Cube-like attack against <u>nonce-misused</u> Ascon

Journées Codage & Cryptographie (JC2) 2022

Jules Baudrin

joint work with Anne Canteaut & Léo Perrin (Inria, COSMIQ)

April 2022

Contact: jules.baudrin@inria.fr

A few words about the context

Lightweight symmetric cryptography

- Internet of Things: new usages, new security needs
- Lightweightness: "Best" trade-off between size, speed and security according to future usages
- Many different usages = many different constraints (hardware, software, which measure units...)

International standardization

- CAESAR competition (2013 2019)
- Current NIST standardization process (2018)
- Our target: Ascon, one of the CAESAR winners, one of the finalists in the NIST LWC process

- Authenticated encryption:

confidentiality/authenticity/integrity all-in-one in a single primitive

- Two main steps in the design:
 - A choice of a **mode of operation**: abstract construction with generic functions
 - A choice of an **instantiation** of the mode with carefully-chosen primitives
- In the case of Ascon:
 - Duplex Sponge mode
 - **bijection** $p \colon \mathbb{F}_2^{320} \to \mathbb{F}_2^{320}$: main object studied here

The permutation

A confusion/diffusion structure... studied algebraically

 $y_0 = x_4 x_1 + x_3 + x_2 x_1 + x_2 + x_1 x_0 + x_1 + x_0$ $y_1 = x_4 + x_3x_2 + x_3x_1 + x_3 + x_2x_1 + x_2 + x_1 + x_0$ $y_2 = x_4 x_3 + x_4 + x_2 + x_1 + 1$ $y_3 = x_4 x_0 + x_4 + x_3 x_0 + x_3 + x_2 + x_1 + x_0$ $y_4 = x_4 x_1 + x_4 + x_3 + x_1 x_0 + x_1$

Algebraic Normal Form (ANF) of the S-box

$$\begin{split} X_0 &= X_0 \oplus (X_0 \implies 19) \oplus (X_0 \implies 28) \\ X_1 &= X_1 \oplus (X_1 \implies 61) \oplus (X_1 \implies 39) \\ X_2 &= X_2 \oplus (X_2 \implies 1) \oplus (X_2 \implies 6) \\ X_3 &= X_3 \oplus (X_3 \implies 10) \oplus (X_3 \implies 17) \\ X_4 &= X_4 \oplus (X_4 \implies 7) \oplus (X_4 \implies 41) \end{split}$$

ANF of the linear layer p_{I}

Slimplified setting

- Many reuse of the same (k, N) pair
- Chosen-plaintexts attack
- If the whole state is recovered, confidentiality is compromised

Cube attack principle

 f_j denotes the *j*th output coordinate. Instead of $f_j \in \mathbb{F}_2[v_0, \dots, v_{63}, a_0, \dots, d_{63}]$, we separate public variables from secret variables:

 $f_j \in \mathbb{F}_2[\alpha_0, \cdots, \alpha_{63}][\nu_0, \cdots, \nu_{63}] \quad f_j = \sum_{(u_0, \cdots, u_{63}) \in \mathbb{F}_2^{64}} \alpha_{u, j} \left(\prod_{i=0}^{63} \nu_i^{u_i}\right)$

where $\alpha_{u, j} \in \mathbb{F}_2[\alpha_0, \cdots, \alpha_{63}]$.

Cube attack principle

 f_j denotes the *j*th output coordinate. Instead of $f_j \in \mathbb{F}_2[v_0, \dots, v_{63}, a_0, \dots, d_{63}]$, we separate public variables from secret variables:

 $f_j \in \mathbb{F}_2[\alpha_0, \cdots, \alpha_{63}][v_0, \cdots, v_{63}] \quad f_j = \sum_{(u_0, \cdots, u_{63}) \in \mathbb{F}_2^{64}} \alpha_{u, j} \left(\prod_{i=0}^{63} v_i^{u_i}\right)$ where $\alpha_{u, j} \in \mathbb{F}_2[\alpha_0, \cdots, \alpha_{63}].$

Polynomial **expression** of $\alpha_{u, j}$ + **value** of $\alpha_{u, j}$ = equation in the unknown variables \simeq recovery of some information (if easily-solvable)

0. Select a monomial (**cube**) in f_i and target its coefficient: $\alpha_{u,j}$

- 1. Offline phase: recovery of the algebraic expression of $\alpha_{u,j}$
- 2. Online phase: recovery of the value of $\alpha_{u,j}$:

 $\alpha_{u,j} = \sum_{v \preccurlyeq u} f(v)$ (chosen queries).

Problem 0: impossible access to the full ANF

 $p \circ \cdots \circ p$: 6 iterations, 256 unknown variables.

S-box layer squares the number of terms. Linear layer triples it. **Impossible**.

Problem 0: impossible access to the full ANF

 $p \circ \cdots \circ p$: 6 iterations, 256 unknown variables.

S-box layer squares the number of terms. Linear layer triples it. **Impossible**.

Pb. 1: impossible access to a given $\alpha_{u, j}$ expression Finding $\alpha_{u, j}$ for fixed u and j. Too many combinatorial possibilities to track!

Problem 0: impossible access to the full ANF $p \circ \cdots \circ p$: 6 iterations, 256 unknown variables. S-box layer squares the number of terms. Linear layer triples it. **Impossible**.

Pb. 1: impossible access to a given $\alpha_{u, j}$ expression Finding $\alpha_{u, j}$ for fixed u and j. Too many combinatorial possibilities to track!

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Problem 0: impossible access to the full ANF $p \circ \cdots \circ p$: 6 iterations, 256 unknown variables. S-box layer squares the number of terms. Linear layer triples it. **Impossible**.

Pb. 1: impossible access to a given $\alpha_{u,j}$ expression Finding $\alpha_{u,j}$ for fixed u and j. Too many combinatorial possibilities to track!

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Pb. 2: Finding exploitable $\alpha_{u, j}$

We need to be able to solve the system!

Problem 0: impossible access to the full ANF $p \circ \cdots \circ p$: 6 iterations, 256 unknown variables. S-box layer squares the number of terms. Linear layer triples it. **Impossible**.

Pb. 1: impossible access to a given $\alpha_{u, j}$ expression Finding $\alpha_{u, j}$ for fixed u and j. Too many combinatorial possibilities to track!

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Pb. 2: Finding exploitable $\alpha_{u,j}$

We need to be able to solve the system!

► Highest-degree terms $(2^{t-1} \text{ at round } t)$ are easier to study. **Strong constraint**: products of two former highest-degree terms. $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times T = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

- Fewer combinatorial choices
- Known structure of α_{u} : sum of products of former coefficients

Highest-degree terms in practice

For r = 6

- Still costly to recover the polynomial expressions: computations have to be done round after round.
- The polynomials look horrible!
- Need for a cheaper and easier recovery: conditional cubes [HWX⁺17, LDW17]

Conditional cubes

- We look for α_{u} with a simple divisor: β_{0} .
- Even without the full knowledge of α_u we know that: $\alpha_u = 1 \implies \beta_0 = 1.$
- If β_0 is linear, the **system** will be **linear**.

Conditional cubes

- We look for α_{u} with a simple divisor: β_{0} .
- Even without the full knowledge of α_u we know that: $\alpha_u = 1 \implies \beta_0 = 1.$
- If β_0 is linear, the **system** will be **linear**.

Conditional cubes

- We look for α_u with a simple divisor: β_0 .
- Even without the full knowledge of α_u we know that: $\alpha_u = 1 \implies \beta_0 = 1.$
- If β_0 is linear, the **system** will be **linear**.

Choice of the cube: forcing some linear divisors

Study of the first rounds: Column C_0 after the first S-box layer

$$\begin{array}{c}
 \underbrace{ \begin{array}{c} v_{0} \\ a_{0} \\ b_{0} \\ c_{0} \\ d_{0} \end{array}}_{S_{1}} \overrightarrow{S_{1}} \underbrace{ \begin{array}{c} (a_{0}+1)v_{0}+\cdots \\ v_{0}+\cdots \\ \hline v_{0}+\cdots \\ \hline (c_{0}+d_{0}+1)v_{0}+\cdots \\ \hline a_{0}v_{0}+\cdots \\ \hline a_{0}v_{0}+\cdots \end{array}}_{C_{0}+d_{0}+1 \\ \leftarrow \gamma_{0} := c_{0}+d_{0}+1 \\ \hline \end{array}$$

 $\alpha_{u, j} = \beta_0(...) + \gamma_0(...)$ for all output coordinate indices $j \in [0, 63]$.

Choice of the cube: forcing some linear divisors

Study of the first rounds: Column C_0 after the first S-box layer

$$\begin{array}{c}
 \hline v_{0} \\
 \hline a_{0} \\
 b_{0} \\
 c_{0} \\
 d_{0}
\end{array} \xrightarrow{\bullet} \overline{S_{1}} \underbrace{ \begin{array}{c}
 (a_{0}+1)v_{0}+\cdots \\
 \hline v_{0}+\cdots \\
 \hline \vdots \\
 \hline (c_{0}+d_{0}+1)v_{0}+\cdots \\
 \hline a_{0}v_{0}+\cdots \\
 \hline \end{array} \xrightarrow{\bullet} \beta_{0} := a_{0}+1 \\
 \hline \phi_{0} := c_{0}+d_{0}+1$$

 $\alpha_{u, j} = \beta_0(...) + \gamma_0(...)$ for all output coordinate indices $j \in [0, 63]$.

- $(\alpha_{u,0}, \cdots, \alpha_{u,63}) \neq (0, \cdots, 0) \implies \beta_0 = 1 \text{ or } \gamma_0 = 1$
- In practice, reciprocal also true! $\forall j, \alpha_{u,j} = 0 \implies \beta_0 = 0$ and $\gamma_0 = 0$

Choice of the cube: forcing some linear divisors

Study of the first rounds: Column C_0 after the first S-box layer

 $\alpha_{u, j} = \beta_0(...) + \gamma_0(...)$ for all output coordinate indices $j \in [0, 63]$.

- $(\alpha_{u,0}, \cdots, \alpha_{u,63}) \neq (0, \cdots, 0) \implies \beta_0 = 1 \text{ or } \gamma_0 = 1$
- In practice, reciprocal also true! $\forall j, \alpha_{u,j} = 0 \implies \beta_0 = 0$ and $\gamma_0 = 0$

An effective attack in 3 steps

- 1. Conditional cube attack: recovery of all $c_i + d_i + 1$ and some a_i
- 2. Cube attack: recovery of remaining a_i (adaptive step)
- 3. Cube attack: recovery of all *b_i* and *c_i* (target **sub-leading** terms)

Conclusion

- Looking at diffusion through the ANF.
- Effective full-state recovery on the full 6-round encryption: 2^{40} in time and data.
- Does not threaten Ascon (and Isap) directly.
- Good reminder that a nonce is not a constant!
- Importance of studying misused ciphers.

Main questions

- Can theoretical arguments underpin the "in practice it works" parts of the study?
- Are 6 rounds enough for encryption? (No cube attacks seem feasible on 7 rounds)

Conclusion

- Looking at diffusion through the ANF.
- Effective full-state recovery on the full 6-round encryption: 2^{40} in time and data.
- Does not threaten Ascon (and Isap) directly.
- Good reminder that a nonce is not a constant!
- Importance of studying misused ciphers.

Main questions

- Can theoretical arguments underpin the "in practice it works" parts of the study?
- Are 6 rounds enough for encryption? (No cube attacks seem feasible on 7 rounds)

Thank you for your attention! 12/12

Bibliography

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon v1.2.

Technical report, National Institute of Standards and Technology, 2019. https://csrc.nist.gov/Projects/lightweight-cryptography/finalists.

Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao.

Conditional cube attack on reduced-round Keccak sponge function. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, *EUROCRYPT 2017, Part II*, volume 10211 of *LNCS*, pages 259–288, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack on round-reduced ASCON. *IACR Trans. Symm. Cryptol.*, 2017(1):175–202, 2017.