijections involved in the linear self-equivalence
relationship. This insight allows us to show that this type of property is not specific
to the Kim mapping at all: in fact, the vast majority of the known infinite families of
APN functions turns out to exhibit properties of this type. We detail them, along
with various algorithmic techniques that can be used to identify them in practice.
Keywords: APN functions · Differential uniformity · Linear equivalence · Cyclo-
tomic mappints · Kim mapping

1 Introduction
Since the introduction of differential uniformity in the early 90’s [NK93], the so-called big
APN problem has remained open. It has a simple statement: does there exist a bijection
𝐹 of F2𝑘

2 such that the equation 𝐹 (𝑥+ 𝑎) + 𝐹 (𝑥) = 𝑏 has at most two solutions 𝑥 for all
𝑎 ̸= 0 and all 𝑏?

If the dimension equals 2𝑘 + 1 instead, or if we get rid of the constraint that 𝐹 is a
bijection, then many solutions are known. We need not look further than simple monomials,
see for instance [Pot16, Table 3]. While many infinite families of non-bijective functions
have been found, as we will see later, a solution to the big APN problem has so far remained
elusive.

In 2009, Browning, Dillon, McQuistan & Wolfe [BDMW10] made a significant progress
on this problem by finding a solution in dimension 6. As of today, the so-called Dillon
permutation remains the only example (up to equivalence) of an APN bijection in even
dimension. As a consequence, substantial effort has been devoted to the study of this
specific permutation, and to how it was found, in the hopeof replicating its success.

Let F𝑞 be the field of size 𝑞. The Dillon permutation was found starting from an
already known [Dil09] quadratic function of F64, the so-called Kim mapping, and then
exploring its equivalence class to find a permutation. The equivalence used in this case was
CCZ-equivalence [CCZ98], and CCZ-equivalence to a permutation is now better understood
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both in the particular case of the Kim mapping [PUB16], and in general [CP19]. The next
natural step consists in identifying new quadratic APN functions1 over larger fields of even
degree in the hope that one of them turns out to be CCZ-equivalent to a permutation.

To this end, several methods have been proposed, for example the use of purely com-
putational methods based on Quadratic APN Matrices (QAM) [YWL14, YP22]. However,
another direction has consisted in identifying special properties of the Kim mapping, and
then trying to find (infinite families of) functions with similar ones. This line of research
includes several APN constructions like Göloğlu’s trinomials and hexanomials [Göl15],
“generalized Kim mappings” studied by Carlet [Car15], Kim-type mappings [CL21], (gen-
eralized) butterflies [PUB16, CDP17, FFW17, LTYW18, CPT19] and biprojective map-
pings [Göl22, GK21, Göl23], which have all been proved affine-equivalent to either a Gold
monomial mapping or to the Kim mapping in dimension 6 [BHLS17, LLHQ21, CL21, Göl23].
Following another research direction, Beierle, Brinckmann and Leander have recently pro-
vided an in-depth analysis of linearly self-equivalent APN mappings [BBL21, BL22], and a
classification for 𝑛 ≤ 9. Moreover, some of the new instances found this way then gave rise
to new infinite families of APN functions [LK23].

Perhaps more surprisingly, the structural properties investigated in these works are
also exhibited by functions which were not built to have them. Indeed, after investigating
all known infinite families of APN functions, we have found that, a vast majority of them
share the same very particular structure despite their very different representations: when
they are defined over F2𝑛 , a lot of them actually rely on the decomposition of F*

2𝑛 as a
union of multiplicative cosets 𝛾F*

2𝑘 of a subfield F2𝑘 ⊂ F2𝑛 . More precisely, they behave as
a fixed power mapping on each of the multiplicative cosets. This property was notably
exhibited for the Kim mapping. Indeed, the Kim mapping is defined by the following
univariate form:

𝜅 : F64 → F64 𝑥 ↦→ 𝑥3 + 𝑥10 + 𝑢𝑥24,

where 𝑢 is a root of the primitive polynomial 𝑋6 +𝑋4 +𝑋3 +𝑋+1. It was already noticed
in [BDMW10] that it can be rewritten as 𝜅(𝑥) = 𝑥3𝑃 (𝑥7) (where 𝑃 (𝑥) = 𝑢𝑥3 + 𝑥+ 1). It
follows that the Kim mapping behaves over all cosets 𝛾F23 as the power mapping 𝑥 ↦→ 𝑥3

over the subfield F23 (of cardinality 7+1). As a more general consequence, because 𝑥 ↦→ 𝑥3

is a bijection over F23 , the Kim mapping satisfies for any 𝛾 ∈ F26 , 𝜅(𝛾F23) = 𝜅(𝛾)F23 ,
which is called the subspace property [BDMW10].

While most infinite APN families share a particular structure related to the multiplica-
tive cosets of a subgroup of F*

2𝑛 , it is surprising that this was never explicitly exhibited
and studied in a systematic manner. This is probably due to the different representations
(univariate or multivariate) used for proving that these functions are APN, which seems
to mean that they are of a different nature. The new point of view that we introduce
in this paper then provides a way to unify many previous methodologies and definitions,
while exhibiting new examples. In particular, our approach is related to the more general
notion of linear self-equivalence [BBL21, BL22, BIK23, KKK23]. As a side effect, our work
reinforces the following conjecture from [BBL21, Conjecture 1]: any APN permutation
has a linearly self-equivalent CCZ-representative.

Outline and contributions. Before getting to the heart of the matter, we start by
presenting the main definitions in Section 2. In particular, we begin from the well-known
notion of homogeneity, which generalizes a property of power mappings to functions of
the form 𝐹 : Fℓ

2𝑘 → F2𝑘 . This property is involved in the definitions (or more precisely,

1We actually know a single APN function (up to equivalence) which is neither equivalent to a monomial
nor to a quadratic function. This function operates on 6 bits and is known as the Brinckmann-Leander-Edel-
Pott APN cubic function as it was independently discovered by the first two [BL08] and last two [EP09]
authors. Whether other APN functions exist outside the CCZ-equivalence classes of monomials or of
quadratic functions still remains an open question.
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in equivalent characterizations that we detail later) of the cyclotomic and biprojective
properties. They are respectively defined for functions of the form 𝐹 : F2𝑛 → F2𝑛 and of
the form 𝐹 : Fℓ

2𝑘 → Fℓ
2𝑘 where 𝑛 = ℓ𝑘. For this reason, it is hard to compare these notions,

but also to relate them to properties of Boolean functions of the form 𝐹 : F𝑛
2 → F𝑛

2 . Our
goal is then to provide a unified point of view by relying on linear self-equivalence. A first
step toward this objective is to precisely distinguish the cyclotomic property from the
subspace property, which have been until now often mixed up.

In Section 3, we start our unification process by studying in detail the linear self-
equivalences of cyclotomic or ℓ-variate projective mappings. To do so, we consider the
linear mappings 𝐴,𝐵 involved in a linear self-equivalence relation 𝐵 ∘ 𝐹 ∘ 𝐴 = 𝐹 of a
function 𝐹 , and we analyze the respective similarity class of 𝐴 and 𝐵. The main tool at
hand is a well-known canonical form of matrices based on the so-called elementary divisors.
Because similarity can be studied up to isomorphisms of vector spaces, it provides a point
of view well-suited to the study of functions defined over F𝑛

2 , F2𝑛 or even Fℓ
2𝑘 with 𝑛 = ℓ𝑘.

This way, we derive three main theorems, namely Theorems 3 to 5, which not only give a
clearer view of cyclotomic mappings and ℓ-variate projective mappings, but also provide
definitions which do not depend on any specific input/output space (F𝑛

2 ,F2𝑛 ,Fℓ
2𝑘 ) nor any

specific bases.
In Section 4, we study the known infinite families of APN functions. The whole

section is dedicated to a single main result (Theorem 6) which states that all members of
almost all of these families are linearly equivalent (and in particular CCZ-equivalent) to a
cyclotomic or an ℓ-variate projective mapping. Stated otherwise, despite their different
initial representations (either univariate or multivariate), almost all of these families can
be represented by particular linearly self-equivalent mappings. After commenting this
result, its complete proof is provided.

The interest of these specific linearly self-equivalent mappings being established in
Section 4, we continue in Section 5 to study their properties. In particular, we show how
much linear self-equivalence can reflect on other properties of a function. The Walsh
spectrum, differential spectrum, but also in the case of quadratic APN functions, the
ortho-derivative and its associated spectra, inherit from such symmetries. Thus, we can
show how to disprove the existence of a linearly self-equivalent representative among a
given equivalence class, be it a CCZ-, EA-, or linear class.

In the end, in Section 6, we focus on a more specific case. After recalling some known
facts about their Walsh spectra, we provide more detail about APN cyclotomic mappings,
and in particular derive some necessary conditions to be APN. We also provide explicit
formula for quadratic cyclotomic and ℓ-variate projective mappings.

We conclude by listing the main open questions that are spread out all along the
paper.

2 Cyclotomic mappings, bi-projective mappings, linearly
self-equivalent mappings, and subspace property

2.1 Preliminaries
In this section, we recap and introduce some notation. For any positive integers 0 ≤ 𝑖 ≤ 𝑗,
we denote by J𝑖, 𝑗K the set of integers ranging from 𝑖 to 𝑗, i.e., J𝑖, 𝑗K := {𝑛 ∈ N, 𝑖 ≤ 𝑛 ≤ 𝑗}.
The Hamming weight of an integer 𝑖 ≥ 0 is denoted by wt(𝑛). Given two sets 𝑋,𝑌 , we
denote by ℱ(𝑋,𝑌 ) the set of functions from 𝑋 to 𝑌 and by |𝑋| the cardinality of 𝑋.

We focus on the study of vectorial Boolean functions, that is of functions mapping 𝑛-bit
words to 𝑚-bits words, which can be represented as: 𝐹 : F𝑛

2 → F𝑚
2 , and more particularly

to the case where 𝑛 = 𝑚. In that case, the function can be uniquely represented by
the algebraic normal forms (ANF) of its coordinates. Indeed, any Boolean function 𝑓
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from F𝑛
2 to F2 can be uniquely represented by a polynomial 𝑃 ∈ F2[𝑋1, . . . , 𝑋𝑛]/(𝑋2

1 +
𝑋1, . . . , 𝑋

2
𝑛 +𝑋𝑛) such that, for any (𝑥1, . . . , 𝑥𝑛) ∈ F𝑛

2 ,

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑃 (𝑥1, . . . , 𝑥𝑛).

The algebraic degree of 𝑓 is the degree of its ANF, while the degree of a vectorial
function is the maximum degree of its coordinates. In particular, if not stated otherwise,
the terminologies linear (or affine) and quadratic refer to functions whose ANF is of degree
1 or of degree 2.

The domain and codomain of a vectorial Boolean function 𝐹 : F𝑛
2 → F𝑚

2 can always
be identified with other F2-spaces. Indeed, an F2-space isomorphism can always be built
between two 𝑛-dimensional F2-spaces. In that case rather than focusing on 𝐹 : F𝑛

2 → F𝑚
2 ,

we can instead look at 𝜋1 ∘𝐹 ∘𝜋−1
2 , where 𝜋1 : F𝑛

2 → 𝑉1 and 𝜋2 : F𝑚
2 → 𝑉2, where 𝜋1, 𝜋2 are

F2-space isomorphims. If not stated otherwise, isomorphism always refers to an F2-linear
bijection, i.e. a F2-vector space isomorphism. Handling several representations of the same
functions will be a key point in our work for providing a unified point of view on several
structural properties of vectorial functions.

When 𝑛 = 𝑚, a specific choice is to choose 𝑉1 = 𝑉2 = F2𝑛 , possibly with 𝜋1 = 𝜋2.
In that case, 𝐹 can be represented by a unique univariate polynomial 𝑃 ∈ F2𝑛 [𝑋] of
(univariate) degree strictly smaller than 2𝑛. More generally, for any 𝑘, ℓ ≥ 1, any function
𝐹 : Fℓ

2𝑘 → F2𝑘 admits a unique interpolating polynomial, which is the unique polynomial
𝑃 ∈ F2𝑘 [𝑋1, · · · , 𝑋ℓ] which satisfies:

𝐹 (𝑥1, · · · , 𝑥ℓ) = 𝑃 (𝑥1, · · · , 𝑥ℓ) ∀ 𝑥1, · · · , 𝑥ℓ ∈ F2𝑘 ,

and has degree 𝑑𝑖 ≤ 2𝑘−1 in each 𝑋𝑖. Given 𝑢 = (𝑢1, · · · , 𝑢ℓ) ∈ J0, 2𝑘−1Kℓ, the monomial∏︀ℓ
𝑖=1 𝑋

𝑢𝑖
𝑖 is denoted by 𝑋𝑢 :=

∏︀ℓ
𝑖=1 𝑋

𝑢𝑖
𝑖 .

The trace is a well-known linear mapping that plays a crucial role when working in
finite fields.

Definition 1 (Trace function). Let 𝑛 = ℓ𝑘, 𝑘 > 1. The trace function over F2𝑛 and
relative to F2𝑘 is the function TrF2𝑛 /F2𝑘

from F2𝑛 to itself that is defined by:

∀ 𝑥 ∈ F2𝑛 , TrF2𝑛 /F2𝑘
(𝑥) =

ℓ−1∑︁
𝑖=0

𝑥2𝑖𝑘

.

The graph of a function 𝐹 : F𝑛
2 → F𝑚

2 is denoted by 𝒢𝐹 := {(𝑥, 𝐹 (𝑥)), 𝑥 ∈ F𝑛
2}. Given

an affine mapping 𝐴, we denote by 𝐿𝐴 its linear part, that is 𝐿𝐴 = 𝐴+𝐴(0) and by 𝑐𝐴 its
constant term, i.e. 𝑐𝐴 = 𝐴(0). In order to study and classify vectorial Boolean functions
in an effective manner we rely on the following equivalence relations.

Definition 2 (Linear, (extended) affine, and CCZ equivalence). The functions 𝐹 and 𝐺
defined from F𝑛

2 to F𝑚
2 are said to be:

(i) linearly equivalent if there exist two F2-linear bijections 𝐴 from F𝑛
2 to itself and 𝐵 from

F𝑚
2 to itself, such that 𝐺 = 𝐵 ∘ 𝐹 ∘𝐴.

(ii) affine equivalent if there exist two F2-affine bijections 𝐴 from F𝑛
2 to itself and 𝐵 from

F𝑚
2 to itself, such that 𝐺 = 𝐵 ∘ 𝐹 ∘𝐴.

(iii) extended affine-equivalent if there exist two F2-affine bijections 𝐴 from F𝑛
2 to itself and

𝐵 from F𝑚
2 to itself, and an affine function 𝐶 : F𝑛

2 → F𝑚
2 such that 𝐺 = 𝐵 ∘𝐹 ∘𝐴+𝐶.

(iv) CCZ equivalent if there exists an F2-affine bijection 𝒜 from F𝑛
2 × F𝑚

2 to itself such
that 𝒜(𝒢𝐹 ) = 𝒢𝐺.
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Extended affine equivalence corresponds to CCZ equivalence restricted to affine
mappings 𝒜 whose linear part ℒ is a lower triangular block matrix. More precisely
𝐺 = 𝐵 ∘ 𝐹 ∘𝐴+ 𝐶, if and only if

(︂
𝐴−1 0
𝐶𝐴−1 𝐵

)︂
(𝒢𝐹 ) = 𝒢𝐺. Similarly affine equivalence

corresponds to CCZ equivalence restricted to affine mappings whose linear part is a diagonal
block matrix: 𝐺 = 𝐵 ∘ 𝐹 ∘𝐴 if and only if

(︂
𝐴−1 0

0 𝐵

)︂
(𝒢𝐹 ) = 𝒢𝐺.

We denote by GL(𝑉 ) the sets of all isomorphisms from the F2-space 𝑉 to itself. In the
paper, we will only use arbitrary vector spaces 𝑉 when we voluntarily want to encompass
the three cases of Fℓ

2𝑘 , F𝑛
2 , or F2𝑛 with 𝑛 = ℓ𝑘. Otherwise, we prefer choosing one specific

F2-space among the three previous ones. Similarly, the following definition enables us to
compare the linear-equivalence classes of functions defined over possibly different domains.

Definition 3 (Linear-equivalence class). Let 𝑛 = ℓ𝑘 and 𝐹 be a function from Fℓ
2𝑘 to

itself. Then, the linear-equivalence class of 𝐹 is the subset of ℱ(F𝑛
2 ,F𝑛

2 ) defined by:{︀
𝜋1 ∘ 𝐹 ∘ 𝜋−1

2 , s.t 𝜋1, 𝜋2 : Fℓ
2𝑘 → F𝑛

2 are isomorphisms
}︀
.

By definition, the linear equivalence class of any function is always a subset of ℱ(F𝑛
2 ,F𝑛

2 ).
This notation has the big advantage that for any isomorphisms 𝜓1, 𝜓2 : Fℓ

2𝑘 → Fℓ′

2𝑘′ with
𝑘ℓ = 𝑘′ℓ′, and any function 𝐹 : Fℓ

2𝑘 → Fℓ
2𝑘 , the linear-equivalence classes of 𝐹 and

𝜓1 ∘ 𝐹 ∘ 𝜓−1
2 coincide. Stated otherwise, the linear equivalence class of a function is

independent of the choice of input and output bases, but also independent of the actual
input or output spaces. This could be further generalized to functions 𝐹 : Fℓ

2𝑘 → Fℓ′

2𝑘′

where (ℓ, 𝑘) ̸= (ℓ′, 𝑘′), but in our context the domain and codomain will always be equal.

2.2 Homogeneity
In this section, we identify connections between various concepts that were still, to the
best of our knowledge, unknown. They involve a lot of different properties that appear
in different contexts, using different terminologies. These properties are also defined as
properties of different objects (or representations), such as Boolean functions 𝐹 : F𝑛

2 → F𝑛
2 ,

univariate functions 𝐹 : F2𝑛 → F2𝑛 , or multivariate functions 𝐹 : Fℓ
2𝑘 → Fℓ

2𝑘 . In most of
these properties, homogeneous functions are involved, one way or another.

Definition 4 (Homogeneous function with exponent 𝑑). Let 𝑘, ℓ, 𝑑 ≥ 1 be positive integers
such that 𝑑 < 2𝑘. Let 𝐹 be a function from Fℓ

2𝑘 to F2𝑘 . The function 𝐹 is said to be
homogeneous of exponent 𝑑 if it satisfies:

∀(𝑥1, · · · , 𝑥ℓ) ∈ Fℓ
2𝑘 , ∀𝜙 ∈ F2𝑘 , 𝐹 (𝑥1𝜙, · · · , 𝑥ℓ𝜙) = 𝜙𝑑𝐹 (𝑥1, · · · , 𝑥ℓ). (1)

Remark 1. The functions defined in Definition 4 are sometimes known as homogeneous
functions of degree 𝑑. However in our context, “degree” already refers to the univariate,
multivariate or algebraic degree of a function. We then prefer using “exponent” instead.

Lemma 1. Let 𝐹 : Fℓ
2𝑘 → F2𝑘 and 𝑑 < 2𝑘. Then, 𝐹 is homogeneous of exponent 𝑑 if and

only if its interpolating polynomial 𝑃 =
∑︀

𝑢∈J0,2𝑘−1Kℓ 𝑎𝑢𝑋
𝑢 satisfies:

∀𝑢 ∈ J0, 2𝑘 − 1Kℓ s.t.
ℓ∑︁

𝑖=1
𝑢𝑖 ̸≡ 𝑑 mod (2𝑘 − 1), 𝑎𝑢 = 0.

Proof. For any 𝑢 ∈ J0, 2𝑘 − 1Kℓ, let us denote by Σ(𝑢) the integer sum defined by Σ(𝑢) :=∑︀ℓ
𝑖=1 𝑢𝑖. Let 𝜙 ∈ F2𝑘 . Let us introduce the following functions:

𝐺 : (𝑥1, · · · , 𝑥ℓ) ↦→ 𝐹 (𝑥1𝜙, · · · , 𝑥ℓ𝜙), 𝐻 : (𝑥1, · · · , 𝑥ℓ) ↦→ 𝜙𝑑𝐹 (𝑥1, · · · , 𝑥ℓ).
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Then 𝐺 admits 𝑃 (𝑋1𝜙, · · · , 𝑋ℓ𝜙) as interpolating polynomial and 𝐻 admits 𝜙𝑑𝑃 as
interpolating polynomial. By uniqueness of the interpolating polynomial, we deduce
that the two polynomials are equal: ∀𝑢, 𝑎𝑢𝜙

Σ(𝑢) = 𝑎𝑢𝜙
𝑑. Choosing for 𝜙 a primitive

element of F2𝑘 , we get that, for any 𝑎𝑢 ̸= 0, 𝜙Σ(𝑢) = 𝜙𝑑; in other words Σ(𝑢) ≡ 𝑑 mod
2𝑘 − 1. Conversely, given any 𝜙 and any 𝑢 with Σ(𝑢) ≡ 𝑑 mod 2𝑘 − 1, we observe that∏︀ℓ

𝑖=1(𝑥𝑖𝜙)𝑢𝑖 = 𝜙Σ(𝑢)∏︀ℓ
𝑖=1 𝑥

𝑢𝑖
𝑖 = 𝜙𝑑

∏︀ℓ
𝑖=1 𝑥

𝑢𝑖
𝑖 , which immediately implies the result.

Example 1. When ℓ = 1, homogeneous functions are exactly the monomials functions of
the form 𝑥 ↦→ 𝑐𝑥𝑑, 𝑐 ∈ F2𝑘 .

Example 2. Any homogeneous polynomial 𝑃 ∈ F2𝑘 [𝑋1, · · · , 𝑋ℓ] of degree 𝑑 defines a
homogeneous function 𝐹 : (F2𝑛)ℓ → F2𝑛 of exponent 𝑑 for any extension F2𝑛 of F2𝑘 . How-
ever, the converse does not hold. For instance, 𝑋5

1𝑋
2
2𝑋

3
3 +𝑋1𝑋2𝑋3 is not a homogeneous

polynomial but still defines a homogeneous function 𝐹 : F3
8 → F8 of exponent 3 because

5 + 2 + 3 ≡ 10 ≡ 3 mod 7.

2.3 Cyclotomic mappings
This section is devoted to a particular subclass of functions from F2𝑛 to itself, named
cyclotomic mappings. After studying the main properties of this family, we will show
that cyclotomic mappings over F2𝑛 with respect to F*

2𝑘 , where 𝑘 is a divisor of 𝑛, are
characterized by a multivariate representation with homogeneous coordinates. We will see
in Section 4, that these mappings play a major role in the known infinite families of APN
functions.

Definition 5 (Cyclotomic mapping [Wan07]). Let 𝑛 ≥ 1 and let G ⊂ F*
2𝑛 be a multi-

plicative subgroup. A mapping 𝐹 : F2𝑛 → F2𝑛 is a cyclotomic mapping of exponent 𝑑 with
respect to G if 𝐹 (0) = 0 and:

∀ 𝜆 ∈ F2𝑛 , ∃ 𝑐𝜆 ∈ F2𝑛 ,∀ 𝑥 ∈ G, 𝐹 (𝜆𝑥) = 𝑐𝜆𝑥
𝑑.

Remark 2. For such a mapping, the original terminology introduced in [Wan07] is “cyclo-
tomic mapping of order 𝑑 and index 2𝑛−1

|G| ”. However, we prefer the wording of Definition 5
because “order” can also refer to the order of the group or of the function 𝐹 , while “index”
is also often overloaded.

Example 3. When 𝑛 is even, the cyclotomic mappings of exponent 0 with respect to
the subgroup G = F*

4, which is of order 3, coincide with the so-called canonical triplicate
functions studied in [BIK23, KKK23]. More generally, when 𝑑 divides 2𝑛−1, the cyclotomic
mappings of exponent 0 with respect to the group G of cardinality |G| = 𝑑 coincide with
the so-called 𝑑-divisible mappings studied in [KKK23], that is, functions that can be
written as 𝑥 ↦→ 𝑃 (𝑥𝑑), for some 𝑃 .

Definition 5 equivalently means that 𝐹 acts on each coset of the subgroup G as the
fixed monomial function 𝑥 ↦→ 𝑥𝑑, up to a multiplicative constant. This is emphasized by
the following equivalent definitions.

Lemma 2 (Equivalent definitions). Let 𝐹 : F2𝑛 → F2𝑛 with 𝐹 (0) = 0 and let G ⊂ F*
2𝑛 be

a subgroup of F*
2𝑛 . Then, 𝐹 is a cyclotomic mapping of exponent 𝑑 with respect to G if

and only if one of the following equivalent conditions holds:

(i) ∀𝜆 ∈ F2𝑛 , ∃ 𝑐𝜆 ∈ F2𝑛 ,∀ 𝑥 ∈ G, 𝐹 (𝜆𝑥) = 𝑐𝜆𝑥
𝑑.

(ii) ∀𝜆 ∈ F2𝑛 ,∀ 𝑥 ∈ G, 𝐹 (𝜆𝑥) = 𝐹 (𝜆)𝑥𝑑.

(iii) For any system Γ of representatives of F*
2𝑛/G,

∀𝛾 ∈ Γ,∀ 𝑥 ∈ G, 𝐹 (𝛾𝑥) = 𝐹 (𝛾)𝑥𝑑.
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Proof. (i) ⇔ (ii): The fact that (i) implies (ii) is obtained by choosing 𝑥 = 1, which leads
to 𝑐𝜆 = 𝐹 (𝜆) for any 𝜆 ∈ F*

2𝑛 . We then deduce that the first two definitions are
equivalent.

(ii) ⇔ (iii): We only have to show that (iii) implies (ii): any 𝜆 ∈ F*
2𝑛 can be written

𝜆 = 𝛾𝑦 for some 𝛾 ∈ Γ and 𝑦 ∈ G. Then, we deduce from (iii) that, for any 𝑥 ∈ G:

𝐹 (𝜆𝑥) = 𝐹 (𝛾𝑥𝑦) = 𝐹 (𝛾)𝑥𝑑𝑦𝑑 = 𝐹 (𝛾𝑦)𝑥𝑑 = 𝐹 (𝜆)𝑥𝑑 .

Example 4. Let F2𝑘 be a subfield of F2𝑛 . Because of the second characterization given
in Lemma 2, we observe for instance that the trace TrF2𝑛 /F2𝑘

relative to F2𝑘 , as well as
any F2𝑘 -linearized polynomial, are cyclotomic mappings of exponent 1 with respect to F*

2𝑘 .
The case 𝑑 = 1,G = F*

2𝑘 is a special case of Definition 5 corresponding to the former and
more restrictive definition of cyclotomic mappings given in [NW05].

Any function 𝐹 : F2𝑛 → F2𝑛 such that 𝐹 (0) = 0 is actually a cyclotomic mapping with
respect to {1}. Therefore, we restrict ourselves to the nontrivial case where G ̸= {1}.
Furthermore, any cyclotomic mapping with respect to G is also a cyclotomic mapping with
respect to any subgroup of G. We will then usually focus on the largest possible subgroup.
We also notice that we can always consider 𝑑 < |G| by replacing 𝑑 by its remainder modulo
|G|.

It is also worth noting that, when the exponent 𝑑 of a cyclotomic mapping 𝐹 with
respect to G is not coprime with the size of G, then 𝐹 is constant on each coset of
the subgroup of order 𝑡 = gcd(|G|, 𝑑). This is detailed in the following definition and
proposition.

Definition 6 (Almost 𝑡-to-1 mapping [KKK23]). Let 𝐹 : F2𝑛 → F2𝑛 and 𝑡 be a divisor of
2𝑛 − 1. The function 𝐹 is almost 𝑡-to-1 if there exists a unique 𝑦0 ∈ Im(𝐹 ) such that:⃒⃒

𝐹−1({𝑦0})
⃒⃒

= 1, and ∀ 𝑦 ∈ Im(𝐹 ) ∖ {𝑦0} ,
⃒⃒
𝐹−1({𝑦})

⃒⃒
= 𝑡.

Proposition 1. Let G ⊂ F*
2𝑛 be a multiplicative subgroup of F*

2𝑛 and let 𝐹 : F2𝑛 → F2𝑛

be a cyclotomic mapping of exponent 𝑑 with respect to G such that 𝑡 = gcd(𝑑, |G|) > 1.
Then, 𝐹 is constant on each coset of the subgroup G′ ⊂ G of size 𝑡. Equivalently, 𝐹 is
cyclotomic of exponent 0 with respect to G′. Most notably, if 𝐹 takes distinct non-zero
values on each coset of G′, then 𝐹 is almost 𝑡-to-1.

Proof. Since 𝑡 is a divisor of |G|, there exists a subgroup G′ ⊂ G of size 𝑡. Then, for any
𝜆 ∈ F2𝑛 and any 𝑥 ∈ G′:

𝐹 (𝜆𝑥) = 𝐹 (𝜆)𝑥𝑑 = 𝐹 (𝜆)

since 𝑑 is a multiple of |G′|.

Cyclotomic mappings can also be characterized by their univariate representation, as
stated in the following well-known lemma.

Lemma 3 (Univariate characterization [Wan07, Lemma 1][Göl15, p.264]). Let G be a
multiplicative subgroup of F*

2𝑛 and 𝐹 : F2𝑛 → F2𝑛 with interpolating polynomial 𝑃 =∑︀2𝑛−1
𝑖=0 𝑎𝑖𝑋

𝑖. The mapping 𝐹 is a cyclotomic mapping of exponent 𝑑 with respect to G if
and only if one of the following equivalent conditions is satisfied:

(i) there exists 𝑄 ∈ F2𝑛 [𝑋] such that 𝑃 (𝑋) = 𝑋𝑑𝑄(𝑋 |G|),

(ii) for any 𝑖 ∈ J0, 2𝑛 − 1K such that 𝑖 ̸≡ 𝑑 mod |G|, 𝑎𝑖 = 0.



8 Linear self-equivalence of the known families of APN functions: a unified point of view

Proof. The two conditions are obviously equivalent. Let 𝑠 = |G| and 2𝑛 − 1 = 𝑡𝑠. Let 𝛼
be a primitive element of F*

2𝑛 , so that 𝛼𝑡 generates G.

( ⇐= ) Let 𝜆 = 𝛼𝑖 and 𝑥 = 𝛼𝑡𝑗 ∈ G. Then:

𝐹 (𝜆𝑥) = 𝑃 (𝛼𝑖+𝑡𝑗) = 𝛼𝑑(𝑖+𝑡𝑗)𝑄(𝛼𝑠(𝑖+𝑡𝑗))
= (𝛼𝑡𝑗)𝑑𝛼𝑑𝑖𝑄(𝛼𝑠𝑖) = (𝛼𝑡𝑗)𝑑𝑃 (𝛼𝑖) = 𝑥𝑑𝐹 (𝜆),

where the third equality is derived from 𝛼𝑠𝑡 = 1.

( =⇒ ) Conversely, let 𝑥 ∈ G. From Lemma 2, we get for any 𝜆 ∈ F2𝑛 :
2𝑛−1∑︁
𝑖=0

𝑎𝑖𝜆
𝑖𝑥𝑖 = 𝑃 (𝜆𝑥) = 𝑃 (𝜆)𝑥𝑑 =

2𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑑𝜆𝑖,

so that
∑︀2𝑛−1

𝑖=0 𝑎𝑖(𝑥𝑑 + 𝑥𝑖)𝑋𝑖 is the null polynomial. Therefore if 𝑎𝑖 ̸= 0, using a
generator 𝑥 of G, we get 𝑥𝑑−𝑖 = 1 and thus 𝑖 ≡ 𝑑 mod |G|.

The polynomials described in Lemma 3 are sometimes known as Wan-Lidl polynomi-
als [WL91] and have been extensively studied, and especially in the bijective case [AW07,
BPW23, CC23, Lai07, WL91, Wan17].

Example 5. A binomial mapping over F2𝑛 , 𝑥 ↦→ 𝑥𝑖 + 𝑎𝑥𝑗 with 𝑖 < 𝑗, is a cyclotomic
mapping with respect to a nontrivial subgroup G ⊂ F*

2𝑛 if and only if gcd(𝑗− 𝑖, 2𝑛−1) > 1.
Indeed, from Lemma 3, this equivalently means that there exists a nontrivial subgroup
G ⊂ F*

2𝑛 such that 𝑖 ≡ 𝑗 mod |G|. The largest subgroup G for which the property holds is
then the subgroup of order gcd(𝑗 − 𝑖, 2𝑛 − 1).

Example 6. The Kim-type mappings defined2 in [CL21] and also studied in [LLHQ21,
Car15, Göl23], correspond to the mappings over F22𝑘 with interpolating polynomials:

𝑋3·2𝑘

+ 𝑎1𝑋
2𝑘+1+1 + 𝑎2𝑋

2𝑘+2 + 𝑎3𝑋
3, 𝑎1, 𝑎2, 𝑎3 ∈ F22𝑘 .

Since all involved exponents are equal to 3 modulo (2𝑘− 1), these mappings are cyclotomic
mappings of exponent 3 with respect to F*

2𝑘 . As we will show later in Proposition 15, the
interpolating polynomials of all quadratic cyclotomic mappings defined over F22𝑘 and of
exponent 3 with respect to F*

2𝑘 can be written as:

𝑎0𝑋
3·2𝑘

+ 𝑎1𝑋
2𝑘+1+1 + 𝑎2𝑋

2𝑘+2 + 𝑎3𝑋
3, 𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ F22𝑘 .

2.4 Cyclotomic mappings with respect to a subfield
Among all multiplicative subgroups, groups of units of subfields play a particular role.
For the sake of simplicity, cyclotomic mappings with respect to the group of units of a
subfield will be called cyclotomic mappings with respect to a subfield. For any subfield
F2𝑘 ⊂ F2𝑛 , F2𝑛 can be seen as an F2𝑘 -space of dimension ℓ := 𝑛

𝑘 . In that case, a function
𝐹 : F2𝑛 → F2𝑛 can also be seen as a multivariate function, which leads to a multivariate
characterization of cyclotomy.

Lemma 4 (Multivariate characterization). Let 𝑛 = ℓ𝑘. Let 𝜋 : F2𝑛 → Fℓ
2𝑘 be an F2𝑘 -linear

bijection. Let 𝐹 : F2𝑛 → F2𝑛 and for all 𝑖 ∈ J1, ℓK, let 𝐹𝑖 : Fℓ
2𝑘 → F2𝑘 denote the coordinates

of 𝜋 ∘ 𝐹 ∘ 𝜋−1. Then, 𝐹 is a cyclotomic mapping of exponent 𝑑 < 2𝑘 with respect to F2𝑘 if
and only if, for any 𝑖 ∈ J1, ℓK, 𝐹𝑖 is a homogeneous function of exponent 𝑑.

2The terminology “Kim-type” originates from Chase and Lisoněk [CL21], while Carlet suggests “gener-
alized Kim” for such functions which are also APN [Car15].



Jules Baudrin, Anne Canteaut and Léo Perrin 9

Proof. Let (𝑏1, · · · , 𝑏ℓ) be the F2𝑘 -basis of F2𝑛 corresponding to 𝜋, i.e. the unique basis
such that 𝜋(𝑏𝑖) is the element of Fℓ

2𝑘 having all its coordinates equal to 0 except the 𝑖-th
one, which is equal to 1. Then, the ℓ-variate coordinates 𝐹1, . . . , 𝐹ℓ of 𝜋 ∘ 𝐹 ∘ 𝜋−1 satisfy:

𝐹 (𝜆) =
ℓ∑︁

𝑖=1
𝐹𝑖(𝜆1, · · · , 𝜆ℓ)𝑏𝑖, where 𝜆 =:

ℓ∑︁
𝑖=1

𝜆𝑖𝑏𝑖 , with 𝜆𝑖 ∈ F2𝑘 for any 𝑖.

( =⇒ ) By hypothesis, 𝐹 satisfies: ∀𝜆 ∈ F2𝑛 ∀𝜙 ∈ F2𝑘 , 𝐹 (𝜆𝜙) = 𝐹 (𝜆)𝜙𝑑, where equality
also holds for 𝜙 = 0. Because 𝜙 ∈ F2𝑘 , we have 𝜆𝜙 =

∑︀ℓ
𝑖=1(𝜆𝑖𝜙)𝑏𝑖. For any 𝑖 ∈ J1, ℓK,

this then implies that:

∀(𝜆1, · · · , 𝜆ℓ) ∈ Fℓ
2𝑘 ∀𝜙 ∈ F2𝑘 𝐹𝑖(𝜆1𝜙, · · · , 𝜆ℓ𝜙) = 𝜙𝑑𝐹𝑖(𝜆1, · · · , 𝜆ℓ);

or equivalently that all 𝐹𝑖 are homogeneous functions of degree 𝑑.

( ⇐= ) Conversely, we observe that, for any 𝜙 ∈ F2𝑘 :

𝐹 (𝜆𝜙) =
ℓ∑︁

𝑖=1
𝐹𝑖(𝜋(𝜆𝜙))𝑏𝑖 =

ℓ∑︁
𝑖=1

𝜙𝑑𝐹𝑖(𝜋(𝜆))𝑏𝑖 = 𝜙𝑑
ℓ∑︁

𝑖=1
𝐹𝑖(𝜋(𝜆))𝑏𝑖 = 𝜙𝑑𝐹 (𝜆),

where we use for the second equality the F2𝑘 -linearity of 𝜋, and the homogeneity of
𝐹𝑖.

In that case, Lemma 4 provides an easy way to identify cyclotomic mappings through
their multivariate polynomial representations. The previous characterizations of cyclotomic
mapping with respect to a subfield are then summarized in the following theorem.

Theorem 1 (Cyclotomic mappings with respect to subfields). Let 𝑛, ℓ, 𝑘, 𝑑 be positive
integers such that 𝑛 = ℓ𝑘 with 𝑘 > 1 and 𝑑 < 2𝑘. Let 𝐹 : F2𝑛 → F2𝑛 with interpolating
polynomial 𝑃 =

∑︀2𝑛−1
𝑖=0 𝑎𝑖𝑋

𝑖. Let 𝐹 = (𝐹1, · · · , 𝐹ℓ) be any ℓ-variate representation of 𝐹
where the 𝑖-th coordinate 𝐹𝑖 : Fℓ

2𝑘 → F2𝑘 has 𝑃𝑖 =
∑︀

𝑢∈J0,2𝑘−1Kℓ 𝑎𝑢,𝑖𝑋
𝑢 as interpolating

polynomial. The following statements are equivalent:

• 𝐹 is a cyclotomic mapping of exponent 𝑑 with respect to F2𝑘 ,

• ∀ 𝜆 ∈ F2𝑛 , ∃ 𝑐𝜆 ∈ F2𝑛 , ∀ 𝜙 ∈ F2𝑘 , 𝐹 (𝜆𝜙) = 𝑐𝜆𝜙
𝑑,

• ∀ 𝜆 ∈ F2𝑛 , ∀ 𝜙 ∈ F2𝑘 , 𝐹 (𝜆𝜙) = 𝐹 (𝜆)𝜙𝑑,

• For any system Γ of representatives of F*
2𝑛/F*

2𝑘 , ∀𝛾 ∈ Γ, ∀ 𝜙 ∈ F2𝑘 , 𝐹 (𝛾𝜙) = 𝐹 (𝛾)𝜙𝑑,

• ∃ 𝑄 ∈ F2𝑛 [𝑋], 𝑃 = 𝑋𝑑𝑄(𝑋2𝑘−1),

• ∀ 𝑖 ∈ J0, 2𝑛 − 1K, such that 𝑖 ̸≡ 𝑑 mod 2𝑘 − 1, 𝑎𝑖 = 0,

• ∀ 𝑖 ∈ J1, ℓK, 𝐹𝑖 is a homogeneous function of exponent 𝑑,

• ∀ 𝑖 ∈ J1, ℓK, ∀ 𝜙, 𝑥1, · · · , 𝑥ℓ ∈ F2𝑘 , 𝐹 (𝑥1𝜙, · · · , 𝑥ℓ𝜙) = 𝜙𝑑𝐹 (𝑥1, · · · , 𝑥ℓ),

• ∀ 𝑖 ∈ J1, ℓK, ∀ 𝑢 ∈ J0, 2𝑘 − 1Kℓ, such that
∑︀ℓ

𝑖=1 𝑢𝑖 ̸≡ 𝑑 mod 2𝑘 − 1, 𝑎𝑢,𝑖 ̸= 0.

As detailed in the following definition and proposition, the so-called (𝑞, 𝑞)-biprojective
mappings are particular cases of cyclotomic mappings.
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Definition 7 (Biprojective mapping [Göl22, Göl23]). Let 𝑘, 𝑞, 𝑞′, 𝑟, 𝑟′ be positive integers
such that 𝑘 > 1, 𝑞 = 2𝑟, 𝑞′ = 2𝑟′ and 𝑟, 𝑟′ < 𝑘. A function 𝐹 : F2

2𝑘 → F2
2𝑘 with bivariate

representation 𝐹 (𝑥, 𝑦) = (𝐹1(𝑥, 𝑦), 𝐹2(𝑥, 𝑦)) is a (𝑞, 𝑞′)-biprojective mapping if 𝐹1 and 𝐹2
have interpolating polynomials of the following forms:

𝐹1(𝑥, 𝑦) = 𝑎𝑥𝑞+1 + 𝑏𝑥𝑞𝑦 + 𝑐𝑥𝑦𝑞 + 𝑑𝑦𝑞+1,

𝐹2(𝑥, 𝑦) = 𝑒𝑥𝑞′+1 + 𝑓𝑥𝑞′
𝑦 + 𝑔𝑥𝑦𝑞′

+ ℎ𝑦𝑞′+1,

with 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ ∈ F2𝑘 .

Proposition 2 (Cyclotomic mappings and (𝑞, 𝑞)-biprojective mappings [Göl23]). Let 𝑞 =
2𝑟. Then any (𝑞, 𝑞)-biprojective mapping 𝐹 : F2𝑘 × F2𝑘 → F2𝑘 × F2𝑘 can be expressed as
𝜋 ∘𝐺 ∘ 𝜋−1, where 𝐺 : F22𝑘 → F22𝑘 is a cyclotomic mapping of exponent 𝑞 + 1 with respect
to F2𝑘 and 𝜋 : F22𝑘 → F2

2𝑘 is an F2𝑘 -linear bijection.

Proof. This is a direct corollary of the multivariate characterization of cyclotomic mappings.
Indeed, we observe that any (𝑞, 𝑞)-biprojective mapping 𝐹 has homogeneous components
of exponent 𝑞 + 1. By choosing an F2𝑘 -basis (𝑏1, 𝑏2) of F22𝑘 , we can build the function
𝐺 : F22𝑘 → F22𝑘 defined by:

∀𝑥, 𝑦 ∈ F2𝑘 , 𝐺(𝑏1𝑥+ 𝑏2𝑦) = 𝑏1𝐹1(𝑥, 𝑦) + 𝑏2𝐹2(𝑥, 𝑦).

By construction, the function 𝐺 is cyclotomic of exponent 𝑞 + 1. With the mapping 𝜋
defined by 𝜋(𝑏1𝑥+ 𝑏2𝑦) = (𝑥, 𝑦) for all 𝑥, 𝑦, we obtain: 𝐹 = 𝜋 ∘𝐺 ∘ 𝜋−1.

Most notably, the previous proposition points out that the class of (2, 2)-biprojective
functions coincides with the family of quadratic cyclotomic mappings of exponent 3 with
respect to F2

𝑛
2 mentioned in Example 6. Moreover, for 𝑞 = 2𝑟 > 2, the (𝑞, 𝑞)-biprojective

functions correspond to the quadratic cyclotomic mappings of exponent (2𝑟 + 1) with
respect to F2

𝑛
2 , where quadratic refers to the algebraic degree of 𝐹 . Most notably, this

family includes as a subclass the so-called (closed) generalized butterflies introduced
in [PUB16], studied in [CDP17, FFW17, LTYW18, CPT19], and defined by 𝐹 (𝑥, 𝑦) =
(𝐹1(𝑥, 𝑦), 𝐹1(𝑦, 𝑥)) with 𝐹1(𝑥, 𝑦) = (𝑥+ 𝛼𝑦)2𝑟+1 + 𝛽𝑦2𝑟+1.

2.5 Linearly self-equivalent mappings
When they are seen as functions from F𝑛

2 to F𝑛
2 , cyclotomic mappings correspond to a

particular subclass of linearly self-equivalent mappings. This class of mappings has been
extensively studied by Beierle, Brinkmann and Leander [BBL21, BL22] in order to find
new APN mappings. In particular, they observed that all known APN permutations are
CCZ-equivalent to a linearly self-equivalent APN permutation and conjecture in [BBL21,
Conjecture 1] that this property always holds.

In the following, given F2-linear bijections 𝐴𝑖 with 𝑖 ∈ J1, ℓK from an F2-space 𝑉 to
itself, we denote by diag(𝐴1, . . . , 𝐴ℓ) : 𝑉 ℓ → 𝑉 ℓ the mapping defined by:

∀(𝑥1, . . . , 𝑥ℓ) ∈ 𝑉 ℓ, diag(𝐴1, . . . , 𝐴ℓ)(𝑥1, . . . , 𝑥ℓ) := (𝐴1(𝑥1), . . . , 𝐴ℓ(𝑥ℓ)).

We also denote by 𝑀𝛼,𝑛 the multiplication mapping 𝑥 ↦→ 𝑥𝛼 defined from F2𝑛 to itself.

Definition 8 (LE-automorphism group). [CP19, BBL21] Let 𝑛 = ℓ𝑘, 𝑘 > 1. The
automorphism group of a function 𝐹 : Fℓ

2𝑘 → Fℓ
2𝑘 is the set Aut(𝐹 ) of all F2-affine

bijections 𝜎 from
(︀
Fℓ

2𝑘

)︀2 to itself such that {(𝑥, 𝐹 (𝑥)), 𝑥 ∈ Fℓ
2𝑘} is invariant under 𝜎.

The LE-automorphism group of 𝐹 is the subgroup AutLE(𝐹 ) of Aut(𝐹 ) composed of
all automorphisms of the form diag(𝐴,𝐵) for some F2-linear bijections 𝐴,𝐵 : Fℓ

2𝑘 → Fℓ
2𝑘 .
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Definition 9 (Linearly self-equivalent mappings [BBL21]). A function 𝐹 : Fℓ
2𝑘 → Fℓ

2𝑘 is
said to be linearly self-equivalent if AutLE(𝐹 ) is non-trivial, i.e., there exist two F2-linear
bijections 𝐴,𝐵 : Fℓ

2𝑘 → Fℓ
2𝑘 with 𝐴 ̸= Id or 𝐵 ̸= Id such that 𝐵 ∘ 𝐹 ∘𝐴 = 𝐹 .

Example 7. A cyclotomic mapping 𝐹 : F2𝑛 → F2𝑛 of exponent 𝑑 over a subgroup G
satisfies for any 𝛼 ∈ G:

𝑀𝛼−𝑑,𝑛 ∘ 𝐹 ∘𝑀𝛼,𝑛 = 𝐹.

A (𝑞, 𝑞′)-biprojective function 𝐺 : (F2𝑘 )2 → (F2𝑘 )2 satisfies for any 𝛽 ∈ F2𝑘 :

diag(𝑀𝛽𝑞+1,𝑘,𝑀𝛽𝑞′+1,𝑘) ∘𝐺 = 𝐺 ∘ diag(𝑀𝛽,𝑘,𝑀𝛽,𝑘).

Both are therefore linearly self-equivalent mappings.

As in the case of Definition 3, this definition of linear self-equivalence is compatible
with any change of basis, and any change of domain. Indeed, let 𝐹 : Fℓ

2𝑘 → Fℓ
2𝑘 . Then it

holds that, for all F2-linear bijections 𝜋1, 𝜋2 : Fℓ
2𝑘 → Fℓ′

2𝑘′ ,

diag(𝐴,𝐵) ∈ AutLE(𝐹 ) ⇐⇒ 𝐵𝜋−1
1 𝜋1𝐹𝜋

−1
2 𝜋2𝐴

−1 = 𝐹 (2)
⇐⇒ (𝜋1𝐵𝜋

−1
1 )(𝜋1𝐹𝜋

−1
2 )(𝜋2𝐴

−1𝜋−1
2 ) = 𝜋1𝐹𝜋

−1
2

⇐⇒ diag
(︀
𝜋2𝐴𝜋

−1
2 , 𝜋1𝐵𝜋

−1
1
)︀
∈ AutLE

(︀
𝜋1𝐹𝜋

−1
2
)︀
.

As a consequence of this formula, and as pointed out in [BBL21], classifying linearly
self-equivalent mappings up to linear equivalence can leverage any similarity invariant of
GL𝑛(F2), like the rational canonical form. We continue in this direction in Section 3.

Beforehand, we present another somehow-related property known as the subspace
property, which is sometimes mistaken with cyclotomy.

2.6 Subspace property
The Kim mapping exhibited in [BDMW10] is a cyclotomic mapping of exponent 3 with
respect to F8. Instead of this particular structure, Dillon et al. [BDMW10] highlight a
more general property called the subspace property. In the following, we generalize it to any
subgroup G ⊂ F*

2𝑛 while it was originally defined in [BDMW10] for 𝑛 even and G = F*
2

𝑛
2

only.

Definition 10 (Subspace property [BDMW10]). Let 𝐹 : F2𝑛 → F2𝑛 and G ⊂ F*
2𝑛 be a

multiplicative subgroup of F*
2𝑛 . A mapping 𝐹 satisfies the G-subspace property if, for all

𝜆 ∈ F2𝑛 , 𝐹 (𝜆G) = 𝐹 (𝜆)G.

Because 0G = {0}, the definition implies that 𝐹 ({0}) = 𝐹 (0)G, which necessarily means
that 𝐹 (0) = 0 for the cardinalities to be equal. A particular subclass of mappings satisfying
the subspace property is formed by some so-called generalized cyclotomic mappings, which
correspond to a generalization of the notion of cyclotomic mappings given in Definition 5.
Indeed, while a cyclotomic mapping with respect to G acts as the same monomial mapping
(up to a constant) over all cosets of G, we may consider possibly different monomials for
the different cosets, as in the following definition.

Definition 11 (Generalized cyclotomic mapping [BW22]). Let G be a subgroup of F*
2𝑛 .

A mapping 𝐹 : F2𝑛 → F2𝑛 is called a generalized cyclotomic mapping with respect to G if
𝐹 (0) = 0 and ∀𝜆 ∈ F2𝑛 ,∃ 𝑑𝜆 ∈ N, ∀ 𝑥 ∈ G, 𝐹 (𝜆𝑥) = 𝐹 (𝜆)𝑥𝑑𝜆 .

If 𝐹 (𝜆) ̸= 0, the value of 𝑑𝜆 mod |G| only depends on the coset of 𝜆. Indeed, it holds
that for any 𝑦, 𝑥 ∈ G:

𝐹 (𝜆𝑦)𝑥𝑑𝜆𝑦 = 𝐹 (𝜆𝑦𝑥) = 𝐹 (𝜆)𝑦𝑑𝜆𝑥𝑑𝜆 = 𝐹 (𝜆𝑦)𝑥𝑑𝜆 .
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Therefore, as in Lemma 2, an equivalent condition is that, for any 𝛾 in a system of
representatives of F*

2𝑛/G, there exists 𝑑𝛾 ∈ N such that:

∀𝑥 ∈ G, 𝐹 (𝛾𝑥) = 𝐹 (𝛾)𝑥𝑑𝛾 .

Generalized cyclotomic mappings with respect to G then form a subclass of the mappings
satisfying the G-subspace property if their exponents are coprime with |G|.

Lemma 5. Let G be a subgroup of F*
2𝑛 and Γ be a system of representatives of F*

2𝑛/G.
A generalized cyclotomic mapping of exponents 𝑑𝛾 , 𝛾 ∈ Γ with respect to G satisfies the
G-subspace property if and only if gcd(𝑑𝛾 , |G|) = 1 for all 𝛾 ∈ Γ.

Proof. Let 𝐹 be a generalized cyclotomic mapping with respect to G. By definition, for
any 𝜆 ∈ F2𝑛 , we have:

𝐹 (𝜆G) = {𝐹 (𝜆𝑥), 𝑥 ∈ G}
= {𝑥𝑑𝜆𝐹 (𝜆), 𝑥 ∈ G}
= {𝑥𝑑𝛾𝐹 (𝜆), 𝑥 ∈ G}

where 𝛾 ∈ Γ is such that 𝜆 ∈ 𝛾G. It follows that 𝐹 (𝜆G) = 𝐹 (𝜆)G if and only 𝑥 ↦→ 𝑥𝑑𝛾 is
bijective over G, or equivalently 𝑑𝛾 is coprime with |G|.

Most notably, this points out that the subspace property as defined by Göloğlu in
[Göl15], and which actually corresponds to the definition of cyclotomic mapping of exponent
(2𝑟 + 1) with respect to the subfield F2𝑛/2 for any 𝑟 ≥ 1, does not coincide with the original
subspace property recalled in Definition 10. Indeed, such cyclotomic mappings satisfy the
F*

2𝑛/2 -subspace property if and only if 𝑛
2 gcd(𝑟,𝑛/2) is odd. This is not the case for instance

of the APN mappings satisfying Göloğlu’s subspace property when 𝑛 is a multiple of 4,
since the APN condition (see Proposition 12) implies that 𝑟 is coprime with 𝑛/2 and
contradicts Lemma 5.

Therefore, we want to further clarify the differences between the subspace property
and the properties of (generalized) cyclotomic mappings. To this aim, we now character-
ize, among all mappings satisfying the G-subspace property, the ones corresponding to
generalized cyclotomic mappings with respect to G. This characterization first requires
the following proposition.

Proposition 3. Let 𝐹 : F2𝑛 → F2𝑛 with 𝐹 (0) = 0, let G ⊂ F*
2𝑛 be a subgroup of F*

2𝑛 and
Γ be a system of representatives of F*

2𝑛/G. Then, 𝐹 has the G-subspace property if and
only if one of the following equivalent conditions is satisfied:

(i) ∀𝜆 ∈ F2𝑛 , 𝐹 (𝜆G) = 𝐹 (𝜆)G.

(ii) ∀𝛾 ∈ Γ, 𝐹 (𝛾G) = 𝐹 (𝛾)G.

(iii) ∀𝜆 ∈ F2𝑛 , there exists a bijection 𝐺𝜆 : G→ G such that, ∀𝑥 ∈ G, 𝐹 (𝜆𝑥) = 𝐹 (𝜆)𝐺𝜆(𝑥).

(iv) ∀𝛾 ∈ Γ, there exists a bijection 𝐺𝛾 : G→ G such that, ∀𝑥 ∈ G, 𝐹 (𝛾𝑥) = 𝐹 (𝛾)𝐺𝛾(𝑥).

Proof. (i) ⇐⇒ (ii): We only have to prove that (ii) implies (i). Let 𝜆 ∈ F2𝑛 . Then,
there exists 𝛾 ∈ Γ such that 𝜆 = 𝛾𝑥. Then, 𝐹 (𝜆) ∈ 𝐹 (𝛾)G. We then deduce that:

𝐹 (𝜆G) = 𝐹 (𝛾G) = 𝐹 (𝛾)G = 𝐹 (𝜆)G .

(i) ⇐⇒ (iii): Let 𝜆 ∈ F2𝑛 such that 𝐹 (𝜆) ̸= 0. We consider the mapping 𝐺𝜆 : G→ F2𝑛

defined by:
𝐺𝜆(𝑥) = 𝐹 (𝜆𝑥)

𝐹 (𝜆) .
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Then, Im(𝐺𝜆) = G if and only if 𝐹 (𝜆G) = 𝐹 (𝜆)G. Moreover, when 𝐹 (𝜆) = 0,
𝐹 (𝜆G) = {0}, which means that 𝐹 (𝜆𝑥) = 𝐹 (𝜆)𝐺𝜆(𝑥) for any bijection 𝐺𝜆 : G→ G.
Therefore, we derive that (i) and (iii) (resp. (ii) and (iv)) are equivalent.

It is worth noticing that, when 𝐹 (𝜆) ̸= 0, all the functions 𝐺𝜆 : G→ G in the previous
definitions satisfy 𝐺𝜆(1) = 1, and the same can be assumed when 𝐹 (𝜆) = 0.

An interesting case corresponds to the situation where all functions 𝐺𝜆 are identical
when 𝜆 varies in a coset of G. This situation characterizes the generalized cyclotomic
mappings with respect to G within the family of all functions satisfying the G-subspace
property.

Theorem 2. Let G be a subgroup of F*
2𝑛 and Γ be a system of representatives of F*

2𝑛/G.
Let 𝐹 : F2𝑛 → F2𝑛 be a mapping satisfying the G-subspace property, i.e., for all 𝜆 ∈ F2𝑛 ,
there exists a bijection 𝐺𝜆 : G→ G such that, ∀𝑥 ∈ G, 𝐹 (𝜆𝑥) = 𝐹 (𝜆)𝐺𝜆(𝑥). Then, for all
𝛾 ∈ Γ and all 𝜆 ∈ 𝛾G, 𝐺𝜆 = 𝐺𝛾 if and only if 𝐹 is a generalized cyclotomic mapping with
respect to G of exponents 𝑑𝜆 with gcd(𝑑𝜆, |G|) = 1.

Proof. ( =⇒ ) Let us first prove that, for any 𝐹 satisfying the G-subspace property, we
have that, for any 𝛾 ∈ Γ with 𝐹 (𝛾) ̸= 0, for all 𝜙, 𝑥 ∈ G, 𝐺𝛾(𝜙𝑥) = 𝐺𝛾(𝜙)𝐺𝛾𝜙(𝑥).
By definition it holds that:

𝐺𝛾(𝜙𝑥) = 𝐹 (𝛾𝜙𝑥)
𝐹 (𝛾) .

Moreover, 𝐹 (𝛾𝜙) ̸= 0 since 𝐹 (𝛾𝜙) ∈ 𝐹 (𝛾)G, with 𝐹 (𝛾) ̸= 0. This leads to:

𝐺𝛾(𝜙)𝐺𝛾𝜙(𝑥) = 𝐹 (𝛾𝜙)
𝐹 (𝛾) ×

𝐹 (𝛾𝜙𝑥)
𝐹 (𝛾𝜙) = 𝐹 (𝛾𝜙𝑥)

𝐹 (𝛾) = 𝐺𝛾(𝜙𝑥) .

By hypothesis, we know that 𝐺𝛾𝜙(𝑥) = 𝐺𝛾(𝑥). We then deduce that, for all 𝜙, 𝑥 ∈ G,
𝐺𝛾(𝜙𝑥) = 𝐺𝛾(𝜙)𝐺𝛾(𝑥) This means 𝐺𝛾 is a multiplicative permutation of G with
𝐺𝛾(1) = 1. Let us consider 𝜙 ∈ G a given generator of G. We observe that 𝐺𝛾(𝜙) can
be written as 𝐺𝛾(𝜙) = 𝜙𝑑𝛾 for some 𝑑𝛾 . It then implies that 𝐺𝛾(𝜙𝑑′) = 𝐺𝛾(𝜙)𝑑′ =
(𝜙𝑑𝛾 )𝑑′ = (𝜙𝑑′)𝑑𝛾 , so that 𝐺𝛾(𝑥) = 𝑥𝑑𝛾 for any 𝑥 ∈ G. The function 𝐺𝛾 is therefore
a power mapping and 𝑑𝛾 is necessarily coprime with |G| because it is bijective. If
𝐹 (𝛾) = 0, then any bijection 𝐺𝛾 can be used, including a power permutation. We
then deduce that, for any 𝜆 ∈ F2𝑛 , ∀𝑥 ∈ F, 𝐹 (𝜆𝑥) = 𝐹 (𝜆)𝐺𝛾(𝑥) = 𝐹 (𝜆)𝑥𝑑𝛾 , i.e. 𝐹
is a generalized cyclotomic mapping of exponents coprime with G.

( ⇐= ) Conversely, let 𝐹 be a generalized cyclotomic mapping. Then for any 𝜆 ∈ F2𝑛 ,
𝐺𝜆 can be defined as 𝐺𝜆(𝑥) = 𝑥𝑑𝜆 for any 𝑥 ∈ G. The equality 𝑑𝜆 ≡ 𝑑𝛾 mod |G|
when 𝜆 ∈ 𝛾G is already mentioned after Definition 11. Moreover, since the exponent
𝑑𝛾 is coprime with |G|, 𝐺𝜆(𝑥) = 𝑥𝑑𝛾 is a bijection on G.

Theorem 2 enables us to have a clearer view of the situation. As a cyclotomic mapping
with exponent coprime with 2 𝑛

2 − 1, the Kim mapping appears to be a very particular
case of function satisfying the F*

2
𝑛
2

-subspace property.
Contrary to cyclotomic mappings or biprojective mappings, the subspace property does

not seem to imply (by definition) any kind of linear self-equivalence. For instance, let us
consider the generalized cyclotomic mapping with respect to F23 and defined over F26 by:

𝐹 (𝑥) =
{︂
𝑥3 if 𝑥 ∈ 𝛼𝑖F23 for any 𝑖 ∈ J0, 8K ∖ {1}
𝑥5 if 𝑥 ∈ 𝛼F23

,
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where 𝛼 is a primitive element with minimal polynomial 𝑋6 +𝑋4 +𝑋3 +𝑋 + 1. It can
be computationally verified that the automorphism group Aut(𝐹 ) is trivial, and this in
particular implies that this is also the case for AutLE(𝐹 ).

In the following, we rather continue studying linear self-equivalence. However, general-
ized cyclotomic mappings will still be mentioned in a few results in Section 6.1, when the
generalization from the cyclotomic case is immediate.

3 Classification of some families of linearly self-equivalent
mappings

This section is dedicated to a unified study of the cyclotomic mappings and biprojective
mappings introduced in the previous section. More precisely, we study in detail the linear
self-equivalences of such mappings. To do so, we consider the linear mappings 𝐴,𝐵 involved
in a linear self-equivalence relation 𝐵 ∘ 𝐹 ∘ 𝐴 = 𝐹 of a function 𝐹 , and we analyze the
respective similarity class of 𝐴 and 𝐵. First, we will recall some properties of the canonical
form of linear bijections.

3.1 Canonical forms of linear mappings
The family of companion matrices plays an important role when representing matrices up
to similarity equivalence.

Definition 12 (Companion matrix). Let 𝑃 (𝑋) = 𝑋𝑛 +
∑︀𝑛−1

𝑖=0 𝑝𝑖𝑋
𝑖 be a monic polynomial

in F2[𝑋]. Its companion matrix is the 𝑛× 𝑛 matrix defined by:

𝐶(𝑃 ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 𝑝0

1 0
... 𝑝1

0 1 . . . ...
... . . . 0 𝑝𝑛−2
0 · · · 0 1 𝑝𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
In the following, we use the canonical representation of endomorphisms based on

elementary divisors and which is sometimes known as the primary rational canonical form.
This is an alternative to the one based on invariant factors (aka Frobenius normal form)
and which is used in [BBL21]. Therefore, by canonical form, we now refer to the following
well-known proposition.

Proposition 4 (Canonical form, elementary divisors [Her75, Page 308]). Let 𝑉 be an
F2-space of dimension 𝑛. Let 𝐴 : 𝑉 → 𝑉 be an F2-linear mapping with minimal polynomial∏︀𝑟

𝑖=1 𝑃
𝑒𝑖
𝑖 where 𝑃1, . . . , 𝑃𝑟 are distinct irreducible polynomials and all 𝑒𝑖 ≥ 1. Then, there

exists an F2-basis of 𝑉 in which the matrix 𝑀𝐴 of 𝐴 is of the form:

𝑀𝐴 =

⎛⎜⎝𝑅1
. . .

𝑅𝑟

⎞⎟⎠ ,with 𝑅𝑖 =

⎛⎜⎝𝐶
(︀
𝑃

𝑒𝑖,1
𝑖

)︀
. . .

𝐶
(︀
𝑃

𝑒𝑖,𝑠𝑖
𝑖

)︀
⎞⎟⎠ ,

where 𝑒𝑖 = 𝑒𝑖,1 ≥ 𝑒𝑖,2 ≥ . . . ≥ 𝑒𝑖,𝑠𝑖
for any 𝑖. The polynomials 𝑃

𝑒𝑖,𝑗

𝑖 are called the
elementary divisors of 𝐴. Such a decomposition is unique, up to a reordering of the blocks.

The previous theorem is stated for a generic F2-space 𝑉 and this is on purpose. Indeed,
this enables us to handle the three main cases on which we focus on in a single stroke:
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functions from F𝑛
2 to itself, functions from F2𝑛 to itself, and functions from Fℓ

2𝑘 to itself
with 𝑛 = ℓ𝑘.

In the following, we denote by min(𝐴) the minimal polynomial of any F2-linear endo-
morphism 𝐴. Also, the minimal polynomial of any 𝛼 ∈ F2𝑛 is denoted by min(𝛼).
Remark 3. Despite the name and notation, minimal polynomials of endomorphisms and
the ones of elements of a finite field do not share all of their properties. As an example,
the minimal polynomial min(𝛼) where 𝛼 ∈ F2𝑛 is always irreducible, while this is not the
case of the minimal polynomial of a matrix. For instance, the minimal polynomial of an
involutive matrix 𝐴 ̸= Id is 𝑋2 + 1 = (𝑋 + 1)2.

It is well-known (see for instance [MP13, pp. 311-312]) that, for any irreducible
polynomial 𝑃 ∈ F2[𝑋] of degree 𝑛, and any root 𝛼 ∈ F2𝑛 of 𝑃 , there exists a basis of
F2𝑛 such that the matrix of 𝑀𝛼,𝑛 is equal to 𝐶(𝑃 ). The following lemma generalizes this
property, and will be very useful in our classification.

Lemma 6. Let 𝑉 be an F2-space of dimension 𝑛. Let 𝐴 : 𝑉 → 𝑉 be an F2-linear mapping.
Then the following statements are equivalent:

(i) min(𝐴) is irreducible over F2,

(ii) there exists an irreducible polynomial 𝑃 ∈ F2[𝑋] and an F2-basis in which the matrix
of 𝐴 is diag(𝐶(𝑃 ), 𝐶(𝑃 ), . . . , 𝐶(𝑃 )),

(iii) there exists an irreducible polynomial 𝑃 ∈ F2[𝑋] of degree 𝑑, 𝑑 | 𝑛 such that for any
root 𝛼 ∈ F2𝑛 of 𝑃 , there exists an F2-linear bijection 𝜋 : 𝑉 → F2𝑛 which satisfies:
𝜋 ∘𝐴 ∘ 𝜋−1 = 𝑀𝛼,𝑛.

Proof. (i) ⇔ (ii): The first equivalence is a direct consequence of Proposition 4: if 𝐴 has
as unique type of block 𝐶(𝑃 ) for some irreducible 𝑃 , this is necessarily its canonical
form. Then it must hold that min(𝐴) = 𝑃 because 𝑃 is the only irreducible factor
of min(𝐴) and it appears with highest power 1 in the canonical form. The minimal
polynomial min(𝐴) is therefore irreducible (and min(𝐴) = 𝑃 ). Conversely, if the
minimal polynomial of 𝐴 is irreducible, then there can be only one type of block in
its canonical form, which is 𝐶(min(𝐴)).

(i & ii) =⇒ (iii): Let 𝑑 be the degree of min(𝐴). Because of the second characterization,
𝑑 is the size of the blocks, and it must then divide 𝑛. The polynomial min(𝐴) is
then irreducible of degree 𝑑, and F2𝑑 ⊂ F2𝑛 is thus its splitting field. Let 𝑠 be
such that 𝑛 = 𝑑𝑠. Let 𝛼 ∈ F2𝑑 be a root of min(𝐴). Let 𝛽1, . . . , 𝛽𝑠 be an F2𝑑-basis
of F2𝑛 so that any 𝑥 ∈ F2𝑛 can be uniquely decomposed as 𝑥 =

∑︀𝑠
𝑖=1 𝑥𝑖𝛽𝑖, with

𝑥1, . . . , 𝑥𝑠 ∈ F2𝑑 . Then for any 𝑥 ∈ F2𝑛 it holds that:

𝑀𝛼,𝑛(𝑥) = 𝛼𝑥 =
𝑠∑︁

𝑖=1
(𝛼𝑥𝑖)𝛽𝑖 =

𝑠∑︁
𝑖=1

𝑀𝛼,𝑑(𝑥𝑖)𝛽𝑖.

The multiplication 𝑀𝛼,𝑛 is then the application of 𝑀𝛼,𝑑 in parallel on each coset 𝛽𝑖F2𝑑 .
But in the basis (1, 𝛼, . . . , 𝛼𝑑−1), 𝑀𝛼,𝑑 has 𝐶(min(𝐴)) as matrix. This means that
𝑀𝛼,𝑛 has diag(𝐶(min(𝐴)), . . . , 𝐶(min(𝐴))) as matrix in the basis (𝛼𝑖𝛽𝑗)𝑖∈J0,𝑑−1K,𝑗∈J1,𝑠K.
By hypothesis, this is also the case of 𝐴 in some basis (𝑣𝑖,𝑗)𝑖∈J0,𝑑−1K,𝑗∈J1,𝑠K of 𝑉 .
The linear mapping 𝜋 defined by 𝜋(𝑣𝑖,𝑗) = 𝛼𝑖𝛽𝑗 for any 𝑖, 𝑗 satisfies the announced
property.

(i) ⇐= (iii): Conversely, given 𝑃, 𝛼 and 𝜋 with the announced property, it holds that
min(𝐴) = min(𝑀𝛼,𝑛). But for any 𝑥 ∈ F2𝑛 , it holds that:

𝑃 (𝑀𝛼,𝑛)𝑥 = 𝑃 (𝛼)𝑥 = 0,
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because 𝛼 is a root of 𝑃 . Therefore min(𝑀𝛼,𝑛) | 𝑃 , but as 𝑃 is irreducible, we
deduce that min(𝑀𝛼,𝑛) = 𝑃 , and thus min(𝐴) = 𝑃 is irreducible.

3.2 LE-automorphism groups of cyclotomic mappings
Using Eq. (2) and Lemma 6, we can now deduce the following correspondence between
cyclotomic mappings and some linearly self-equivalent mappings.

Theorem 3. Let 𝐹 : F𝑛
2 → F𝑛

2 and let G be a subgroup of F*
2𝑛 . Then, the following

properties are equivalent.

(i) 𝐹 belongs to the linear-equivalence class of a cyclotomic mapping with respect to G.

(ii) There exists diag(𝐴,𝐵) ∈ AutLE(𝐹 ) such that min𝐴 and min𝐵 are irreducible poly-
nomials and ord(𝐴) = |G| and ord(𝐵) is a divisor of |G|.

Proof. (i) =⇒ (ii) Let 𝛼 ∈ G be a generator of G. By assumption and by Eq. (2)
there exists an integer 𝑑 and two F2-linear bijections 𝜋1, 𝜋2 : F𝑛

2 → F2𝑛 such that
diag(𝐴,𝐵) ∈ AutLE (𝐹 ) where 𝐴,𝐵 are defined by:

𝐴 = 𝜋−1
1 ∘𝑀𝛼,𝑛 ∘ 𝜋1, 𝐵 = 𝜋−1

2 ∘𝑀𝛽,𝑛 ∘ 𝜋2, (3)

with 𝛽 = 𝛼𝑑. By Lemma 6, both min(𝐴) and min(𝐵) are irreducible. Furthermore,
𝐴 (resp. 𝐵) has the same order as 𝑀𝛼,𝑛 (resp. 𝑀𝛼𝑑,𝑛) which is the multiplicative
order of 𝛼 (resp. 𝛼𝑑).

(i) ⇐= (ii) Conversely, if min(𝐴),min(𝐵) are irreducible, because of Lemma 6, they
can be decomposed as in Eq. (3), with 𝛼 such that ⟨𝛼⟩ = G and ord(𝛽) | |G|. This
implies that 𝛽 ∈ G and it can then be written as 𝛽 = 𝛼𝑑 for some 0 ≤ 𝑑 < |𝐺|. Then
Eq. (2) can be used in the opposite way to deduce that 𝜋2 ∘ 𝐹 ∘ 𝜋−1

1 is cyclotomic
with respect to G.

In other words, any function 𝐹 satisfying the second condition of Theorem 3 admits a
univariate cyclotomic representation, if the identifications between F𝑛

2 and F2𝑛 are properly
chosen.

By classifying linearly self-equivalent APN permutations according to the Frobenius
normal forms of their LE-automorphisms, Beierle et al. [BBL21] proved that any linearly
self-equivalent APN permutation in dimension 8 is CCZ-equivalent to an APN permutation
with an automorphism diag(𝐴,𝐵) of one of the following two types [BBL21, Th. 4]:

1. 𝐴 = 𝐵 = diag(𝐶(𝑃 ), 𝐶(𝑃 )) with 𝑃 (𝑋) = 𝑋4 +𝑋3 +𝑋2 +𝑋 + 1;

2. 𝐴 = 𝐵 = diag(𝐼2, 𝐶(𝑄), 𝐶(𝑄), 𝐶(𝑄)) with 𝑄(𝑋) = 𝑋2 + 1.

A direct consequence of Theorem 3 is that the functions of the first type correspond to
the functions in the linear-equivalence class of a cyclotomic mapping of exponent 1 with
respect to the subgroup G ⊂ F24 of order 5 since 𝑃 is an irreducible polynomial of degree 4
and order 5. The fact that the exponent can be chosen to be 1 comes from the freedom of
choice in the previous proof for 𝛼, 𝛽 among all elements satisfying ord(𝛼) = ord(𝐴) and
ord(𝛽) = ord(𝐵). Here we can choose 𝛼 = 𝛽.
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3.3 LE-automorphism groups of biprojective mappings
We have proved that the linear-equivalence classes of cyclotomic mappings are characterized
by automorphisms diag(𝐴,𝐵) such that the canonical forms of 𝐴 and 𝐵 have all their
blocks equal. Now, we focus on the class of functions such that the primary rational
canonical form of 𝐵 has blocks 𝐶(𝑃𝑖) of the same size but with possibly different minimal
polynomials. This enables us to characterize the following multivariate generalization of the
notion of (𝑞, 𝑞′)-biprojective functions introduced and studied by Göloğlu [Göl22, Göl23].

Definition 13 (ℓ-variate projective mappings). Let 𝑛 = ℓ𝑘. Let 𝐹 : Fℓ
2𝑘 → Fℓ

2𝑘 and let
𝐹𝑖 : Fℓ

2𝑘 → F2𝑘 , 1 ≤ 𝑖 ≤ ℓ, denote its 𝑖-th coordinate. Then, 𝐹 is an ℓ-variate projective
mapping of exponents (𝑑1, . . . , 𝑑ℓ) with respect to F2𝑘 if, for all 𝑖, 1 ≤ 𝑖 ≤ ℓ, 𝐹𝑖 is a
homogeneous function of exponent 𝑑𝑖.

Proposition 5. Let ℓ, 𝑘, 𝑑, 𝑟, 𝑠 be positive integers. Then:

(i) The family of ℓ-variate projective mappings of exponents (𝑑, . . . , 𝑑) coincides with the
family of cyclotomic mappings of exponent 𝑑 with respect to F2𝑘 .

(ii) The family of 2-variate projective mappings of exponents (2𝑟 + 1, 2𝑠 + 1) with respect to
F2𝑘 with algebraic degree 2 coincides with the family of (2𝑟, 2𝑠)-biprojective mappings.

Proof. The first item is proved in Lemma 4. The proof of the second item is postponed to
the proof of Proposition 16.

We now characterize the linear-equivalence classes of multivariate projective mappings
by their LE-automorphism group. Before stating the corresponding theorem, we recall the
following well-known fact.

Lemma 7 (Degree and order of a minimal polynomial). Let 𝛼 be an element of F2𝑛 . Then
the degree of its minimal polynomial is equal to the multiplicative order of 2 modulo ord(𝛼).

Proof. By definition, the degree of min(𝛼) is the number of conjugates of 𝛼. As the
conjugates can be enumerated as 𝛼, 𝛼2, 𝛼22

. . . , the number of conjugates is given by the
smallest 𝑖 ≥ 1 such that 𝛼2𝑖 = 𝛼, i.e. the smallest 𝑖 ≥ 1 such that 2𝑖 ≡ 1 mod ord(𝛼). In
other words, the degree of min(𝛼) is the multiplicative order of 2 modulo ord(𝛼).

Theorem 4. Let 𝑛 = ℓ𝑘 and let 𝐹 : F𝑛
2 → F𝑛

2 . Then, the following properties are
equivalent:

(i) 𝐹 belongs to the linear-equivalence class of an ℓ-variate projective mapping of exponents
(𝑑1, . . . , 𝑑ℓ) with respect to F2𝑘 , and for any 1 ≤ 𝑖 ≤ ℓ, the multiplicative order of 2
modulo (2𝑘 − 1)/ gcd(𝑑𝑖, 2𝑘 − 1) equals 𝑘.

(ii) There exists diag(𝐴,𝐵) ∈ AutLE(𝐹 ) such that min(𝐴) is a primitive polynomial of
degree 𝑘 and min(𝐵) is a product of distinct irreducible polynomials of degree 𝑘.

Proof. (i) =⇒ (ii) By assumption, there exists diag(𝐴,𝐵) ∈ AutLE(𝐹 ) such that 𝐴 and
𝐵 have the following forms:

𝐴 = 𝜋−1
1 ∘ diag(𝑀𝛼,𝑘, . . . ,𝑀𝛼,𝑘) ∘ 𝜋1,

𝐵 = 𝜋−1
2 ∘ diag(𝑀𝛼𝑑1 ,𝑘, . . . ,𝑀𝛼𝑑ℓ ,𝑘) ∘ 𝜋2,

where 𝛼 is a primitive element of F2𝑘 . Because of Lemma 6, the minimal polynomial
of 𝐴 is the minimal polynomial of 𝛼, and therefore a primitive polynomial of degree 𝑘.
Let us denote by 𝑃𝑖 the minimal polynomial of each 𝛼𝑑𝑖 . By applying Lemma 6 to
each coordinate of 𝐵, we observe that 𝐵 has, as matrix representation, a diagonal
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matrix where the block 𝐶(𝑃𝑖) appears 𝑘
deg(𝑃𝑖) times (counted with multiplicities if

some 𝑃𝑖 = 𝑃𝑗 for some 𝑖 ̸= 𝑗). But, by hypothesis and because of Lemma 7, the
degree of 𝑃𝑖 is equal to 𝑘, so each block 𝐶(𝑃𝑖) appears once (again counted with
multiplicity). This then corresponds to the canonical representation of 𝐵: min(𝐵) is
therefore the least common multiple of the minimal polynomials of the blocks, which
is equal to the product of the distinct 𝑃𝑖.

(ii) =⇒ (i) Conversely, by Lemma 6, any 𝐴 such that min(𝐴) is primitive and has
degree 𝑘 is similar to the multiplication by 𝛼 where 𝛼 is a generator of F*

2𝑘 . This
defines a mapping 𝜋1. Moreover, any 𝐵 such that min(𝐵) is a product of distinct
irreducible polynomials of degree 𝑘 has a canonical representation of the form:

diag(𝐶(𝑃1), 𝐶(𝑃2), . . . , 𝐶(𝑃ℓ)),

where each 𝑃𝑖 is an irreducible divisor of min(𝐵). Each divisor must appear once,
but some can appear several times. Therefore 𝐵 is similar (for a mapping 𝜋2) to the
function diag(𝑀𝛽1,𝑘, . . . ,𝑀𝛽ℓ,𝑘) where each 𝛽𝑖 is a root of 𝑃𝑖 in F2𝑘 . Moreover, since
𝛼 is a generator of F*

2𝑘 , any 𝛽𝑖 can be written as 𝛼𝑑𝑖 . This proves that 𝜋2𝐹𝜋
−1
1 is a

projective mapping of exponents (𝑑1, . . . , 𝑑ℓ). Since 𝑃𝑖 has degree 𝑘, 𝑘 is the order
of 2 modulo (2𝑘−1)

gcd(𝑑𝑖,2𝑘−1) by Lemma 7.

When (2𝑘 − 1) is a prime number, we obtain a simpler characterization of ℓ-variate
projective mappings with respect to F2𝑘 , without any restriction on the exponents 𝑑1, . . . , 𝑑ℓ.
We use that the cycle structure of a linear mapping can be derived from its canonical form,
as illustrated by the following lemma.

Lemma 8. Let 𝐴 : F𝑛
2 → F𝑛

2 be an F2-linear mapping. Then, the following properties are
equivalent:

(i) The cycles of A, 𝜎𝐴(𝑥0) = (𝑥0, 𝐴𝑥0, 𝐴
2𝑥0, . . .), have the same length for all nonzero

𝑥0 ∈ F𝑛
2 .

(ii) The minimal polynomial of 𝐴 is a product of distinct irreducible polynomials of the
same order.

(iii) 𝐴 has diag(𝐶(𝑃1), 𝐶(𝑃2), . . . , 𝐶(𝑃ℓ)) as canonical form where all 𝑃𝑖 are irreducible
polynomials having the same order.

Proof. The equivalence between (ii) and (iii) is a direct consequence of the canonical form
(Proposition 4).

(i) =⇒ (ii) It is well-known that, for any divisor 𝑄 of the minimal polynomial of 𝐴,
there exists some 𝑥0 ̸= 0 such that 𝑄 is the minimal polynomial of the sequence
𝜎𝐴(𝑥0). We use that the period of a sequence 𝜎𝐴(𝑥0) with minimal polynomial
𝑄 = 𝑃 2 with 𝑃 irreducible is 2× ord(𝑃 ), while the period of a sequence 𝜎𝐴(𝑥1) with
minimal polynomial 𝑃 is ord(𝑃 ), e.g. [LN96, Theorem 8.63]. We then deduce that,
if all 𝜎𝐴(𝑥), 𝑥 ≠ 0 have the same period, then all divisors of the minimal polynomial
of 𝐴 are square-free. Moreover, if the minimal polynomial of 𝐴 has two irreducible
divisors 𝑃1 and 𝑃2, then there exist 𝑥1 and 𝑥2 such that 𝜎𝐴(𝑥1) has period ord(𝑃1)
and 𝜎𝐴(𝑥2) has period ord(𝑃2). It follows that all irreducible factors of the minimal
polynomial of 𝐴 have the same order.

(iii) =⇒ (i) Because 𝑃1, . . . , 𝑃ℓ are irreducible of same order, they are of the same
degree 𝑘 by Lemma 7, and F2𝑘 is a splitting field for all of them. By hypothesis 𝐴 is
similar to 𝑀 = diag(𝑀𝛼1,𝑘, . . . ,𝑀𝛼ℓ,𝑘), where 𝛼𝑖 is a root of 𝑃𝑖. The mappings 𝐴
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and 𝑀 share the same cycle type. But because each 𝑀𝛼𝑖,𝑘 acts independently from
the others, we get that:

|𝜎𝑀 (𝑥1, . . . , 𝑥ℓ)| = lcm
(︁⃒⃒
𝜎𝑀𝛼1

(𝑥1)
⃒⃒
, . . . ,

⃒⃒⃒
𝜎𝑀𝛼ℓ

(𝑥ℓ)
⃒⃒⃒)︁
.

But for any 𝑥, 𝑦 ∈ F*
2𝑘 and 𝑖, 𝑗, we get that:⃒⃒
𝜎𝑀𝛼𝑖

(𝑥)
⃒⃒

= ord(𝛼𝑖) = ord(𝛼𝑗) =
⃒⃒⃒
𝜎𝑀𝛼𝑗

(𝑦)
⃒⃒⃒
.

Therefore, whenever (𝑥1, . . . , 𝑥ℓ) ̸= (0, . . . , 0), its order is the common order of the
elements 𝛼𝑖.

As a consequence, we can characterize the matrices having a prime order by their
minimal polynomials. These matrices play an important role: as shown in [BBL21, BL22],
the classification of linearly self-equivalent functions can be reduced to the classification of
functions having an automorphism in AutLE with a prime order. It can then be checked
from their Frobenius normal forms that all matrices considered in [BBL21, BL22] have a
minimal polynomial of the form described in the following proposition.

Proposition 6. Let 𝐴 be an 𝑛 × 𝑛-invertible matrix. Then ord(𝐴) is an odd prime
if and only if the minimal polynomial of 𝐴 is of the form (𝑋 + 1)𝑃1(𝑋) . . . 𝑃ℓ(𝑋) or
𝑃1(𝑋) . . . 𝑃ℓ(𝑋) where all 𝑃𝑖 are distinct irreducible polynomials of the same prime order
𝑝 > 2.

Proof. =⇒ If ord(𝐴) is a prime 𝑝, then all cycles of 𝐴 have length 1 or 𝑝. Let 𝑘′ denote
the dimension of the linear space composed of all fixed points of 𝐴. If 𝑘′ = 0, then
all cycles 𝜎𝐴(𝑥), 𝑥 ̸= 0 have the same length, implying from Lemma 8, that the
minimal polynomial of 𝐴 is a product of distinct irreducible polynomials with the
same order. Assume now that 𝑘′ > 0. Since ord(𝐴) is odd, the minimal polynomial
of 𝐴 is not divisible by (𝑋 + 1)2. Then, 𝐴 is similar to 𝐴′ = diag(Id𝑘′ , 𝐶) where
𝐶 is an (𝑛 − 𝑘′) × (𝑛 − 𝑘′)-matrix. By observing that, for any 𝑖, (𝐴′)𝑖 is similar
to diag(Id𝑘′ , 𝐶𝑖), we deduce that 𝐶 has no nonzero fixed points and that all cycles
𝜎𝐶(𝑦0) for 𝑦0 ̸= 0 have the same length 𝑝. We deduce from Lemma 8 that the minimal
polynomial of 𝐶 can be written as the product of distinct irreducible polynomials
of order 𝑝 > 2, or equivalently that the minimal polynomial of 𝐴 has the form
(𝑋 + 1)𝑃1(𝑋) . . . 𝑃ℓ(𝑋) where all 𝑃𝑖 are distinct irreducible polynomials of order 𝑝.

⇐= We only have to consider the case where the minimal polynomial of 𝐴 is of the form
(𝑋 + 1)𝑃1(𝑋) . . . 𝑃ℓ(𝑋) where all 𝑃𝑖 are distinct irreducible polynomials of order
𝑝 > 2, since the other case is a direct consequence of Lemma 8. The canonical form
of 𝐴 is then diag(Id𝑘′ , 𝐶(𝑃𝑖1), . . . , 𝐶(𝑃𝑖𝑠)) where the set {𝑃𝑖𝑗 , 1 ≤ 𝑗 ≤ 𝑠} coincides
with {𝑃1, . . . , 𝑃ℓ} with some (possible) multiplicities. Because all 𝑃𝑖 are irreducible
and coprime with (𝑋 + 1), the order of 𝐴 is equal to the least common multiple of
the orders of all irreducible factors of min(𝐴), which is equal to 𝑝 > 2.

Theorem 5. Let 𝐹 : F𝑛
2 → F𝑛

2 and 𝑘 > 1 be a divisor of 𝑛 such that (2𝑘 − 1) is a
prime. Assume that the span of Im(𝐹 ) has dimension 𝑛. Then, the following properties
are equivalent:

(i) 𝐹 belongs to the linear-equivalence class of an ℓ-variate projective mapping with respect
to F2𝑘 .
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(ii) There exists diag(𝐴,𝐵) ∈ AutLE(𝐹 ) such that min(𝐴) is a primitive polynomial of
degree 𝑘.

Proof. (i) =⇒ (ii) The proof is similar to the same result in Theorem 4. Indeed, the
hypothesis on the orders 𝑑𝑖 in Theorem 4 was used only to prove the statement about
the minimal polynomial of 𝐵.

(ii) =⇒ (i) Since there exists diag(𝐴,𝐵) ∈ AutLE(𝐹 ) with ord(𝐴) = 2𝑘 − 1, the order
of the subgroup of AutLE(𝐹 ) generated by diag(𝐴,𝐵) is a multiple of (2𝑘 − 1).
Therefore, there exists diag(𝐴′, 𝐵′) in this subgroup of order (2𝑘 − 1). It follows
that lcm(ord(𝐴′), ord(𝐵′)) = 2𝑘 − 1 which is a prime. We deduce that either
ord(𝐴′) = ord(𝐵′) = 2𝑘 − 1, or exactly one matrix among 𝐴′ and 𝐵′ has order 1.
If 𝐴′ = Id𝑛, then 𝐵′ ∘ 𝐹 (𝑥) = 𝐹 (𝑥) for all 𝑥 ∈ F2𝑛 . It follows that Im(𝐹 ) is a
subset of the set of fixed points of 𝐵′, which is a vector space of dimension at
most (𝑛 − 1) since 𝐵′ ̸= Id𝑛. This situation is excluded by the hypotheses. If
𝐵′ = Id𝑛, then 𝐹 ∘ 𝐴′(𝑥) = 𝐹 (𝑥) where 𝐴′ is a power of 𝐴. Since min(𝐴) is a
primitive polynomial of degree 𝑘, there exists an isomorphism 𝜋 : Fℓ

2𝑘 → F𝑛
2 , 𝑛 = 𝑘ℓ,

such that 𝐴 = 𝜋 ∘𝑀𝛼,𝑛 ∘ 𝜋−1. Because (2𝑘 − 1) is a prime, 𝛼𝑠, for any 𝑠 < 2𝑘 − 1, is
a primitive element of F2𝑘 too. This implies that (𝜋−1 ∘ 𝐹 ∘ 𝜋)𝑀𝛼𝑠 = (𝜋−1 ∘ 𝐹 ∘ 𝜋),
i.e., 𝜋−1 ∘𝐹 ∘ 𝜋 is an ℓ-variate projective mapping of orders (0, 0, . . . , 0) with respect
to F2𝑘 . Therefore, 𝐹 belongs to the linear-equivalence class of an ℓ-variate projective
mapping with respect to F2𝑘 . More precisely, it is in the linear class of a cyclotomic
mapping of exponent 0.
If ord(𝐵′) = 2𝑘 − 1 and 2𝑘 − 1 is an odd prime, then all cycles of 𝐵′ have
length 1 or (2𝑘 − 1). It follows from Proposition 6 that 𝐵′ is similar to 𝐵′′ =
diag(Id𝑠𝑘, 𝐶(𝑃1), 𝐶(𝑃2), . . . , 𝐶(𝑃ℓ−𝑠)) where all 𝑃𝑖 are irreducible polynomials of the
same order, and therefore of the same degree 𝑘. Then, there is a function 𝐹 ′ linearly
equivalent to 𝐹 such that 𝐵′′ ∘ 𝐹 ′ ∘𝐴′′ = 𝐹 ′ where 𝐴′′ = diag(𝐶(𝑃 ), . . . , 𝐶(𝑃 )) and
𝑃 a primitive polynomial of degree 𝑘. This implies that there exists an isomorphism
𝜋 : Fℓ

2𝑘 → F𝑛
2 such that 𝜋 ∘ 𝐹 ′ ∘ 𝜋−1 is an ℓ-variate projective mapping of orders

(𝑑1, . . . , 𝑑ℓ) with respect to F2𝑘 where the first 𝑠 orders are zero and the other ones
are determined by the roots of 𝑃𝑖, 1 ≤ 𝑖 ≤ ℓ− 𝑠.

Just as in the case of Theorem 3, Theorem 5 enables us to determine the nature of a
function 𝐹 : F𝑛

2 → F𝑛
2 , from the nature of its LE automorphisms. Note that the condition

on the dimension of ⟨Im(𝐹 )⟩ is always satisfied by APN functions when 𝑛 > 2.

Lemma 9 (Dimension of ⟨Im(𝐹 )⟩ for APN functions). Let 𝑛 > 2 and let 𝐹 : F𝑛
2 → F𝑛

2 be
an APN function. Then dim(⟨Im(𝐹 )⟩) = 𝑛.

Proof. Let us suppose that dim(⟨Im(𝐹 )⟩) ≤ 𝑛−1. In that case, and up to linear equivalence,
𝐹 can be seen as a function from F𝑛

2 to F𝑛−1
2 . Because 𝐹 is APN, for any Δin ∈ F𝑛

2 ,Δout ∈
F𝑛−1

2 , the equation 𝐹 (𝑥+ Δin) + 𝐹 (𝑥) = Δout must have 0 or 2 solutions 𝑥. A pigeonhole
argument proves that this number is equal to 2 for all (Δin,Δout). Therefore, 𝐹 is perfect
non-linear, because 2 = 2𝑛−(𝑛−1). However, such functions exist only when the dimension
of the input space is at least twice larger than the dimension of the input space [Nyb91].
In our case, this implies that 2(𝑛− 1) ≤ 𝑛, which is excluded because 𝑛 > 2.

Example 8 (Classes 51 & 55 of [BL22]). Classes 51 & 55 correspond to classes of linearly
self-equivalent APN mappings over F28 presented in [BL22]. The functions in these classes
satisfy 𝐵 ∘ 𝐹 ∘𝐴 = 𝐹 for some (𝐴,𝐵) where 𝐴 is the multiplication by an element 𝛼 of
order 3. By Lemma 6, the minimal polynomial of 𝐴 is the minimal polynomial of 𝛼, i.e.
𝑋2 +𝑋 + 1, which is of degree 2. Because 22 − 1 = 3 is prime, Theorem 5 states that 𝐹
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is linearly equivalent to a 4-variate projective mapping with respect to F4. For Class 51,
the Frobenius form of 𝐵, which is given in [BL22], is diag(Id2, 𝐶(𝑋3 + 1), 𝐶(𝑋3 + 1)).
By Proposition 4, the canonical form of 𝐶(𝑋3 + 1) is diag(𝐶(𝑋 + 1), 𝐶(𝑋2 +𝑋 + 1)),
because all irreducible divisors must appear at highest multiplicity, which is here equal
to 1. Because 𝐶(𝑋 + 1) is the 1× 1 matrix equal to 1, 𝐵 is therefore similar to:

diag(Id2, Id2, 𝐶(𝑋2 +𝑋 + 1), 𝐶(𝑋2 +𝑋 + 1)).

This matrix is a canonical form, and by uniqueness, the one of 𝐵. Class 51 then corresponds
to 4-variate projective mappings of exponent (0, 0, 1, 1) with respect to F4. Similarly,
Class 55 corresponds to 4-variate projective mappings of exponents (0, 0, 0, 1) with respect
to F4.

The previous examples are (for now) sporadic examples of 4-variate APN functions. A
thorough analysis of the examples coming from computational approaches such as the ones
presented in [BL08, BBL21, BL22, YWL14, YP22] is left as future work. In the following,
we focus on the infinite families of APN functions.

4 Linear self-equivalence among known infinite families of
APN functions

4.1 Main theorem
Since we have established the relationships between the different properties considered
when constructing APN functions, we can now analyse most of the infinite families of
quadratic APN functions in light of the structure of their LE-automorphism groups. Most
notably, while these families have been introduced with different representations (univariate
or multivariate), our framework provides a unified view of these mappings which looked of
very different natures at first glance. The polynomial forms of the families are presented
in Tables 1 to 3. The constraints on their parameters are given in Appendix A. We prove
the following theorem.

Theorem 6 (Infinite APN families and linear self-equivalence). Let us consider the 19
infinite APN families listed in Tables 1 and 2. Then:

(i) They all contain in their linear-equivalence classes a linearly self-equivalent representa-
tive.

(ii) More precisely, except for Families (BCL09a/b/c) when 𝑛 is odd, each family contains
a cyclotomic, or a 2, 3 or 4-variate projective mapping in its linear-equivalence class.

(iii) When 𝑛 is odd, any function of (BCL09a/b/c) is linearly-equivalent to a function
which commutes with the Frobenius automorphism 𝑥 ↦→ 𝑥2.

Finally, all (APN) power mappings are cyclotomic and commute with the Frobenius
automorphism.

A lot of subcases were already pointed out in several previous papers such as [Car11,
BBL21, CBC21, Göl22, GK21, BIK23, KKK23]. In particular, and to the best of our
knowledge, Carlet first pointed out in [Car11, Theorem 1] the relevance of studying
functions of the form:

𝐹 (𝑥, 𝑦) =
(︁
𝑥𝑦, 𝑎1𝑥

2𝑖+2𝑗

+ 𝑏1𝑥
2𝑖

𝑦2𝑗

+ 𝑐1𝑥
2𝑗

𝑦2𝑖

+ 𝑑1𝑦
2𝑖+2𝑗

)︁
=
(︁
𝑥𝑦, (𝑎2𝑥

2𝑗−𝑖+1 + 𝑏2𝑥𝑦
2𝑗−𝑖

+ 𝑐2𝑥
2𝑗−𝑖

𝑦 + 𝑑2𝑦
2𝑗−𝑖+1)2𝑖

)︁
, (4)
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that is, functions that are linearly equivalent to a (2, 2𝑗−𝑖)-projective mapping. Carlet also
proved in [Car11, Section 4.2.1] that previously known infinite families, namely the ones
given in [BBMM08, BC08], and that are today included in the (BCV20) family [BCV20],
fall within this category. As pointed out by Example 3, the works [GK21, BIK23] present
proofs of cyclotomy of exponent 0 with respect to F4 for a lot of these families. In the
following, we generalize them into cyclotomy or (bi-)projectiveness proofs over larger
groups. Unlike these works however, we make (almost) no distinction between even or odd
values for 𝑛.

We believe that such a general observation deserves to be in the spotlight. We therefore
prove all the cases and give credit to authors of previous works (that we know of) in the
proof. The proof is postponed to the following section. We first present a few observations
about this result.
Remark 4. Theorem 6 mentions representatives in the linear equivalence classes, but all
the representatives presented in the proof actually lie in an F2𝑘 -linear equivalence class
with 𝑘 > 1. Furthermore, this is not an exhaustive result, and some functions of these
families have linearly self-equivalent representatives of several types. Examples of this
situation are presented in Remark 5.

The following informal corollary of Theorem 6 raises many open questions.

Corollary 1 ((Informal) Infinite APN families and linear self-equivalence). Almost all
infinite families of APN functions have linearly self-equivalent representatives in their
linear-equivalence class, whose 𝐿𝐸-automorphism group contains (𝐴,𝐵) where 𝐴,𝐵 are
either F2𝑘 -linear with 𝑘 > 1 with very particular minimal polynomials characterized in
Theorem 4, or where both 𝐴 and 𝐵 coincide with the Frobenius automorphism.

This observation is rather surprising. Indeed, from theoretical arguments, what we (for
now) know is that any quadratic function 𝐹 : F𝑛

2 → F𝑛
2 is always 𝐸𝐴 self-equivalent, see

e.g. [BBMN11, Proposition 1], and even extended-linear self-equivalent if 𝐹 (0) = 0, see
e.g [KZ21, Proposition 2.2]. But this does not a priori imply the existence of a linearly
self-equivalent mapping in their linear-equivalence class.

Problem 1. Does the property described in Corollary 1 hold for the three families in
Table 3? For the sporadic APN functions such as those in [BL08, BBL21, BL22, YWL14,
YP22]?

We show for instance in Example 10 below, that the Brickmann-Leander-Edel-Pott [BL08,
EP09] cubic for 𝑛 = 6 cannot be represented as a cyclotomic mapping nor as an ℓ-variate
projective mapping. More generally, and in line with [BBL21, Conjecture 1], we raise the
following open problem.

Problem 2. Does the CCZ-equivalence class of any APN function contain a linearly
self-equivalent mapping?

Theorem 6 then unifies (almost) all the research directions followed to search for infinite
APN families. Answering the question raised in Problem 2 would enable us to understand
whether these directions are direct generalizations extrapolated from the monomial case,
or whether they correspond to an inherent property of APN mappings. The specific cases
highlighted in Problem 1 could help address this problem or give some clues toward a
definite answer.

4.2 Proof of Theorem 6
This section proves Theorem 6. We proceed case by case and start with the most obvious
ones.
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Table 3: Remaining infinite families to classify.
ID Functions Obs. Ref.

(CLV22b) (𝑥, 𝑦) ↦→
(︁

𝑥3 + 𝑥𝑦 + 𝑥𝑦2 + 𝑎𝑦3

𝑥5 + 𝑥𝑦 + 𝑎𝑥2𝑦2 + 𝑎𝑥4𝑦 + (1 + 𝑎)2𝑥𝑦4 + 𝑎𝑦5

)︁
? [CLV22]

(LZLQ22b) (𝑥, 𝑦) ↦→
(︁

𝑥3 + 𝑥𝑦2 + 𝑦3 + 𝑥𝑦
𝑥5 + 𝑥4𝑦 + 𝑦5 + 𝑥𝑦 + 𝑥2𝑦2

)︁
? [LZLQ22]

(LZLQ22a) 𝐿(𝑥)2𝑘+1 + 𝑏𝑥2𝑘+1 ? [LZLQ22]

Power mapping. A power mapping is a cyclotomic mapping of exponent 𝑑 with respect
to F2𝑛 and it obviously commutes with 𝑥 ↦→ 𝑥2.

Multivariate Families. Among the bivariate and trivariate families given in Table 2, we
directly observe from their polynomial forms that:

• (G22a) is (2𝑠 + 1, 22𝑠 + 1)-projective,

• (G22b) is (2𝑠 + 1, 23𝑠 + 1)-projective,

• (GK21) is (2𝑠 + 1, 22+ 𝑘
2 + 1)-projective,

• (CLV22a) is (2𝑠 + 1, 22𝑠 + 1)-projective,

• (LK23a) and (LK23b) are (2𝑠 + 1, 2𝑠 + 1, 2𝑠 + 1)-projective,

all of them being ℓ-variate projective mappings by construction. Note that Theorem 1
shows that (LK23a) and (LK23b) have a representative which is a cyclotomic mapping of
exponent 2𝑠 + 1 with respect to F2𝑘 in their linear-equivalence class. Furthermore, the
families (ZP13), (T19) and the polynomials defined by Eq. (4) and introduced by Carlet
have been proven linearly-equivalent to biprojective mappings by Göloğlu [Göl22]. More
precisely:

• for (ZP13), using the (F2𝑘 -linear) mapping 𝐿 : (𝑥, 𝑦) ↦→ (𝑥, 𝑦2𝑘−𝑖), we find a linear-
equivalent function 𝐹 ∘ 𝐿 which is a (2𝑠 + 1, 2𝑘−𝑖 + 1)-projective mapping,

• for (T19), using the (F2𝑘 -linear) mapping 𝐿 : (𝑥, 𝑦) ↦→ (𝑥2𝑘−2𝑠

, 𝑦), we find a linear-
equivalent function 𝐹 ∘ 𝐿 which is a (2𝑠 + 1, 2𝑘−2𝑠 + 1)-projective mapping,

• for the polynomials of Eq. (4), using the (F2𝑘 -linear) mapping 𝐿 : (𝑥, 𝑦) ↦→ (𝑥, 𝑦2𝑘−𝑖),
we find a linear-equivalent function 𝐿 ∘𝐹 which is a (2, 2𝑖−𝑗 + 1)-projective mapping.

(CBC21). As we can observe the first coordinate of this mapping has monomials of
degree 𝑑 where 𝑑 ≡ 2𝑠 + 1 mod 2 𝑘

2 − 1, but not modulo 2𝑘 − 1. When substituting each
monomial with 𝑥 ← 𝑎 + 𝜁𝑏, 𝑦 ← 𝑐 + 𝜁𝑑, with 𝜁 ∈ F2𝑘 ∖ F2𝑘/2 , and 𝑎, 𝑏, 𝑐, 𝑑 ∈ F2𝑘/2 , we
observe that the obtained monomials in 𝑎, 𝑏, 𝑐, 𝑑 are all of degree 2𝑠 + 1, because 𝑎2𝑘/2 = 𝑎
and the same holds for 𝑏, 𝑐, 𝑑. The same holds for the second coordinate. Therefore, the
functions of (CBC21) are linearly equivalent to (2𝑠 + 1, 2𝑠 + 1, 2, 2)-projective mappings.

Let us now focus on the univariate families.

(BCL09a/b/c). First of all the families (BCL09a), (BCL09b) (BCL09c) were for instance
identified as canonical triplicates when 𝑛 is even in [BIK23], and their image set was
studied in [KKK23]. When 𝑛 is even, they correspond to cyclotomic mappings. More
precisely:
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• when 𝑛 is even, (BCL09a), (BCL09b), (BCL09c) are made of cyclotomic mappings
of exponent 0 with respect to F4, because they can be written as 𝑃 (𝑥3),

• when 𝑛 is odd, it is observed in the original paper [BCL09b, Section II.B] that, when 𝑎
takes different values, all the obtained functions within a fixed family (BCL09a),
(BCL09b) or (BCL09c) are linearly-equivalent. We can actually focus on the case
𝑎 = 1, by using 𝑥 ↦→ 𝑎

1
3𝑥 as a change of variables. In that case, the corresponding

function has all its coefficients in F2, and therefore commutes with the Frobenius
automorphism.

(BCL08a/b). Non-trivial linear self-equivalences were identified for Families (BCL08a)
and (BCL08b) in [BBL21, Examples 2 & 3]. They can be reinterpreted as proofs of
cyclotomy. Indeed, let us look at the difference between both exponents modulo 2𝑘 − 1.
We observe that:

(2(3−𝑖)𝑘+𝑠 + 2𝑖𝑘)− (2𝑠 + 1) ≡ 2𝑠 + 1− 2𝑠 − 1 ≡ 0 mod 2𝑘 − 1.

From Theorem 1, Family (BCL08a) is a family of cyclotomic mappings of exponent 2𝑠 + 1
with respect to F2𝑘 , where 𝑛 = 3𝑘. Similarly, we obtain:

(2(4−𝑖)𝑘+𝑠 + 2𝑖𝑘)− (2𝑠 + 1) ≡ 2𝑠 + 1− 2𝑠 − 1 ≡ 0 mod 2𝑘 − 1.

Therefore, Family (BCL08b) is a family of cyclotomic mappings of exponent 2𝑠 + 1 with
respect to F2𝑘 , where 𝑛 = 4𝑘.

(BCCCV20) & (BBMM11). If we look at Family (BCCCV20), we observe that the
monomials appearing in the polynomials are:

𝑥22𝑘+1+1, 𝑥2𝑘+1+1, 𝑥22𝑘+2, 𝑥2𝑘+2, and 𝑥3 ,

so thatthat its exponents are all equal to 3 modulo 2𝑘 − 1. This implies that the family
consists exclusively of cyclotomic mappings of exponent 3 with respect to F2𝑘 , where
𝑛 = 3𝑘. Regarding Family (BBMM11), the same applies, but we need to take into account
some of the constraints on the parameters. Since 𝑛 = 3𝑘, we can look at cyclotomy with
respect to F23 . First, we reduce all the exponents modulo 23 − 1 and obtain in that case:
2𝑠 + 1, 22𝑘 + 1, 22𝑘 + 1, 2𝑠 + 1 because 𝑘 + 𝑠 ≡ 0 mod 3 by construction. Furthermore,
again by construction, we have that gcd(3, 𝑘) = 1, which implies 𝑘 ̸≡ 0 mod 3. From these
two constraints, we deduce that either 𝑘 ≡ 1 and 𝑠 ≡ 2, or, 𝑘 ≡ 2 and 𝑠 ≡ 1. In any case,
it holds that 𝑠 ≡ 2𝑘 mod 3. This proves that all exponents are equal modulo 23 − 1, and
the family then consists of cyclotomic mappings of exponent 2𝑠′ + 1 ∈ {3, 5} with respect
to F23 where 𝑠′ is the remainder of 𝑠 modulo 3.

(ZKLPT22). This family lies among bivariate families as well. Indeed, by definition,
𝑎 /∈ F*

2𝑘 (see Table 8), so (𝑎, 𝑎2𝑘 ) is an F2𝑘 -basis of F2𝑛 where 𝑛 = 2𝑘. We observe that for
any 𝜙 ∈ F2𝑘 , 𝑥 ∈ F2𝑛 , we then have:

𝐹 (𝜙𝑥) = 𝑎TrF2𝑛 /F2𝑘

(︁
𝑏(𝜙𝑥)2𝑖+1

)︁
+ 𝑎2𝑘

TrF2𝑛 /F2𝑘

(︁
𝑐(𝜙𝑥)2𝑠+1

)︁
= 𝑎𝜙2𝑖+1TrF2𝑛 /F2𝑘

(︁
𝑏𝑥2𝑖+1

)︁
+ 𝑎2𝑘

𝜙2𝑠+1TrF2𝑛 /F2𝑘

(︁
𝑐𝑥2𝑠+1

)︁
,

because 𝜙2𝑖+1, 𝜙2𝑠+1 ∈ F2𝑘 . It is then linearly equivalent to a (2𝑖 + 1, 2𝑠 + 1)-projective
mapping.
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(BCV20). Let 𝐹 be the function defined by 𝐹 (𝑥) = 𝑎𝑥2𝑘+1+𝑥2𝑠+1+𝑥2𝑠+𝑘+2𝑘 +𝑏𝑥2𝑘+𝑠+1+
𝑏2𝑘

𝑥2𝑠+2𝑘 where 𝑛 = 2𝑘 for some 𝑘 ≥ 1. Let 𝛼 ∈ F2𝑛 be a primitive element, and let us
consider the F2𝑘 -basis (1, 𝛼) and its dual basis (𝛽1, 𝛽𝛼) which satisfies:

TrF2𝑛 /F2𝑘
(𝛽1 · 1) = 1,TrF2𝑛 /F2𝑘

(𝛽1 · 𝛼) = 0,TrF2𝑛 /F2𝑘
(𝛽𝛼 · 1) = 0,TrF2𝑛 /F2𝑘

(𝛽𝛼 · 𝛼) = 1.

In particular, we observe that TrF2𝑛 /F2𝑘
(𝛽𝛼) = 0, in other words, it holds that 𝛽𝛼 = 𝛽2𝑘

𝛼 ,
or stated otherwise that 𝛽𝛼 ∈ F2𝑘 . Let 𝛾 ∈ F2𝑛 , and let us focus on TrF2𝑛 /F2𝑘

(𝛾𝐹 ). Let
𝑥 ∈ F2𝑛 . Then it holds that:

TrF2𝑛 /F2𝑘
(𝛾𝐹 (𝑥)) =𝛾(𝑎𝑥2𝑘+1 + 𝑥2𝑠+1 + 𝑥2𝑠+𝑘+2𝑘

+ 𝑏𝑥2𝑘+𝑠+1 + 𝑏2𝑘

𝑥2𝑠+2𝑘

)+

𝛾2𝑘

(𝑎𝑥2𝑘+1 + 𝑥2𝑠+1 + 𝑥2𝑠+𝑘+2𝑘

+ 𝑏𝑥2𝑘+𝑠+1 + 𝑏2𝑘

𝑥2𝑠+2𝑘

)2𝑘

=TrF2𝑛 /F2𝑘
(𝛾𝑎)𝑥2𝑘+1 + 𝜆𝑥2𝑠+1 + 𝜆𝑥2𝑠+𝑘+2𝑘

+ 𝑏𝜆𝑥2𝑠+𝑘+1 + 𝑏2𝑘

𝜆𝑥2𝑠+2𝑘

,

where 𝜆 = TrF2𝑛 /F2𝑘
(𝛾). This simply comes from the fact that 𝑥22𝑘 = 𝑥. We can therefore

express the two coordinates of 𝐹 with respect to the F2𝑘 -basis (1, 𝛼) as :

TrF2𝑛 /F2𝑘
(𝛽1𝐹 (𝑥)) = TrF2𝑛 /F2𝑘

(𝛽1𝑎)𝑥2𝑘+1 + 𝑥2𝑠+1 + 𝑥2𝑠+𝑘+2𝑘

+ 𝑏𝑥2𝑠+𝑘+1 + 𝑏2𝑘

𝑥2𝑠+2𝑘

,

because TrF2𝑛 /F2𝑘
(𝛽1) = 1, but also:

TrF2𝑛 /F2𝑘
(𝛽𝛼𝐹 (𝑥)) = TrF2𝑛 /F2𝑘

(𝛽𝛼𝑎)𝑥2𝑘+1,

because TrF2𝑛 /F2𝑘
(𝛽𝛼) = 0. Let us introduce the linear bijection 𝐿 : F2𝑛 → F2𝑛 that is

defined by:

∀𝑥, 𝑦 ∈ F, 𝐿(𝑥+ 𝛼𝑦) =
(︃
𝑥+

TrF2𝑛 /F2𝑘
(𝛽1𝑎)

TrF2𝑛 /F2𝑘
(𝛽𝛼𝑎)𝑦

)︃
+ 𝛼𝑦.

By construction, 𝑎 /∈ F2𝑘 (see Table 7), but as 𝛽𝛼 ∈ F2𝑘 , we deduce that 𝛽𝛼𝑎 /∈ F2𝑘 , and
therefore TrF2𝑛 /F2𝑘

(𝛽𝛼𝑎) ̸= 0, so that 𝐿 is well-defined. We then observe that:

TrF2𝑛 /F2𝑘
(𝛽1 · 𝐿 ∘ 𝐹 (𝑥)) = 𝑥2𝑠+1 + 𝑥2𝑠+𝑘+2𝑘

+ 𝑏𝑥2𝑠+𝑘+1 + 𝑏2𝑘

𝑥2𝑠+2𝑘

, and

TrF2𝑛 /F2𝑘
(𝛽𝛼 · 𝐿 ∘ 𝐹 (𝑥)) = 𝛽𝛼TrF2𝑛 /F2𝑘

(𝑎)𝑥2𝑘+1.

In particular, the bivariate terms that can appear in the 1-coordinate of 𝐿 ∘ 𝐹 are
terms of degree 2𝑠 + 1 because all exponents 𝑒 of its univariate monomials satisfy 𝑒 ≡
2𝑠 + 1 mod 2𝑘 − 1. Similarly, the bivariate terms that can appear in the 𝛼-coordinate are
terms of degree 2. Therefore 𝐿 ∘ 𝐹 is a (2𝑠 + 1, 2) biprojective APN function.

(BHK20). Let 𝐹 : F2𝑛 → F2𝑛 be defined by 𝐹 (𝑥) = 𝑥3 + 𝑎𝑥2𝑠+𝑖+2𝑖 + 𝑎2𝑥2𝑘+1+2𝑘 +
𝑥2𝑠+𝑖+𝑘+2𝑖+𝑘 where 𝑛 = 2𝑘 for some 𝑘 ≥ 1. We proceed in a manner similar to the previous
proof, except that we use the fact that 𝑎 is by definition an element of order 3, so 𝑎2 = 𝑎−1,
and also that 𝑘 is odd, see Table 8. Let 𝛾 ∈ F2𝑛 , 𝑥 ∈ F2𝑛 . Then it holds that:

TrF2𝑛 /F2𝑘
(𝛾𝐹 (𝑥)) = 𝛾(𝑥3 + 𝑎𝑥2𝑠+𝑖+2𝑖

+ 𝑎2𝑥2𝑘+1+2𝑘

+ 𝑥2𝑠+𝑖+𝑘+2𝑖+𝑘

) +

𝛾2𝑘

(𝑥3 + 𝑎𝑥2𝑠+𝑖+2𝑖

+ 𝑎2𝑥2𝑘+1+2𝑘

+ 𝑥2𝑠+𝑖+𝑘+2𝑖+𝑘

)2𝑘

= (𝛾 + 𝛾2𝑘

𝑎)𝑥3 + (𝛾𝑎+ 𝛾2𝑘

)𝑥2𝑠+𝑖+2𝑖

+

(𝛾𝑎−1 + 𝛾2𝑘

)𝑥2𝑘+1+2𝑘

+ (𝛾 + 𝛾2𝑘

𝑎−1)𝑥2𝑠+𝑖+𝑘+2𝑖+𝑘

= (𝛾 + 𝛾2𝑘

𝑎)(𝑥3 + 𝑎−1𝑥2𝑘+1+2𝑘

) +

(𝛾𝑎+ 𝛾2𝑘

)(𝑥2𝑠+𝑖+2𝑖

+ 𝑎−1𝑥2𝑠+𝑖+𝑘+2𝑖+𝑘

)
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In particular, the terms 𝑥3 and 𝑥2𝑘+1+2𝑘 appear if and only if 𝛾 + 𝛾2𝑘

𝑎 ̸= 0. Stated
otherwise, if 𝛾 ̸= 0, both terms do not appear if and only if 𝛾2𝑘−1 = 𝑎−1, i.e. if and only
if 𝛾 is a (2𝑘 − 1)-th root of 𝑎−1. Such a root exists. Indeed, if 𝛽 is a primitive element
of F*

2𝑛 , then 𝛽
2𝑛−1

3 is a generator of F*
22 and it can be rewritten as 𝛽 2𝑛−1

3 = (𝛽 2𝑘+1
3 )2𝑘−1.

In particular, because 𝑘 is odd, 2𝑘+1
3 is an integer, so this precisely states that 𝛽 2𝑘+1

3 or
(𝛽 2𝑘+1

3 )2 is a (2𝑘− 1)-th root of 𝑎−1. Similarly, the terms 𝑥2𝑠+𝑖+2𝑖 and 𝑥2𝑠+𝑖+𝑘+2𝑖+𝑘 do not
appear in TrF2𝑛 /F2𝑘

(𝛾𝐹 ) if and only if 𝛾 is a (2𝑘−1)-th root of 𝑎. Finally, (𝛽 2𝑘+1
3 , 𝛽

2(2𝑘+1)
3 )

is an F2𝑘 -basis of F2𝑛 , because 𝛽
2(2𝑘+1)

3

𝛽
2𝑘+1

3
= 𝛽

2𝑘+1
3 ̸∈ F2𝑘 . In this basis, the coordinates are

homogeneous of exponent 3 and 2𝑖(2𝑠 + 1) respectively, because the monomials in each
coordinate are of degree equal to 3 and 2𝑖(2𝑠 + 1) modulo 2𝑘 − 1.

This concludes our proof.
Remark 5. As already mentioned, some functions in these classes have multiple linearly
self-equivalent representatives of different natures. For example, a single function can be
at the same time linearly-equivalent to a cyclotomic mapping, but also to a function which
commutes with the Frobenius automorphism. It can also happen that a single representative
has two types of linear self-equivalence. For instance as mentioned in [BCL09b, Section II.B],
when 𝑛 is even Family (BCL09a) can be split into two distinct linear classes. Indeed all
functions are either linearly-equivalent to the function with 𝑎 = 1, or to the one where 𝑎 is a
fixed primitive element of F2𝑛 . In the first case, the representative with 𝑎 = 1 is cyclotomic,
but it also commutes with the Frobenius automorphism, because3 its coefficients are in F2.
The same also holds when 𝑛 is even for Families (BCL09b), (BCL09c).

Another example can be derived from (BBMM11). We showed that this class is
composed of cyclotomic mappings of exponent 3 or 5 with respect to F23 . However, if
𝑏 = 𝑐 = 0, then only two terms remain and their exponents are both equal to 2𝑠 +1 modulo
2𝑘 − 1. These specific functions are therefore cyclotomic with respect to F23 , but also with
respect to F2𝑘 .

Finally, for Family (BCV20), on top of the biprojective property, according to the
results reported in [BIK23, Section 7], the functions were computationally proven linearly-
equivalent to cyclotomic mappings of exponent 0 with respect to F4, up to dimension 12.

5 Properties of mappings having a linearly self-equivalent
representative

In the previous section, we pointed out the importance of linear self-equivalence, especially
for the study of APN functions. We highlight in this section some properties which
are consequences of the existence of a linearly self-equivalent mapping within the linear-
equivalence class of a function. We first present how the symmetries inherent to this
pattern can be captured by other means than the polynomial representation.

5.1 Image set and Walsh spectrum of linearly self-equivalent mappings
If a function 𝐹 : F𝑛

2 → F𝑛
2 is linearly self-equivalent, then its image set is very constrained.

For instance, some properties of 𝐹 can be derived from the cycle structures of the involved
linear mappings. A first trivial property is the following one.

Proposition 7. Let 𝐹 : F𝑛
2 → F𝑛

2 and diag(𝐴,𝐵) ∈ AutLE(𝐹 ). Then, the image set of 𝐹
can be partitioned into cycles of 𝐵. Most notably, the image set of 𝐹 is invariant under 𝐵.

3The functions commuting with 𝑥 ↦→ 𝑥2 are precisely the functions whose coefficients are in F2. Note
that APN functions of this specific form are classified up to dimension 9 in [YKBL20].
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Proof. It holds that: 𝐹 (F𝑛
2 ) = 𝐵 ∘ 𝐹 ∘𝐴−1(F𝑛

2 ) = 𝐵(𝐹 (F𝑛
2 )), so 𝐹 (F𝑛

2 ) is invariant under
𝐵. This precisely states that 𝐹 (F𝑛

2 ) is a disjoint union of cycles of 𝐵.

This result does not bring any new information in the case where 𝐹 is bijective, but is
helpful when 𝐹 is not bijective, which is the case of most known APN functions. In the
following, we highlight how linear self-equivalence can be captured as a property of the
Walsh transform of the function 𝐹 .

Definition 14 (Walsh transform). Let 𝑓 : F𝑛
2 → F2 be a Boolean function. The Walsh

transform of 𝑓 is the function 𝑊𝑓 : F𝑛
2 → Z defined by:

∀𝛼 ∈ F𝑛
2 , 𝑊𝑓 (𝛼) :=

∑︁
𝑥∈F𝑛

2

(−1)𝛼·𝑥+𝑓(𝑥),

where the dot · corresponds to a given scalar product, typically to the coordinate-wise dot
product: 𝛼 · 𝑥 =

∑︀𝑛
𝑖=1 𝑎𝑖𝑥𝑖 ∈ F2.

The Walsh transform of a function 𝐹 : F𝑛
2 → F𝑛

2 is given by the Walsh transforms of all
of the components of 𝐹 . More precisely, for any 𝛼 ∈ F𝑛

2 , 𝛽 ∈ F𝑚
2 , the Walsh coefficient of

𝐹 with respect to (𝛼, 𝛽) is defined by:

𝑊𝐹 (𝛼, 𝛽) := 𝑊𝛽·𝐹 (𝛼) =
∑︁

𝑥∈F𝑛
2

(−1)𝛼·𝑥+𝛽·𝐹 (𝑥).

Remark 6. We can also adapt the definition of the Walsh transform to functions of the form
𝐺 : F2𝑛 → F2𝑛 (resp. 𝐻 : Fℓ

2𝑘 → Fℓ
2𝑘 ), so that the Walsh coefficients can be enumerated

using 𝛼, 𝛽 ∈ F2𝑛 (resp. 𝛼, 𝛽 ∈ Fℓ
2𝑘 ), instead of 𝛼, 𝛽 ∈ F𝑛

2 . In that case, it suffices to replace
the standard dot product by a scalar product defined over F2𝑛 (resp. Fℓ

2𝑘 ). Over F2𝑛 , we
can then consider the scalar product defined by:

∀ 𝑥, 𝑦 ∈ F2𝑛 , 𝑥 · 𝑦 = TrF2𝑛 /F2(𝑥𝑦).

Over Fℓ
2𝑘 , we use the one defined by:

∀ 𝑧, 𝑡 ∈ F2𝑛 , 𝑧 · 𝑡 = (𝑧1, . . . , 𝑧ℓ) · (𝑡1, . . . , 𝑡ℓ) =
ℓ∑︁

𝑖=1
TrF2𝑘 /F2(𝑧𝑖𝑡𝑖). (5)

In the following, we denote by 𝐴* the adjoint operator of a linear mapping 𝐴, for a
given scalar product, i.e., the linear mapping such that,

𝑥 ·𝐴(𝑦) = 𝐴*(𝑥) · 𝑦, ∀𝑥, 𝑦 .

It is well-known that the Walsh coefficients of a mapping 𝐵 ∘ 𝐹 ∘ 𝐴 in the linear-
equivalence class of 𝐹 are in one-to-one correspondence with the Walsh coefficients of 𝐹 .
This implies that linear self-equivalence is captured by some spectral symmetries.

Lemma 10 (Spectral characterization of linear self-equivalence). Let 𝐴,𝐵 be bijective
linear mappings from F𝑛

2 to itself. Let 𝐹 : F𝑛
2 → F𝑛

2 . Then 𝐵 ∘ 𝐹 ∘𝐴 = 𝐹 if and only if:

∀𝛼 ∈ F𝑛
2 ,∀𝛽 ∈ F𝑛

2 , 𝑊𝐹

(︀
(𝐴−1)*(𝛼), 𝐵*(𝛽)

)︀
= 𝑊𝐹 (𝛼, 𝛽).

Proof. The Walsh coefficient of the left-hand side is precisely the Walsh coefficient of
𝐵 ∘𝐹 ∘𝐴 in (𝛼, 𝛽). It is then a consequence of the fact that two functions are equal if and
only if their Walsh transforms are equal.
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Corollary 2. Let 𝐴,𝐵 be bijective linear mappings from F𝑛
2 to itself. Let 𝐹 : F𝑛

2 → F𝑛
2 be

such that 𝐵 ∘ 𝐹 ∘𝐴 = 𝐹 . Let ℒ be the function from F𝑛
2 × F𝑛

2 to itself that is defined by:

∀ 𝑥, 𝑦 ∈ F𝑛
2 , ℒ(𝑥, 𝑦) =

(︀
(𝐴−1)*(𝑥), 𝐵*(𝑦)

)︀
Assume that the lengths of the cycles 𝜎ℒ(𝑥0, 𝑦0), for all nonzero (𝑥0, 𝑦0) ∈ F𝑛

2 × F𝑛
2 , are

divisible by 𝐿. Then each value 𝑣 in the multiset

{{𝑊𝐹 (𝛼, 𝛽), s.t. 𝛼, 𝛽 ∈ F2𝑛 , (𝛼, 𝛽) ̸= (0, 0)}}

appears 𝐿 · 𝑡𝑣 times for some 𝑡𝑣 ≥ 1. In that case, the greatest common divisor of the
numbers of occurrences of the values in the Walsh spectrum is divisible by 𝐿.

Proof. Let (𝛼, 𝛽) ∈ F𝑛
2 × F𝑛

2 be such that (𝛼, 𝛽) ̸= (0, 0). By assumption, the multiset
{{𝑊𝐹 (ℒ𝑖(𝛼, 𝛽)), 𝑖 ∈ J0, 𝐿− 1K}} contains the single value 𝑊𝐹 (𝛼, 𝛽) with multiplicity 𝜆𝐿.
Indeed, because 𝜎ℒ(𝛼, 𝛽) is of length 𝜆𝐿, this value corresponds to 𝜆𝐿 distinct Walsh
coefficients. The divisibility is then an immediate consequence of the fact that the multiset
{{𝑊𝐹 (𝛼, 𝛽), s.t. (𝛼, 𝛽) ̸= (0, 0)}} can be partitioned according to the decomposition of ℒ
into cycles with disjoint supports.

Corollary 3 (Walsh coefficients of a cyclotomic mapping). Let 𝐹 : F2𝑛 → F2𝑛 be a
cyclotomic mapping of exponent 𝑑 with respect to G ⊂ F*

2𝑛 . Then:

∀𝛼, 𝛽 ∈ F2𝑛 ,∀𝑥 ∈ G, 𝑊𝐹 (𝛼, 𝛽𝑥𝑑) = 𝑊𝐹 (𝛼𝑥−1, 𝛽).

Furthermore, the greatest common divisor of the numbers of occurrences of the values in
the Walsh spectrum is divisible by |G|

gcd(𝑑,|G|) for 𝑑 > 0, and by |G| when 𝑑 = 0.

Proof. In the case of a cyclotomic mapping of exponent 𝑑 with respect to G we can choose
𝐴−1 = 𝑀𝑥,𝑛 where 𝑥 ∈ G and 𝐵 = 𝑀𝑥𝑑,𝑛. The relation between the Walsh coefficients
is then a direct consequence of Lemma 10. Moreover, the cycle decomposition of (𝐴−1)*

(resp. of 𝐵*) is the same as the cycle decomposition of 𝐴 (resp. of 𝐵). Starting from a
nonzero element, all cycles of 𝐴 have length ord(𝑥), and all cycles of 𝐵 have length ord(𝑥𝑑).
If 𝑑 ̸= 0, then

ord(𝑥𝑑) = ord(𝑥)
gcd(𝑑, ord(𝑥)) .

Most notably, we deduce the result by choosing for 𝑥 a generator of G. When 𝑑 = 0, all
cycles of ℒ =

(︀
(𝐴−1)*(𝑥), 𝑦

)︀
have length |G|.

The following corollary can be proved in a similar manner.

Corollary 4 (Walsh coefficients of an ℓ-variate projective mapping). Let 𝐹 : Fℓ
2𝑘 → Fℓ

2𝑘

be an ℓ-variate projective mapping of exponents (𝑑1, . . . , 𝑑ℓ) with respect to F2𝑘 . Then:

∀𝛼, 𝛽 ∈ Fℓ
2𝑘 ,∀𝑥 ∈ F*

2𝑘 , 𝑊𝐹

(︀
𝛼,
(︀
𝛽1𝑥

𝑑1 , . . . , 𝛽ℓ𝑥
𝑑ℓ
)︀)︀

= 𝑊𝐹

(︀(︀
𝛼1𝑥

−1, . . . , 𝛼ℓ𝑥
−1)︀ , 𝛽)︀ .

Furthermore, if there exists 𝑥 ∈ F*
2𝑘 such that gcd(𝑑𝑖, ord(𝑥)) = 1 for all 𝑖 ∈ J1, ℓK, then the

greatest common divisor of the numbers of occurrences of the values in the Walsh spectrum
is divisible by ord(𝑥).

The symmetries highlighted in Corollary 3 appear very clearly in the graphical repre-
sentations of the linear approximation table (LAT) of the Kim mapping and of the Gold
power mapping 𝑥 ↦→ 𝑥3 over F64 that are depicted in Figs. 1 and 2. The same property
can be stated for the differential distribution table (DDT) of a linearly self-equivalent
mapping.
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Value of 𝑊𝐹 (𝛼, 𝛽): -16 -8 0 8 16
The Walsh coefficients 𝑊𝐹 (𝛼, 𝛽) are enumerated cosets by cosets, 𝛽 along the 𝑥-axis and

𝛼 along the 𝑦-axis.

Figure 1: LAT of the Kim mapping.

Value of 𝑊𝐹 (𝛼, 𝛽): -16 -8 0 8 16
The Walsh coefficients 𝑊𝐹 (𝛼, 𝛽) are enumerated cosets by cosets, 𝛽 along the 𝑥-axis and

𝛼 along the 𝑦-axis.

Figure 2: LAT of the mapping 𝑥 ↦→ 𝑥3 over F64.
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Lemma 11 (Linear equivalence and DDT). Let 𝐴,𝐵 : F𝑛
2 → F𝑛

2 be bijective linear map-
pings. Let 𝐹 : F𝑛

2 → F𝑛
2 . If 𝐹 satisfies 𝐵 ∘ 𝐹 ∘𝐴 = 𝐹 , then:

∀𝛼 ∈ F𝑛
2 ,∀𝛽 ∈ F𝑛

2 , 𝛿𝐹 (𝛼, 𝛽) = 𝛿𝐹 (𝐴(𝛼), 𝐵−1(𝛽)),

where 𝛿𝐹 (𝛼, 𝛽) = |{𝑥 ∈ F𝑛
2 , 𝐹 (𝑥+ 𝛼) + 𝐹 (𝑥) = 𝛽}|.

As in Corollary 3, the divisibility of the number of occurrences in the differential
spectrum (with non-zero coefficients) also holds for cyclotomic mappings. These properties
were already used in a cryptographic context in [JKK+22]. Indeed, in this paper, the
authors use this redundancy among the Walsh and differential spectra to avoid going
through all the coefficients while computing the linearity and the differential uniformity of
the functions they study.

In our case, these properties can be used as a tool to search for signs of existence of
linearly self-equivalent representatives within an equivalence class. Indeed, the Walsh
spectrum is preserved by linear equivalence and the differential and extended Walsh spectra
are preserved by CCZ-equivalence. However, APN functions all share the same differential
spectrum, so this is of low interest. Furthermore, most of the APN functions in the infinite
families that we know also share the same Walsh spectrum, see for instance [BCCLC06,
KKK23, BIK23].

5.2 Ortho-derivatives of linearly self-equivalent mappings
We then see how to capture linear self-equivalence in another way by using the so-called
ortho-derivative of quadratic functions.

Definition 15 (Ortho-derivative [CCP22, CCP24]). Let 𝐹 : F𝑛
2 → F𝑛

2 be a quadratic
function. We say that 𝜋 : F𝑛

2 → F𝑛
2 is an ortho-derivative for 𝐹 if, for any 𝑥 and Δ in F𝑛

2 :

𝜋(Δ) · (𝐹 (𝑥) + 𝐹 (𝑥+ Δ) + 𝐹 (0) + 𝐹 (Δ)) = 0

The set of all ortho-derivatives of 𝐹 is denoted by Π(𝐹 ).

Note that Π(𝐹 ) is actually a vector space, as the zero function is obviously an ortho-
derivative and it is stable by the addition of functions.

As the Walsh transform, an ortho-derivative depends on a specific scalar product. For
any function 𝐹 : Fℓ

2𝑘 → Fℓ
2𝑘 , it can as well be defined with a scalar product over Fℓ

2𝑘 , for
instance according to the one defined by Eq. (5).

In the case of a quadratic APN function, because the image set of any non-zero derivative
is a hyperplane, there exists a single non-trivial ortho-derivative, that is 𝜋 ∈ Π(𝐹 ) such
that 𝜋(0) = 0 and 𝜋(𝑎) ̸= 0 for any 𝑎 ≠ 0. In the following, we refer to this single
non-trivial ortho-derivative as the ortho-derivative of a quadratic APN function.

The main advantage of the ortho-derivative of a quadratic function is its behavior
within a given EA-equivalence class.

Proposition 8 (Ortho-derivative and EA class [CCP22, Proposition 36]). Let 𝐹 : F𝑛
2 → F𝑛

2
be a quadratic function, 𝐴,𝐵 : F𝑛

2 → F𝑛
2 be bijective affine mappings, and 𝐶 : F𝑛

2 → F𝑛
2 be

an affine function. Let 𝜋𝐹 be an ortho-derivative of 𝐹 . Let 𝐺 and 𝜏 be defined as:

𝐺 = 𝐵 ∘ 𝐹 ∘𝐴+ 𝐶, 𝜏 = (𝐿*
𝐵)−1 ∘ 𝜋𝐹 ∘ 𝐿𝐴,

where 𝐿𝐴, 𝐿𝐵 are the linear parts of 𝐴,𝐵. Then 𝜏 is an ortho-derivative of 𝐺, that is,
𝜏 ∈ Π(𝐺). In other words, we have:

Π(𝐺) = (𝐿*
𝐵)−1Π(𝐹 )𝐿𝐴.
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Corollary 5. Let 𝐹 be a quadratic APN function. Let 𝐺 be EA-equivalent to 𝐹 . Then
their unique non-zero ortho-derivative are linearly equivalent.

In our case, this also implies the following easy, but important proposition.

Proposition 9. Let 𝐹 be a quadratic APN function. Let us suppose that 𝐹 is linearly
self-equivalent: 𝐵 ∘ 𝐹 ∘𝐴 = 𝐹 . Let 𝐺 be EA-equivalent to 𝐹 : 𝐺 = 𝐷 ∘ 𝐹 ∘ 𝐸 + 𝐶. Then:

(i) the ortho-derivative of 𝐹 is linearly self-equivalent: (𝐵−1)* ∘ 𝜋𝐹 ∘𝐴 = 𝜋𝐹 .

(ii) the ortho-derivative of 𝐺 is linearly self-equivalent.

Proof. By a direct application of Proposition 8, we obtain (𝐵−1)* ∘ 𝜋𝐹 ∘𝐴 = 𝜋𝐹 , because
𝐴,𝐵 are linear and, 𝜋𝐺 = (𝐿*

𝐷)−1 ∘ 𝜋𝐹 ∘𝐿𝐸 , i.e. 𝐿*
𝐷 ∘ 𝜋𝐺 ∘𝐿−1

𝐸 = 𝜋𝐹 . By substituting 𝜋𝐹

in the formula deduced from self equivalence, we obtain:

(𝐵−1)* ∘ 𝐿*
𝐷 ∘ 𝜋𝐺 ∘ 𝐿−1

𝐸 ∘𝐴 = 𝐿*
𝐷 ∘ 𝜋𝐺 ∘ 𝐿−1

𝐸 ,

or equivalently: (︀
(𝐿*

𝐷)−1 ∘ (𝐵−1)* ∘ 𝐿*
𝐷

)︀
∘ 𝜋𝐺 ∘

(︀
𝐿−1

𝐸 ∘𝐴 ∘ 𝐿𝐸

)︀
= 𝜋𝐺. (6)

In the case of a cyclotomic mapping, or more generally of an ℓ-variate projective
mapping, we obtain the following interpretation of the previous proposition.

Corollary 6 (Ortho-derivatives of ℓ-variate projective mappings). Let 𝐹 : Fℓ
2𝑘 → Fℓ

2𝑘

be a quadratic APN function. Let us suppose that 𝐹 is an ℓ-variate projective mapping
with exponents (𝑑1, . . . , 𝑑ℓ). Then 𝜋𝐹 is an ℓ-variate projective mapping with exponents
(−𝑑1, . . . ,−𝑑ℓ), where the exponents are considered modulo 2𝑘 − 1. In particular, the
ortho-derivative of a quadratic APN cyclotomic mapping of exponent 𝑑 is cyclotomic of
exponent −𝑑, and the ortho-derivative of the power mapping 𝑥 ↦→ 𝑥𝑑 is the power mapping
𝑥 ↦→ 𝑥−𝑑.

Proof. First, we observe that for any 𝑥, 𝑦, 𝑧 ∈ F2𝑛 : TrF2𝑛 /F2(𝑥(𝑦𝑧)) = TrF2𝑛 /F2((𝑦𝑥)𝑧), so
the multiplication 𝑀𝑦,𝑛 is its own adjoint, for any 𝑦 ∈ F2𝑛 . When looking at functions
𝐹 : Fℓ

2𝑘 → Fℓ
2𝑘 , we can use (𝑥, 𝑦) ↦→

∑︀ℓ
𝑖=1 TrF2𝑘 /F2(𝑥𝑖𝑦𝑖) as the scalar product, which

immediately yields the announced result by using Proposition 9.

In particular, both the linear approximation table (LAT) and the difference distribution
table (DDT) of such ortho-derivatives inherit from the symmetries mentioned in Corollary 3
and Lemma 11. Contrary to the initial quadratic APN functions, their ortho-derivatives are
neither quadratic, nor APN. In particular, there is a priori no reason for ortho-derivatives
to share the same differential spectrum or extended Walsh spectrum. In practice, two
functions in two distinct EA-equivalence classes have distinct spectra. This is the reason
why these spectra are used as strong invariants of EA-equivalence class for quadratic APN
functions, for instance in [CCP22, Table VII], [BIK23, Tables 3 & 4], or [BL22, YP22].

In our case, if the divisibility condition mentioned in Corollary 3 does not hold for
the ortho-derivative, this proves that the function we consider is not EA-equivalent to a
cyclotomic mapping. On the other hand, as there is no known reason for such a structure to
randomly occur, this could provide a way to detect the existence of a possible self-equivalent
representative.

Example 9 (Quadratic APN functions of the Banff list). Among the 13 representatives of
quadratic APN functions in 6 variables, as given in Banff list [Dil09], we can exclude the
existence of cyclotomic mappings in the EA-equivalence classes of 9 of them by studying
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the differential spectra and Walsh spectra of their ortho-derivatives. Indeed, as shown in
Table 4, in these 9 cases, for at least one of the two spectra, the greatest common divisor
of the numbers of occurrences of each value is equal to 1. The four others classes are
represented by:

𝑃2 = 𝑋3,

𝑃3 = 𝑋3 + 𝑎11𝑋6 + 𝑎𝑋9,

𝑃4 = 𝑎7𝑋3 +𝑋5 + 𝑎3𝑋9 + 𝑔4𝑋10 +𝑋17 + 𝑎6𝑋18, and
𝑃5 = 𝑋3 +𝑋10 + 𝑎𝑋24,

where 𝑎 is a root of 𝑋6 +𝑋4 +𝑋3 +𝑋 + 1 and where the GCDs corresponding to 𝑃𝑖 are
given on row #𝑖 of Table 4. Among them, 𝑃2 is the cube power mapping, and 𝑃3 is a
cyclotomic mapping of exponent 0 with respect to F4, but the GCD for the Walsh spectrum
of its ortho-derivative is 21 and the one for the differential spectrum is 63, which might
suggest a property related to F8 or to the group G with 21 elements. The representative 𝑃4
is not cyclotomic but the GCDs are in that case equal to 21 and 14, which again suggests
a property related to F8. The polynomial 𝑃5 is the Kim mapping, which is cyclotomic of
exponent 3 with respect to F8.

Table 4: Divisibilities of the numbers of occurrences of each value in the Walsh spectrum
of the 6-bit APN functions from the Banff list, and of the Walsh and differential spectra
of their ortho-derivatives.

ID GCD for Walsh GCDs for Walsh and differential Number of
spectrum of 𝐹 spectra of the ortho-derivative 𝜋𝐹 mappings

#1 42 (1, 1) 7
#2 42 (84, 63) 1
#3 42 (21, 63) 1
#4 42 (21, 14) 1
#5 42 (28, 21) 1
#6 42 (1, 2) 1
#7 1 (2, 1) 1

Table 5: Divisibilities of the numbers of occurrences of each value in the Walsh spectrum
of the 9-bit APN functions from [BL22], and of the Walsh and differential spectra of their
ortho-derivatives.

ID GCD for Walsh GCDs for Walsh and differential Number of
spectrum of 𝐹 spectra of the ortho-derivative 𝜋𝐹 mappings

#1 4088 (7, 7) 33
#2 4088 (1, 1) 2

In light of Theorem 6, the previous example shows that (most of) the known infinite
families of quadratic APN functions have very specific properties. J: J’ai trié le tableau 7
(et au passage corrigé car il y avait les 6-bit dedans aussi), est-ce que ça vous va ? J’ai
aussi précisé la phrase suivante. This is also highlighted in Table 6 with the 8-bit APN
functions found in [BL22, YP22, YWL14]. In particular, while the functions from [BL22]
are all linearly self-equivalent, none of them, except maybe the two whose GCDs appear on
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Table 6: Divisibilities of the numbers of occurrences of each value in the Walsh spectrum
of the 8-bit APN functions from [BL22] (upper half) and [YP22, YWL14] (lower half),
and of the Walsh and differential spectra of their ortho-derivative.

ID GCD for Walsh GCDs for Walsh and differential Number of
spectrum of 𝐹 spectra of the ortho-derivative 𝜋𝐹 mappings

BL-1 340 (1, 3) 8667
BL-2 2 (1, 3) 3206
BL-3 340 (1, 6) 403
BL-4 4 (1, 3) 311
BL-5 340 (1, 1) 204
BL-6 2 (1, 1) 45
BL-7 340 (1, 12) 26
BL-8 4 (1, 6) 11
BL-9 4 (1, 1) 11
BL-10 340 (1, 15) 10
BL-11 340 (1, 2) 7
BL-12 1 (1, 3) 4
BL-13 340 (1, 24) 3
BL-14 2 (1, 15) 3
BL-15 2 (1, 6) 3
BL-16 340 (1, 5) 2
BL-17 340 (1, 30) 2
BL-18 340 (5, 15) 2
BL-19 340 (2, 2) 1
BL-20 2 (1, 5) 1
BL-21 4 (2, 3) 1

QAM-1 340 (1, 1) 12201
QAM-2 2 (1, 1) 796
QAM-3 340 (1, 2) 359
QAM-4 340 (1, 3) 160
QAM-5 340 (1, 4) 17
QAM-6 2 (1, 3) 14
QAM-7 4 (1, 1) 14
QAM-8 340 (1, 6) 8
QAM-9 340 (1, 5) 8
QAM-10 340 (1, 12) 3
QAM-11 4 (1, 3) 2
QAM-12 340 (1, 10) 2
QAM-13 340 (85, 510) 1
QAM-14 340 (85, 1020) 1
QAM-15 340 (5, 60) 1
QAM-16 340 (2, 2) 1
QAM-17 340 (1, 24) 1
QAM-18 340 (1, 8) 1
QAM-19 2 (1, 2) 1
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row BL-18, is EA-equivalent to a non-trivial cyclotomic mapping. On the other hand, we
observe in Table 5 that out of the 35 known 9-bit quadratic APN functions from [BL22],
33 could potentially be EA-equivalent to cyclotomic mappings with respect to F8.

5.3 Searching for linearly self-equivalent mappings within an EA- or
CCZ-equivalence class

We now discuss how we could determine in the general (non-quadratic) case whether a
function is EA-equivalent or CCZ-equivalent to a cyclotomic mapping or to an ℓ-variate
projective mapping.

The following approach is in line with the proof of Proposition 9. Let 𝐹 be linearly
self-equivalent: 𝐵 ∘ 𝐹 ∘ 𝐴 = 𝐹 . Let 𝐺 be EA-equivalent to 𝐹 such that they satisfy
𝐹 = 𝐷 ∘𝐺 ∘ 𝐸 + 𝐶. Then it holds that:

𝐵 ∘ (𝐷 ∘𝐺 ∘ 𝐸 + 𝐶) ∘𝐴 = 𝐷 ∘𝐺 ∘ 𝐸 + 𝐶,

or equivalently:
𝐵 ∘𝐷 ∘𝐺 ∘ 𝐸 ∘𝐴 = 𝐷 ∘𝐺 ∘ 𝐸 + 𝐶 +𝐵 ∘ 𝐶 ∘𝐴.

By composing the output by 𝐷−1 and the input by 𝐸−1, this is equivalent to:

(𝐷−1 ∘𝐵 ∘𝐷) ∘𝐺 ∘ (𝐸 ∘𝐴 ∘ 𝐸−1) = 𝐺+𝐷−1(𝐶 +𝐵 ∘ 𝐶 ∘𝐴) ∘ 𝐸−1.

In other words, 𝐺 is EA self-equivalent. Furthermore 𝐷−1 ∘𝐵 ∘𝐷 is an affine mapping
with 𝐿−1

𝐷 ∘ 𝐵 ∘ 𝐿𝐷 as linear part, and a similar property holds for 𝐸 ∘ 𝐴 ∘ 𝐸−1. This
implies that the minimal polynomials of the involved transformations are preserved by
EA-equivalence. This can again give proofs of the non-existence of cyclotomic (or ℓ-variate
projective) representatives within an EA-equivalence class.

Actually, the same technique can be adapted to the case of CCZ-equivalence.

Proposition 10 (Functions CCZ-equivalent to a linearly self-equivalent one). Let 𝐹 : F𝑛
2 →

F𝑛
2 be a linearly self-equivalent mapping satisfying 𝐵 ∘𝐹 = 𝐹 ∘𝐴 for some linear bijections
𝐴,𝐵. Let 𝐺 be CCZ-equivalent to 𝐹 . Then:

(i) 𝐺 is CCZ self-equivalent.

(ii) There exists an F2-affine bijective mapping 𝒜 : (F𝑛
2 )2 → (F𝑛

2 )2 with linear part ℒ such
that 𝒜(𝒢𝐺) = 𝒢𝐺, and ℒ is similar to diag(𝐴,𝐵). Most notably, diag(𝐴,𝐵) and ℒ
have the same canonical form and min(ℒ) = lcm(min(𝐴),min(𝐵)).

Proof. From the two hypotheses, it holds that:(︂
𝐴 0
0 𝐵

)︂
𝒢𝐹 = 𝒢𝐹 , and 𝒜(𝒢𝐺) = 𝒢𝐹 ,

for some affine bijection 𝒜 : (F𝑛
2 )2 → (F𝑛

2 )2. By substituting 𝒢𝐹 by 𝒜(𝒢𝐺) in the first
equality, we obtain:(︂

𝐴 0
0 𝐵

)︂
∘ 𝒜(𝒢𝐺) = 𝒜(𝒢𝐺) ⇐⇒ 𝒜−1 ∘

(︂
𝐴 0
0 𝐵

)︂
∘ 𝒜(𝒢𝐺) = 𝒢𝐺.

In other words, 𝐺 is CCZ self-equivalent. Furthermore, the linear part of the affine mapping
𝒜−1 ∘ diag(𝐴,𝐵) ∘𝒜 is ℒ−1 ∘ diag(𝐴,𝐵) ∘ ℒ, which is similar to diag(𝐴,𝐵). In particular,
ℒ and diag(𝐴,𝐵) have the same minimal polynomial, which is the least common multiple
of the ones of 𝐴 and 𝐵.

Contrary to ortho-derivatives which are not defined for functions of degree more than 2,
this method can be applied to any function.
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Example 10 (Brinckmann-Leander-Edel-Pott APN cubic [BL08, EP09]). Let us consider
the well-known Brinckmann-Leander-Edel-Pott APN cubic for 𝑛 = 6 [BL08, EP09]. Then
there is neither cyclotomic nor ℓ-variate projective mapping in its CCZ-equivalence class.
Indeed, its 7 non-trivial automorphisms share the same elementary divisors, which are
𝑋 + 1 with multiplicity 2 and (𝑋 + 1)2 with multiplicity 5. In particular, if a linearly self-
equivalent function exists in its CCZ-equivalence class, then, according to Proposition 10,
the canonical form of diag(𝐴,𝐵) is the same as the one of ℒ. But the canonical form of
diag(𝐴,𝐵) is the concatenation of the ones of 𝐴 and 𝐵. This implies that the canonical
form of 𝐴 is made of blocks 𝐶(𝑋+1) or 𝐶

(︀
(𝑋 + 1)2)︀ with at least one block 𝐶

(︀
(𝑋 + 1)2)︀.

Therefore, because of Proposition 4, min(𝐴) = (𝑋 + 1)2. Thus min(𝐴) is not irreducible
which contradicts the hypotheses of Theorem 3 for the cyclotomic case, and the ones of
Theorem 5 for the ℓ-variate projective case. Indeed, the only non-trivial subfields of F26

are F22 and F23 , with both 22 − 1 and 23 − 1 being prime.

In particular, this example generalizes the well-known fact that this function is not CCZ-
equivalent to a monomial mapping. Actually, these non-LE automorphisms correspond to
the 7 affine derivatives of the Brinckmann-Leander-Edel-Pott cubic. By definition, any
such automorphism corresponds to a triangular block matrix with a diagonal made of
identity blocks: (︂

Id 0
𝐿 Id

)︂
+
(︂

Δin

Δout

)︂
∈ Aut(𝐹 ),

where 𝐿 is the linear part of the derivative 𝐷Δin𝐹 and Δout its constant term (see
e.g [BBMM11]). In particular, the linear part of such an EA automorphism is involutive:
its canonical form is therefore only made of blocks 𝐶(𝑋 + 1) and 𝐶((𝑋 + 1)2). The
argument used in the previous example can therefore be generalized. Indeed, from an
EA automorphism related to an affine derivative of a function 𝐹 , we can never prove the
existence of a linearly self-equivalent function 𝐺 in its CCZ-equivalence class, where 𝐺
satisfies 𝐵 ∘𝐺∘𝐴 = 𝐺, with non-involutive 𝐴 and/or 𝐵. Conversely, if the only non-trivial
automorphisms of a function come from its affine derivatives, neither cyclotomic nor
ℓ-variate cyclotomic mapping exists in its CCZ-equivalence class. This also implies the
non-existence of representatives that commute with the Frobenius automorphism because
𝑥 ↦→ 𝑥2 is not involutive.

A lot of questions still remain open. For instance, this does not rule out the existence
of a linearly self-equivalent mapping 𝐺 in the CCZ-equivalence class of this cubic, it only
proves that if such a mapping 𝐺 exists, it satisfies 𝐵 ∘𝐺 ∘ 𝐴 = 𝐺 for two involutions 𝐴
and 𝐵. However, in light of Theorem 6, it proves that this cubic is very different from the
other known APN functions. The most interesting problem that remains is the following
one.

Problem 3 (From CCZ self-equivalence to linear self-equivalence). Given a CCZ self-
equivalent function, is it possible to use its automorphisms to find a linearly self-equivalent
function in the same CCZ-equivalence class?

6 (Quadratic) APN mappings
6.1 APN (generalized) cyclotomic mappings
We have shown in Section 4 that many families among the known APN functions are
linearly equivalent to a cyclotomic mapping. We then further study these mappings
since they seem to play a particular role among all known APN mappings. Note that the
differential uniformity of cyclotomic mappings was investigated by Chen and Coulter [CC23]
recently, but their results do not provide any relevant information for our parameters in
characteristic 2. We thus continue studying the link between those two properties. Since
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the generalization is straightforward, we state the results in a more general context, such
as the one of generalized cyclotomic mappings.

6.1.1 Necessary conditions to be APN

First of all, an APN generalized cyclotomic mapping with respect to a subfield F2𝑘 has a
single preimage for 0.

Proposition 11. Let 𝐹 : F2𝑛 → F2𝑛 be a generalized cyclotomic mapping with respect to
F2𝑘 . Assume that there exists 𝜆 ̸= 0 such that 𝐹 (𝜆) = 0. Then the differential uniformity
of 𝐹 is at least 2𝑘.

Proof. We observe that, for any 𝜙 ∈ F2𝑘 , we have 𝐹 (𝜆𝜙+ 𝜆) + 𝐹 (𝜆𝜙) = 0.

In particular an APN generalized cyclotomic mappping with respect to F2𝑘 must satisfy
𝐹−1({0}) = {0}. Furthermore, it must be based on APN monomials over F2𝑘 .

Lemma 12. Let 𝐹 : F2𝑛 → F2𝑛 be a generalized cyclotomic mapping with respect to a
subfield F2𝑘 . If 𝐹 is APN, then all its exponents 𝑑𝜆, 𝜆 ≠ 0, defined in Definition 11 are
such that 𝑥 ↦→ 𝑥𝑑𝜆 is APN on F2𝑘 .

Proof. Suppose that there exists a coset 𝜆F2𝑘 , 𝜆 ≠ 0, such that 𝐺𝜆 : 𝑥 ↦→ 𝑥𝑑𝜆 is not APN
on F2𝑘 . Then, there exist 𝜙1, 𝜙2 ∈ F2𝑘 such that 𝛿𝐺𝜆

(𝜙1, 𝜙2) > 2. Using that, for any
𝜙 ∈ F2𝑘 ,

𝐹 (𝜆𝜙+ 𝜆𝜙1) + 𝐹 (𝜆𝜙) = 𝐹 (𝜆) (𝐺𝜆(𝜙+ 𝜙1) +𝐺𝜆(𝜙)) ,

we deduce that there exist more than two 𝜙 ∈ F2𝑘 such that

𝐹 (𝜆𝜙+ 𝜆𝜙1) + 𝐹 (𝜆𝜙) = 𝐹 (𝜆)𝜙2

implying that 𝐹 is not APN.

This explains the fact that the exponents of the cyclotomic mappings in most of the
infinite families are Gold exponents. Note that the stability of F2𝑘 with respect to addition
is used in the previous proof, this is the reason why it cannot (at least directly) be adapted
to the more general case of cyclotomic mappings with respect to generic groups G.

The case of subfields of even dimension is very peculiar. Indeed, we can in that case
derive necessary conditions from the fact that an APN function 𝐹 must satisfy:

|Im(𝐹 )| ≥
{︂ 2𝑛+1

3 if 𝑛 is odd
2𝑛+2

3 if 𝑛 is even , (7)

see for instance [CHP17, Cze20, KKK23].

Proposition 12. Let 𝑘 be an even divisor of 𝑛 and 𝐹 be a cyclotomic mapping with
respect to F2𝑘 . Let Γ be a system of representatives of the multiplicative cosets of F2𝑘 . If
𝐹 is APN then:

• 𝐹 does not satisfy the F2𝑘 -subspace property,

• 𝐹 is cyclotomic of exponent 0 with respect to F4,

• all 𝐹 (𝛾), 𝛾 ∈ Γ belong to different cosets of F2𝑘 ,

• 𝐹 is almost 3-to-1 with 𝐹−1(0) = {0}.
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Proof. Lemma 12 states that 𝑥 ↦→ 𝑥𝑑 is APN over F2𝑘 . The first point is then a consequence
of the well-known4 fact that there does not exist any APN bijective monomial for even
dimension. Furthermore, because 𝑘 is even, we have that gcd(𝑑, 2𝑘 − 1) = 3, which
implies that the exponent of each monomial of 𝐹 is divisible by 3. By Proposition 1, 𝐹 is
cyclotomic of exponent 0 with respect to F4, and therefore constant on each coset of F4.
Because of Eq. (7), 𝐹 is then necessarily almost 3-to-1, or equivalently, all 𝐹 (𝛾), 𝛾 ∈ Γ
belong to different cosets of F2𝑘 .

This proposition can actually be refined in the case of plateaued functions, which
generalize the case of quadratic functions.

Definition 16 (Plateaued function [ZZ99]). Let 𝑓 : F𝑛
2 → F2. The function 𝑓 is said to be

plateaued if there exists a positive integer 𝑐 > 0 such that for any 𝛼 ∈ F𝑛
2 , 𝑊𝑓 (𝛼) ∈ {0,±𝑐}.

In that case, 𝑐 = 2𝑖, with 𝑖 ≥ 𝑛
2 and it is called the amplitude of 𝑓 . A vectorial function

𝐹 : F𝑛
2 → F𝑛

2 is called plateaued if all its non-zero components are plateaued.

In the case of the functions of Proposition 12 that are also plateaued, it can be
proved [KKK23] that they all share the same Walsh spectrum, which is the Walsh spectrum
of the APN Gold mappings. However, this is not true in the general case. An example
of this situation is Dobbertin’s power function over F210𝑚 , 𝑚 ≥ 1, with exponent 𝑑 =
28𝑚 + 26𝑚 + 24𝑚 + 22𝑚 − 1 [Dob01]. As any power function, this function is a cyclotomic
mapping. For instance, it can be written as 𝑥3𝑥(28𝑚−1)+(26𝑚−1)+(24𝑚−1)+(22𝑚−1), but the
four terms of the second exponent are divisible by 22𝑚− 1 so it is cyclotomic of exponent 3
with respect to F22𝑚 . It is also almost 3-to-1 by the previous proposition, however it is
known that its Walsh spectrum is not 2𝑛/2 divisible [CCD00]. Then, its Walsh spectrum
cannot be the one of the APN Gold mappings and its form is only conjectured [BCC+22,
Conjecture 29].

6.1.2 Spectral properties of (generalized) cyclotomic mappings

For generalized cyclotomic mappings with respect to a subfield, we can easily express the
Walsh coefficients in terms of the Walsh coefficients of the power functions 𝑥 ↦→ 𝑥𝑑𝜆 .

Proposition 13. Let 𝑛 = ℓ𝑘 and 𝐹 : F2𝑛 → F2𝑛 be a generalized cyclotomic mapping with
respect to F2𝑘 . Let 𝑑𝛾 , 𝛾 ∈ Γ denote its exponents as defined in Definition 11, where Γ is a
system of representatives of the multiplicative cosets of F2𝑘 . For any 𝛼, 𝛽 ∈ F2𝑛 , we have:

𝑊𝐹 (𝛼, 𝛽) = −
ℓ−1∑︁
𝑖=1

2𝑖𝑘 +
∑︁
𝛾∈Γ

𝑊F2𝑘 ,𝑥𝑑𝛾

(︁
TrF2𝑛 /F2𝑘

(𝛼𝛾) ,TrF2𝑛 /F2𝑘
(𝛽𝐹 (𝛾))

)︁
.

4An elegant and straight-forward proof of this fact can be found in [KKK23, Corollary 4]. It is based
on Eq. (7).
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Proof. A direct computation yields:

𝑊𝐹 (𝛼, 𝛽) =
∑︁

𝜆∈F2𝑛

(−1)TrF2𝑛 /F2𝑘
(𝛼𝜆+𝛽𝐹 (𝜆))

= (−1)0 +
∑︁
𝛾∈Γ

∑︁
𝜙∈F*

2𝑘

(−1)TrF2𝑛 /F2𝑘
(𝛼𝛾𝜙+𝛽𝐹 (𝛾𝜙))

= 1 +
∑︁
𝛾∈Γ

⎛⎝ ∑︁
𝜙∈F2𝑘

(−1)TrF2𝑛 /F2𝑘
(𝛼𝛾𝜙+𝛽𝐹 (𝛾𝜙)) − 1

⎞⎠
= (1− |Γ|) +

∑︁
𝛾∈Γ

∑︁
𝜙∈F2𝑘

(−1)TrF2𝑛 /F2𝑘
(𝛼𝛾𝜙+𝛽𝐹 (𝛾𝜙))

= −
ℓ−1∑︁
𝑖=1

2𝑖𝑘 +
∑︁
𝛾∈Γ

∑︁
𝜙∈F2𝑘

(−1)TrF2𝑛 /F2𝑘
(𝛼𝛾𝜙+𝛽𝐹 (𝛾)𝜙𝑑𝛾 )

= −
ℓ−1∑︁
𝑖=1

2𝑖𝑘 +
∑︁
𝛾∈Γ

𝑊F2𝑘 ,𝑥𝑑𝛾

(︁
TrF2𝑛 /F2𝑘

(𝛼𝛾) ,TrF2𝑛 /F2𝑘
(𝛽𝐹 (𝛾))

)︁
;

where we successively used the multiplicative decomposition using Γ, changed the sum
over F*

2𝑘 into a sum over F2𝑘 , used Definition 11, and finally the trace linearity.

Proposition 14 (Walsh coefficients in zero). Let 𝑛 = ℓ𝑘. Let 𝐹 : F2𝑛 → F2𝑛 be a
generalized cyclotomic mapping with bijective exponents with respect to F2𝑘 . Let 𝛽 ∈ F*

2𝑛

and 𝒦(𝛽) =
⃒⃒⃒
{𝛾 ∈ Γ : TrF2𝑛 /F2𝑘

(𝛽𝐹 (𝛾)) = 0}
⃒⃒⃒
. Then:

𝑊𝐹 (0, 𝛽) = 2𝑘

(︃
𝒦(𝛽)−

ℓ−2∑︁
𝑖=0

2𝑖𝑘

)︃
.

Proof. By Proposition 13, 𝑊𝐹 (0, 𝛽) can be expressed as:

𝑊𝐹 (0, 𝛽) = −
ℓ−1∑︁
𝑖=1

2𝑖𝑘 +
∑︁
𝛾∈Γ

𝑊F2𝑘 ,𝑥𝑑𝛾

(︁
0,TrF2𝑛 /F2𝑘

(𝛽𝐹 (𝛾))
)︁
.

Moreover, 𝑥 ↦→ 𝑥𝑑𝛾 is a bijection over F2𝑘 and thus, 𝑊F2𝑘 ,𝑥𝑑𝛾 (0, 𝜆) = 2𝑘 · 10(𝜆). Then:

𝑊𝐹 (0, 𝛽) = −
ℓ−1∑︁
𝑖=1

2𝑖𝑘 + 2𝑘
⃒⃒⃒{︁
𝛾 ∈ Γ s.t. TrF2𝑛 /F2𝑘

(𝛽𝐹 (𝛾)) = 0
}︁⃒⃒⃒
.

When 𝑛 is even and 𝑘 = 𝑛/2, the Walsh coefficients in zero are directly derived from
the number of preimages by 𝐹 of the multiplicative cosets of F2𝑘 .

Corollary 7 (Walsh coefficients in zero when 𝑘 = 𝑛/2). Let 𝑛 = 2𝑘 be an even integer and
𝐹 : F2𝑛 → F2𝑛 be a generalized cyclotomic mapping with bijective exponents with respect
to F2𝑘 . Then, for any 𝛽 ∈ F*

2𝑛 , we have:

𝑊𝐹 (0, 𝛽) = 2𝑘(𝒦(𝛽)− 1), with 𝒦(𝛽) =
⃒⃒
Γ ∩ 𝐹−1(𝛽−1F2𝑘 )

⃒⃒
.

Most notably, if 𝐹 is a plateaued APN function, there are at least 2(2𝑘+1)
3 cosets of F*

2𝑘

with 0 or 2 preimages by 𝐹 .
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Proof. We know from Proposition 14 that 𝑊𝐹 (0, 𝛽) = 2𝑘(𝒦(𝛽) − 1). Since 𝑘 = 𝑛/2,
TrF2𝑛 /F2𝑘

(𝛽𝐹 (𝛾)) = 𝛽𝐹 (𝛾)+(𝛽𝐹 (𝛾))2𝑘 = 0 if and only if 𝛽𝐹 (𝛾) ∈ F2𝑘 , i.e., 𝐹 (𝛾) ∈ 𝛽−1F2𝑘 .
We deduce that: 𝒦(𝛽) =

⃒⃒
Γ ∩ 𝐹−1(𝛽−1F2𝑘 )

⃒⃒
. If 𝐹 is APN then by Proposition 11,

𝐹−1({0}) = {0}. In that case this implies that: 𝒦(𝛽) =
⃒⃒
Γ ∩ 𝐹−1(𝛽−1F*

2𝑘 )
⃒⃒
, which is the

number of cosets of F*
2𝑘 mapped onto 𝛽−1F*

2𝑘 .

Corollary 8. Let 𝑛 = 2𝑘 be an even integer and 𝐹 : F2𝑛 → F2𝑛 be a generalized cyclotomic
mapping with bijective exponents with respect to F2𝑘 . Then its linearity satisfies:

ℒ(𝐹 ) ≥ 2𝑘

(︂
max
𝛽∈Γ

(
⃒⃒
Γ ∩ 𝐹−1(𝛽−1F2𝑘 )

⃒⃒
− 1
)︂
.

Example 11. We exhaustively looked at the 63 mappings over F64 of the form 𝑥 ↦→ 𝑥3 +
𝑥10 + 𝑢𝑥24, where 𝑢 ̸= 0. Eight of them can be proven non-APN thanks to Proposition 11,
because a coset is set onto {0}. For the remaining ones, we computed the multiset
{{𝒦(𝛽), 𝛽 ∈ Γ}} where Γ is a system of representatives of the multiplicative cosets of F*

2𝑘 .
The possible values for this multiset are:

𝑀1 = {{0, 0, 1, 1, 1, 1, 1, 2, 2}},
𝑀2 = {{0, 0, 0, 0, 1, 1, 1, 3, 3}},
𝑀3 = {{0, 0, 0, 1, 1, 1, 1, 2, 3}},
𝑀4 = {{0, 0, 0, 0, 1, 1, 2, 2, 3}},
𝑀5 = {{0, 0, 1, 1, 1, 1, 1, 1, 3}},
𝑀6 = {{1, 1, 1, 1, 1, 1, 1, 1, 1}},

In this specific case, it holds that 2(2𝑘+1)
3 = 2×9

3 = 6. This implies that if a function has
as spectrum 𝑀1,𝑀2,𝑀3,𝑀5 or 𝑀6, then it cannot be APN. The spectrum 𝑀4 cannot be
rule out. In practice, it is obtained for the six roots 𝑢 of 𝑋6 +𝑋4 +𝑋3 +𝑋 + 1 and the
associated functions are in that case (CCZ-equivalent to) the Kim mapping, and therefore
APN.

The functions considered in this example are quadratic cyclotomic mappings with
respect to the subfield F2

𝑛
2 ⊂ F2𝑛 , with 𝑛 even. As detailed below and due to a recent

result of Göloğlu [Göl23], no new APN functions can be found in this family. However,
the previous results are more general and could hopefully lead to the finding of new APN
functions outside of this specific family.

6.2 APN cyclotomic mappings of degree 2
As already mentioned, quadratic APN functions are relatively better understood than the
general case. It is therefore interesting to look at this subcase in the context of cyclotomic
mappings.

First of all, as already mentioned by Göloğlu [Göl15, p.264] in a less general case,
quadratic cyclotomic mappings with respect to subfields can easily be characterized by
refining Lemma 3.

Proposition 15 (Quadratic cyclotomic mappings w.r.t subfields). Let F2𝑘 ⊂ F2𝑛 . Let
𝑑 < 2𝑘 − 1. Let 𝐹 : F2𝑛 → F2𝑛 be a quadratic cyclotomic mapping of exponent 𝑑 with
respect to F2𝑘 . Then, wt(𝑑) ≤ 2. Furthermore if 𝑑 = 2𝑒1 + 2𝑒2 , 𝑒1 ̸= 𝑒2 then 𝐹 is of the
form:

𝐹 : 𝑥 ↦→
ℓ−1∑︁
𝑖=0

ℓ−1∑︁
𝑗=0

𝜆𝑖,𝑗𝑥
2𝑘𝑖+𝑒1 +2𝑘𝑗+𝑒2

, for some 𝜆𝑖,𝑗 ∈ F2𝑛 .
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Proof. Let (2𝑘 − 1)𝑠+ 𝑑 = 2𝑢 + 2𝑣 be an exponent of weight exactly 2, which appears in
the univariate form of 𝐹 . By Lemma 3 we get 𝑑 ≡ 2𝑢′ +2𝑣′ mod 2𝑘 − 1 where 𝑢′, 𝑣′ are the
Euclidean remainders of 𝑢 and 𝑣 modulo 𝑘. If 𝑢′ = 𝑣′ = 𝑘− 1 then 𝑑 ≡ 2𝑘 ≡ 1 mod 2𝑘 − 1
and therefore 𝑑 = 1. Otherwise, 2𝑢′ + 2𝑣′

< 2𝑘 − 1 and 𝑑 = 2𝑢′ + 2𝑣′ which is of weight at
most 2.

In the case where wt(𝑑) = 2, 𝐹 does not contain any linear monomial 𝑥2𝑤 as it would
imply 𝑑 = 2𝑤′ (where 𝑤′ ≡ 𝑤 mod 𝑘), which is a contradiction. Furthermore 𝐹 (0) = 0
so all monomials of 𝐹 have degree exactly 2. In that case, for any term 𝑥2𝑢+2𝑣 in 𝐹 ,
we get 𝑑 ≡ 2𝑢′ + 2𝑣′ mod 2𝑘 − 1 with 𝑢′ ≠ 𝑣′ (otherwise wt(𝑑) = 1, which is excluded).
Since 2𝑢′ + 2𝑣′

< 2𝑘 − 1, we deduce 2𝑒1 + 2𝑒2 := 𝑑 = 2𝑢′ + 2𝑣′ . This means that there
exist 𝑖, 𝑗 such that {𝑢, 𝑣} = {𝑘𝑖+ 𝑒1, 𝑘𝑗 + 𝑒2}. But 𝑢, 𝑣 are such that 2𝑢 + 2𝑣 < 2ℓ𝑘 − 1 so
necessarily 𝑖, 𝑗 ∈ J0, ℓ− 1K.

Lemma 12 implies that the case where wt(𝑑) = 1 is not interesting if we are looking for
APN cyclotomic mappings, as 𝑥 ↦→ 𝑥𝑑 is linear in that case. When wt(𝑑) = 2, we can always
write 𝑑 = 2𝑎(2𝑠 + 1) but 𝑎 can be arbitrarily set to 0. Indeed, 𝐹 = 𝑥2𝑎(2𝑠+1)𝑃 (𝑥2𝑘−1) is
APN if and only if the linearly-equivalent cyclotomic mapping 𝐹 (𝑥2𝑛−𝑎) = 𝑥2𝑠+1𝑄(𝑥2𝑘−1)
is APN where 𝑄 = 𝑃 (𝑥2𝑛−𝑎). We then deduce the following corollary.

Corollary 9 (Quadratic APN cyclotomic mappings and Gold exponents). Studying APN
cyclotomic mappings whose exponent is a Gold exponent over F2𝑘 𝑑 = 2𝑠 + 1, gcd(𝑠, 𝑘) = 1
is sufficient to study quadratic APN cyclotomic mappings with respect to F2𝑘 .

For even 𝑛, the family of quadratic cyclotomic mappings with respect to F2
𝑛
2 , described

in Proposition 15, has already received a lot of attention [Göl15, Car15, BHLS17, LLHQ21,
CL21, Göl23]. As shown in Proposition 15, they also include the so-called “Kim-type”
functions introduced by Carlet in [Car15, Section 3.7] who raised the question of the
existence of APN functions in this family.

Most notably, the list of all quadratic APN cyclotomic mappings w.r.t F2
𝑛
2 , 𝑛 even, is

now known to be complete. Cyclotomic mappings of exponent 3 are all affine-equivalent to
either 𝑥3 or 𝑥2𝑘−1+1 [CL21, LLHQ21], and thus never CCZ-equivalent to a permutation
[GL20]. The general case, with exponent 𝑑 = 2𝑠 + 1, has been recently classified by
Göloğlu [Göl23], as he classified all APN (2𝑠 + 1, 2𝑠 + 1)-projective mappings, which
coincide with quadratic cyclotomic mappings with respect to F2

𝑛
2 (see Proposition 2). His

result shows that a quadratic cyclotomic mapping with respect to the subfield F2𝑘 ⊂ F2𝑛

where 𝑛 = 2𝑘 is APN if and only if it is equivalent to some specific Gold mapping
(depending on the parities of 𝑘 and 𝑠) except when 𝑛 = 6, where it can also be equivalent
to the Kim mapping.

This implies that there is no hope to find new APN functions over F2𝑛 , 𝑛 even,
among the quadratic cyclotomic mappings w.r.t F2

𝑛
2 . However, some families presented in

Tables 1 and 2 contain functions that are equivalent to cyclotomic mappings but not to
Gold mappings. This is the case for instance of Families (LK23a) and (LK23b) in Table 2,
which consist of quadratic cyclotomic mappings with respect to F2

𝑛
3 for 𝑛 divisible by 3.

This also applies to more general biprojective mappings. Another interesting idea would
be to try to build cyclotomic mappings F2𝑘 ⊂ F22𝑘 , with non-quadratic APN exponents,
corresponding to other APN monomial functions. The results that we just presented in
this section open the door to new research directions as they are more general than the
case 𝑛 = 2𝑘, with 𝐹 quadratic.

Similarly to Proposition 15, we provide the generic form of the polynomials correspond-
ing to quadratic ℓ-variate projective mappings, based on the following lemma.

Lemma 13 (Quadratic multivariate functions). Let 𝐹 : Fℓ
2𝑘 → Fℓ

2𝑘 be quadratic. Then
each multivariate monomial in the coordinates of 𝐹 is of the form 𝑋𝑢𝑖

𝑖 𝑋
𝑢𝑗

𝑗 with 𝑖 ̸= 𝑗 and
wt(𝑢𝑖) = wt(𝑢𝑗) = 1, or of the form 𝑋𝑢𝑖

𝑖 with wt(𝑢𝑖) ≤ 2.
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Proof. Let (𝛼1, . . . , 𝛼ℓ) be an F2𝑘 -basis of F2𝑛 with 𝑛 = ℓ𝑘. Let us consider the linearly
equivalent function ̃︀𝐹 defined by:

̃︀𝐹 (𝑥) =
ℓ∑︁

𝑖=1
𝛼𝑖𝐹𝑖(𝑥1, . . . , 𝑥ℓ),

for any 𝑥 =
∑︀ℓ

𝑖=1 𝛼𝑖𝑥𝑖. By construction, 𝐹𝑖(𝑥1, . . . , 𝑥ℓ) = TrF2𝑛 /F2𝑘
(𝛽𝑖𝐹 (𝑥)) for some 𝛽𝑖.

The function 𝑥 ↦→ 𝐹 (𝑥)2𝑗 contains univariate monomials whose exponents are the ones
of 𝐹 multiplied by 2𝑗 . This transformation does not change the Hamming weight of the
exponents so 𝑥 ↦→ 𝐹 (𝑥)2𝑗 is of algebraic degree at most 2. Moreover, we observe that
(
∑︀ℓ

𝑖=1 𝛼𝑖𝑥𝑖)2𝑎 =
∑︀ℓ

𝑖=1 𝛼
2𝑎

𝑖 𝑥2𝑎

𝑖 , so a linear univariate monomial 𝑋2𝑎 can only produce
multivariate monomials with a single variable, and whose exponent is of Hamming weight 1.
Similarly, we observe that:(︃

ℓ∑︁
𝑖=1

𝛼𝑖𝑥𝑖

)︃2𝑎+2𝑏

=
ℓ∑︁

𝑖,𝑗=1
𝛼2𝑎

𝑖 𝑥2𝑎

𝑖 · 𝛼2𝑏

𝑗 𝑥
2𝑏

𝑗 ,

so a quadratic univariate monomial 𝑋2𝑎+2𝑏 only produces multivariate monomials 𝑋2𝑎

𝑖 𝑋2𝑏

𝑗

with 𝑖 ̸= 𝑗 or monomials 𝑋2𝑎+2𝑏

𝑖 .

As a direct consequence, we obtain the following proposition.

Proposition 16 (Quadratic ℓ-variate projective mappings). Let 𝐹 : Fℓ
2𝑘 → Fℓ

2𝑘 be a
quadratic ℓ-variate projective mappings. Then its exponents (𝑑1, . . . , 𝑑ℓ) satisfy wt(𝑑𝑖) ≤ 2
for all 𝑖. Moreover, in a homogeneous coordinate of exponent 2𝑠 + 1, only the terms 𝑋𝑖𝑋

2𝑠

𝑗

with 𝑖 ≠ 𝑗 and 𝑋2𝑠+1
𝑖 can appear. Most notably, the family of 2-variate projective mappings

of exponents (2𝑟 + 1, 2𝑠 + 1) with respect to F2𝑘 with algebraic degree 2 coincides with the
family of (2𝑟, 2𝑠)-biprojective mappings defined in Definition 7.

Propositions 15 and 16 then allow the search for new quadratic APN ℓ-variate projective
mappings, ℓ > 2, from their polynomial representations. We believe that this opens a
promising direction for finding new APN mappings.

7 Conclusion
We have developed a methodology for studying linear self-equivalence of any vectorial
Boolean function, regardless of whether it is represented as a univariate polynomial, or a
multivariate polynomial over a Cartesian product of finite fields of characteristic 2. This
enabled us to show that most known infinite families of quadratic APN functions are
linearly equivalent to functions with highly structured linear self-equivalence, unlike for
instance in the sporadic examples found in [BL22]. This begs the question: Is linear
self-equivalence a side effect of the techniques used to find new infinite families of APN
permutations, or is it an inherent property of (quadratic) APN functions?

Even if cyclotomic mappings and ℓ-variate projective mappings have been investigated
for ℓ at most equal to 4, our results show that increasing the value of ℓ could be a direction
worth exploring to find new APN functions.

Another direction that has received but a fraction of the attention of the community
at this stage is that of non-quadratic functions. The differential properties of quadratic
functions are inherently easier to study thanks to the affine nature of the derivatives in
this case. Still, could the structure provided by self-linear equivalence give us the practical
tools we need to provide meaningful results about such functions?
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A Infinite families of quadratic APN functions
The polynomial representations of the known infinite families of APN functions, together
with the conditions on their parameters to actually be APN are presented in Tables 7
to 10. In the following, we provide more details on these conditions when they do not fit
in the tables, but also on the precise references where these results were found.

In the following, for 𝑛 = ℓ𝑘, we denote by 𝑆ℓ,𝑘 = 2𝑛−1
2𝑘−1 =

∑︀ℓ−1
𝑖=0 2𝑖𝑘.

(BCL08a). See [BCL08, Corollary 1].

(BCL08b). See [BCL08, Theorem 2].

(BCV20). See [BCV20, Lemma 3.17].

(BCL09a). See [BCL09a, Corollary 1] [BCL09b, Corollaries 3 & 4].

(BBMM11). See [BBMM11, Theorem 2.1].

(BCCCV20). See [BCC+20, Theorem VI.3 & Equation 16].

(BHK20). See [BHK20, Corollary 1].

(ZKLPT22). The conditions for this family of quadratic APN functions are numerous.
We therefore recall the original statement by the authors.

Theorem 7 (Family (ZKLPT22)). [ZKL+22, Theorem 2] Let 𝑛 = 2𝑘 with 𝑘 ≥ 1 odd.
Let 𝑖 be a positive integer such that gcd(𝑛, 𝑖) = 1. Let 𝑎 ∈ F2𝑛 ∖ F2𝑘 and 𝑏, 𝑐 ∈ F2𝑛 such
that 𝑏𝑐 ̸= 0. Let 𝐹𝑖,𝑠,𝑎,𝑏,𝑐 : 𝑥→ 𝑎TrL/F(𝑏𝑥2𝑖+1) + 𝑎2𝑘 TrL/F(𝑐𝑥2𝑠+1). If one of the following
conditions is verified, then 𝐹𝑖,𝑠,𝑎,𝑏,𝑐 is APN over F2𝑛 :

1. 𝑏 is not a cube and:

(a) 𝑠 = 3𝑖 and 𝑐

𝑏22𝑖−2𝑖+1 ∈ F*
2𝑘 or,

(b) 𝑠 = 𝑘 − 2𝑖 and 𝑐22𝑖

𝑏2𝑖−1 ∈ F*
2𝑘 or,

(c) 𝑠 = 𝑘 + 2𝑖 and 𝑐𝑏2𝑖−1 ∈ F*
2𝑘 or,

(d) 𝑖 = 1, 𝑠 = (𝑘 − 2)−1 mod 𝑛, and 𝑐2𝑠−1

𝑏22𝑠 ∈ F*
2𝑘 or,

(e) 𝑠 = 𝑘 and 𝑐 /∈ F2𝑘

2. or, 𝑠 = 𝑛− 𝑖 and 𝑐2𝑖

𝑏 /∈ F2𝑘 .

(LZLQ22a). See [LZLQ22, Theorem 6].

(LZLZ22b). See [LZLQ22, Theorem 5].

(ZP13). See [ZP13, Corrolary 2].

(T19). See [Tan19, Theorem 3].

(CBC21). See [CBC21, Theorem 6.2].
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(G22a). See [Göl22, Theorem III.2 ℱ1].

(G22b). See [Göl22, Theorem III.2 ℱ2].

(GK21). See [GK21, Theorem 1].

(CLV22a). See [CLV22, Theorem 3].

(CLV22b). See [CLV22, Theorem 4].

(LK23a/b). The conditions for these two families of quadratic APN functions are too
numerous for the table. We therefore recall the original statements by the authors.

Theorem 8 (Family (LK23a) [LK23, Theorem 1]). Let gcd(𝑠, 𝑘) = 1 and

𝐹 : (𝑥, 𝑦, 𝑧) ↦→ (𝑥2𝑠+1 + 𝑥2𝑠

𝑧 + 𝑦𝑧2𝑠

, 𝑥2𝑠

𝑧 + 𝑦2𝑠+1, 𝑥𝑦2𝑠

+ 𝑦2𝑠

𝑧 + 𝑧2𝑠+1).

Assume that the polynomials 𝑃1, 𝑃2, 𝑃3 have no root in F2𝑘 and 𝑃4 have no root in F2𝑘×F2𝑘

where 𝑞 = 2𝑠 and 𝑃1, 𝑃2, 𝑃3, 𝑃4 are defined by:

𝑃1 = 𝑋𝑞2+𝑞+1 +𝑋 + 1,

𝑃2 =𝑋𝑞2+𝑞+1 +𝑋𝑞2
+ 1,

𝑃3 = 𝑋𝑞2+𝑞+1 +𝑋𝑞2+1 +𝑋𝑞+1 +𝑋 + 1

𝑃4 = 𝑋𝑞2+𝑞+1 +𝑋𝑌 𝑞2+𝑞 +𝑋𝑌 𝑞 +𝑋𝑞2+𝑞 +𝑋𝑞𝑌 𝑞2

+𝑋𝑞2
𝑌 + 𝑌 𝑞2+𝑞+1 + 𝑌 𝑞2+𝑞 + 𝑌 𝑞2

+ 𝑌 𝑞 + 1.

Then 𝐹 is APN.

Theorem 9 (Family (LK23b) [LK23, Theorem 9]). Let gcd(𝑠, 𝑘) = 1 and

𝐹 : (𝑥, 𝑦, 𝑧) ↦→ (𝑥2𝑠+1 + 𝑥𝑦2𝑠

+ 𝑦𝑧2𝑠

, 𝑥𝑦2𝑠

+ 𝑧2𝑠+1, 𝑥2𝑠

𝑧 + 𝑦2𝑠+1 + 𝑦2𝑠

𝑧).

Assume that the polynomials 𝑃1, 𝑃2, 𝑃3 have no root in F2𝑘 and 𝑃4 have no root in F2𝑘×F2𝑘

where 𝑞 = 2𝑠 and 𝑃1, 𝑃2, 𝑃3, 𝑃4 are defined by:

𝑃1 = 𝑋𝑞2+𝑞+1 +𝑋𝑞+1 +𝑋𝑞 +𝑋 + 1,

𝑃2 = 𝑋𝑞2+𝑞+1 +𝑋𝑞2
+ 1,

𝑃3 = 𝑋𝑞2+𝑞+1 +𝑋 + 1,

𝑃4 = 𝑋𝑞2+𝑞+1 +𝑋𝑞+1𝑌 𝑞2
+𝑋𝑌 𝑞 +𝑋𝑞𝑌 𝑞2

+𝑋𝑞2
𝑌

+𝑋𝑞2
+ 𝑌 𝑞2+𝑞+1 + 𝑌 𝑞2+1 + 𝑌 𝑞2+𝑞 + 𝑌 𝑞2

+ 1.

Then 𝐹 is APN.
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𝑎
𝑥

2(4
−

𝑖
)𝑘

+
𝑠

+
2𝑖

𝑘

O
th

er
s:

𝑠𝑘
≡

𝑖
m

od
4,

𝑖
∈

{1
,3

},
or

d(
𝑎

)
=

𝑆
4,

𝑘

[B
C

L0
8,

B
C

L0
6]

(B
C

V
20

)
𝑎

𝑥
2𝑘

+
1

+
𝑥

2𝑠
+

1
+

𝑥
2𝑠

+
𝑘

+
2𝑘

+
𝑏𝑥

2𝑘
+

𝑠
+

1
+

𝑏2𝑘
𝑥

2𝑠
+

2𝑘

F
ie

ld
:

𝑛
=

2𝑘
.

[B
C

08
,B

C
V

20
]

E
xp

on
en

t:
gc

d(
𝑠,

𝑘
)

=
1

(G
ol

d
fo

r
F 2

𝑘
)

O
th

er
s:

𝑎
∈

F 2
𝑛

∖
F 2

𝑘
,𝑋

2𝑠
+

1
+

𝑏𝑋
2𝑠

+
𝑏2𝑘

𝑋
+

1
ha

s
no

ro
ot

𝑥
s.

t
𝑥

2𝑘
+

1
=

1.

𝑎
̸=

0
(B

C
L0

9a
)

𝑥
3

+
𝑎

−
1
Tr

F 2
𝑛

/
F 2

(𝑎
3
𝑥

9
)

[B
C

L0
9a

]

(B
C

L0
9b

/c
)

𝑥
3

+
𝑎

−
1
Tr

F 2
𝑛

/
F 23

(𝑎
3
𝑥

9
+

𝑎
6
𝑥

18
)

F
ie

ld
:

𝑛
=

3𝑘
[B

C
L0

9b
]

E
xp

on
en

t:
-

𝑥
3

+
𝑎

−
1
Tr

F 2
𝑛

/
F 23

(𝑎
6
𝑥

18
+

𝑎
12

𝑥
36

)
O

th
er

s:
𝑎

̸=
0

F
ie

ld
:

𝑛
=

3𝑘
,g

cd
(3

,𝑘
)

=
1.

E
xp

on
en

t:
gc

d(
𝑠,

𝑛
)

=
1

(G
ol

d
fo

r
F 2

𝑛
),

3
|(

𝑘
+

𝑠)
(B

B
M

M
11

)
𝑎

𝑥
2𝑠

+
1

+
𝑎

2𝑘
𝑥

22𝑘
+

2𝑘
+

𝑠
+

𝑏𝑥
22𝑘

+
1

+
𝑐𝑎

2𝑘
+

1
𝑥

2𝑠
+

2𝑘
+

𝑠

O
th

er
s:

𝑎
pr

im
it

iv
e

in
F 2

𝑛
.

𝑏,
𝑐

∈
F 2

𝑘
,𝑏

𝑐
̸=

1.
[B

B
M

M
11

]

Ta
bl

e
7:

K
no

w
n

in
fin

ite
fa

m
ili

es
of

un
iv

ar
ia

te
qu

ad
ra

tic
A

PN
fu

nc
tio

ns
ov

er
F 2

𝑛
(1

/2
).

T
he

G
ol

d
m

ap
pi

ng
s

ar
e

om
itt

ed
.
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ID
Functions

C
onditions

to
b

e
A

P
N

R
eferences

(B
C

C
C

V
20)

𝑎
2
𝑥

2
2

𝑘
+

1+
1

+
𝑏 2

𝑥
2

𝑘
+

1+
1

+
𝑎

𝑥
2

2
𝑘

+
2

+
𝑏𝑥

2
𝑘

+
2

+
𝑑
𝑥

3
F

ield:
𝑛

=
3
𝑘.

[B
C

C
+

20]
E

xp
onent:.

O
thers:

see
[B

C
C

+
20,T

heorem
V

I.3].
F

ield:
𝑛

=
2
𝑘,

𝑘
odd,3

∤
𝑘.

E
xp

onent:
If

𝑖
is

even,
𝑠

∈ {︀
𝑘

−
2
,

𝑘
,

𝑛
−

1
,

(𝑘
−

2) −
1

m
od

𝑛 }︀
.

If
𝑖

odd,
𝑠

∈ {︀
𝑘

+
2
,𝑛

−
1
,(𝑘

+
2) −

1
m

od
𝑛 }︀

.
(B

H
K

20)
𝑥

3
+

𝑎
𝑥

2
𝑠+

𝑖+
2

𝑖
+

𝑎
2
𝑥

2
𝑘

+
1+

2
𝑘

+
𝑥

2
𝑠+

𝑖+
𝑘

+
2

𝑖+
𝑘

O
thers:

𝑎
oforder

3.

[B
H

K
20]

(ZK
LP

T
22)

𝑎TrF
2

𝑛
/F

2
𝑘 (𝑏𝑥

2
𝑖+

1)+
𝑎

2
𝑘TrF

2
𝑛

/F
2

𝑘 (𝑐𝑥
2

𝑠+
1)

F
ield:

𝑛
=

2
𝑘,

𝑘
odd.

[ZK
L

+
22]

E
xp

onent:
gcd(𝑖,𝑛)

=
1

O
thers:

𝑎
/∈
F

2
𝑘

,𝑏𝑐
̸=

0.
𝑖,𝑠,𝑏,𝑐

satisfy
the

conditions
ofT

heorem
7.

F
ield:

𝑛
=

3
𝑘.

E
xp

onent:
gcd(𝑠,𝑘)

=
1

(G
old

for
F

2
𝑘 ).

O
thers:

𝑎
2

𝑛
−

1
2

𝑘
−

1
̸=

1,
𝑏

∈
F

*2
𝑘 .

(LZLQ
22a)

𝐿
(𝑥) 2

𝑘
+

1
+

𝑏𝑥
2

𝑘
+

1

𝐿
:

𝑥
↦→

𝑥
2

𝑘
+

𝑠
+

𝑎
𝑥

2
𝑠

+
𝑥

bijection
over

F
2

𝑛.

[LZLQ
22]

Table
8:

K
now

n
infinite

fam
ilies

ofunivariate
quadratic

A
PN

functions
over

F
2

𝑛
(2/2).
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ID
Fu

nc
ti

on
s

C
on

di
ti

on
s

to
b

e
A

P
N

R
ef

er
en

ce
s

(Z
P

13
)

(𝑥
,𝑦

)
↦→
(︂ 𝑥

2𝑠
+

1
+

𝑎
𝑦

(2
𝑠

+
1)

2𝑖

𝑥
𝑦

)︂
F

ie
ld

:
𝑛

=
2𝑘

.
𝑘

ev
en

.
[Z

P
13

]
E

xp
on

en
t:

gc
d(

𝑠,
𝑘

)
=

1
(G

ol
d

fo
r
F 2

𝑘
),

𝑖
ev

en
.

O
th

er
s:

𝑎
∈

F 2
𝑘

an
d

no
n-

cu
bi

c.
F

ie
ld

:
𝑛

=
2𝑘

.
𝑘

≥
2.

E
xp

on
en

t:
gc

d(
𝑠,

𝑘
)

=
1

(G
ol

d
fo

r
F 2

𝑘
).

(T
19

)
(𝑥

,𝑦
)

↦→
(︂ 𝑥

22𝑠
+

23𝑠
+

𝑎
𝑥

22𝑠
𝑦

2𝑠
+

𝑏𝑦
2𝑠

+
1

𝑥
𝑦

)︂
O

th
er

s:
𝑎

∈
F 2

𝑘
,𝑏

∈
F* 2𝑘

su
ch

th
at

𝑋
2𝑠

+
1

+
𝑎

𝑋
+

𝑏
ha

s
no

ro
ot

in
F 2

𝑘
.

[T
an

19
]

(C
B

C
21

)
(𝑥

,𝑦
)

↦→
(︂ 𝑥

2𝑠
+

1
+

𝑥
2𝑠

+
𝑘

/
2
𝑦

2𝑘
/

2
+

𝑎
𝑥

𝑦
2𝑠

+
𝑏𝑦

2𝑠
+

1

𝑥
𝑦

)︂F
ie

ld
:

𝑛
=

2𝑘
.

𝑘
ev

en
.

[C
B

C
21

]
E

xp
on

en
t:

gc
d(

𝑠,
𝑘

)
=

1
(G

ol
d

fo
r
F 2

𝑘
),

𝑠
<

𝑘 2
.

O
th

er
s:

𝑎
,𝑏

∈
F 2

𝑘
su

ch
th

at
(𝑏

𝑋
2𝑠

+
1

+
𝑎

𝑋
2𝑠

+
1)

2𝑘
/

2
+

1
+

𝑋
2𝑘

/
2

+
1

ha
s

no
ro

ot
in

F 2
𝑘

.
F

ie
ld

:
𝑛

=
2𝑘

E
xp

on
en

t:
gc

d(
3𝑠

,𝑘
)

=
1.

(G
22

a)
(𝑥

,𝑦
)

↦→
(︂ 𝑥

2𝑠
+

1
+

𝑥
𝑦

2𝑠
+

𝑦
2𝑠

+
1

𝑥
22𝑠

+
1

+
𝑥

22𝑠
𝑦

+
𝑦

22𝑠
+

1

)︂
[G

öl
22

]

(G
22

b)
(𝑥

,𝑦
)

↦→
(︂ 𝑥

2𝑠
+

1
+

𝑥
𝑦

2𝑠
+

𝑦
2𝑠

+
1

𝑥
23𝑠

𝑦
+

𝑥
𝑦

23𝑠

)︂
F

ie
ld

:
𝑛

=
2𝑘

,𝑘
od

d.
[G

öl
22

]
E

xp
on

en
t:

gc
d(

3𝑠
,𝑘

)
=

1.

F
ie

ld
:

𝑛
=

2𝑘
,𝑘

≡
2

m
od

4.
E

xp
on

en
t:

gc
d(

𝑠,
𝑘

)
=

1.
(G

K
21

)
(𝑥

,𝑦
)

↦→
(︂

𝑥
2𝑠

+
1

+
𝑏𝑦

2𝑠
+

1

𝑥
2𝑠

+
𝑘

/
2
𝑦

+
𝑎 𝑏

𝑥
𝑦

2𝑠
+

𝑘
/

2

)︂
O

th
er

s:
𝑎

∈
F* 2𝑘

/
2
,𝑏

∈
F 2

𝑘
,𝑏

no
n-

cu
bi

c
su

ch
th

at
𝑏2𝑠

+
2𝑠

+
𝑘 2

̸=
𝑎

2𝑠
+

1
[G

K
21

]

Ta
bl

e
9:

K
no

w
n

in
fin

ite
fa

m
ili

es
of

m
ul

tiv
ar

ia
te

qu
ad

ra
tic

A
PN

fu
nc

tio
ns

ov
er

F 2
𝑛

(1
/2

).
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ID
Functions

C
onditions

to
b

e
A

P
N

R
eferences

(LZLQ
22b)

(𝑥
,𝑦)

↦→ (︁
𝑥

3
+

𝑥
𝑦

2
+

𝑦
3

+
𝑥

𝑦
𝑥

5
+

𝑥
4
𝑦

+
𝑦

5
+

𝑥
𝑦

+
𝑥

2
𝑦

2 )︁
F

ield:
𝑛

=
2
𝑘,gcd(𝑘

,3)
=

1.
[LZLQ

22]

F
ield:

𝑛
=

2
𝑘.

E
xp

onent:
gcd(𝑠,𝑘)

=
1.

(C
LV

22a)
(𝑥

,𝑦)
↦→ (︂

𝑥
2

𝑠+
1

+
𝑥

𝑦
2

𝑠
+

𝑎
𝑦

2
𝑠+

1

𝑥
2

2
𝑠+

1
+

𝑎
𝑥

2
2

𝑠
𝑦

+
(1

+
𝑎) 2

𝑠
𝑥

𝑦
2

2
𝑠

+
𝑎

𝑦
2

2
𝑠+

1 )︂
O

thers:
𝑎

∈
F

2
𝑘

s.t.
𝑋

2
𝑠+

1
+

𝑋
+

𝑎
has

no
root

in
F

2
𝑘

.
[C

LV
22]

(C
LV

22b)
(𝑥

,𝑦)
↦→ (︁

𝑥
3

+
𝑥

𝑦
+

𝑥
𝑦

2
+

𝑎
𝑦

3

𝑥
5

+
𝑥

𝑦
+

𝑎
𝑥

2
𝑦

2
+

𝑎
𝑥

4
𝑦

+
(1

+
𝑎) 2

𝑥
𝑦

4
+

𝑎
𝑦

5 )︁
F

ield:
𝑛

=
2
𝑘.

[C
LV

22]
O

thers:
𝑎

∈
F

2
𝑘

s.t.
𝑋

3
+

𝑋
+

𝑎
has

no
root

in
F

2
𝑘 .

F
ield:

𝑛
=

3
𝑘.

E
xp

onent:
gcd(𝑠,𝑘)

=
1.

O
thers:

T
he

polynom
ials

ofT
heorem

8
(LK

23a)
(𝑥

,𝑦
,𝑧)

↦→ (︃
𝑥

2
𝑠+

1
+

𝑥
2

𝑠
𝑧

+
𝑦

𝑧
2

𝑠

𝑥
2

𝑠
𝑧

+
𝑦

2
𝑠+

1

𝑥
𝑦

2
𝑠

+
𝑦

2
𝑠
𝑧

+
𝑧

2
𝑠+

1 )︃
have

no
root

in
F

2
𝑘

or
F

2
𝑘

×
F

2
𝑘 .

[LK
23]

(LK
23b)

(𝑥
,𝑦

,𝑧)
↦→ (︃

𝑥
2

𝑠+
1

+
𝑥

𝑦
2

𝑠
+

𝑦
𝑧

2
𝑠

𝑥
𝑦

2
𝑠

+
𝑧

2
𝑠+

1

𝑥
2

𝑠
𝑧

+
𝑦

2
𝑠+

1
+

𝑦
2

𝑠
𝑧 )︃

F
ield:

𝑛
=

3
𝑘.

[LK
23]

E
xp

onent:
gcd(𝑠,𝑘)

=
1.

O
thers:

T
he

polynom
ials

ofT
heorem

9
have

no
root

in
F

2
𝑘

or
F

2
𝑘

×
F

2
𝑘 .

Table
10:

K
now

n
infinite
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ilies

ofm
ultivariate

quadratic
A

PN
functions

over
F

2
𝑛

(2/2).
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