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A few words about the context

Lightweight symmetric cryptography
- Internet of Things: new usages, new security needs
- Lightweightness: “Best” trade-off between size, speed and
security according to future usages

- Many different usages = many different constraints
(hardware, software, which measure units...)

International standardization
- CAESAR competition (2013 – 2019)
- Current NIST standardization process (2018 – )

▶ Our target: Ascon, one of the CAESAR winners, one of the
finalists in the NIST LWC process



3/12

Ascon [DEMS19]

- Authenticated encryption:
confidentiality/authenticity/integrity all-in-one in a single
primitive

- Two main steps in the design:
- A choice of a mode of operation: abstract construction
with generic functions

- A choice of an instantiation of the mode with
carefully-chosen primitives

- In the case of Ascon:
- Duplex Sponge mode
- bijection p : F320

2 → F320
2 : main object studied here
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The permutation

A confusion/diffusion structure. . .

p = pL ◦ pS ◦ pC

. . . studied algebraically

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0
y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0
y2 = x4x3 + x4 + x2 + x1 + 1
y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0
y4 = x4x1 + x4 + x3 + x1x0 + x1

Algebraic Normal Form (ANF) of the
S-box

X0 = X0 ⊕ (X0 ≫ 19) ⊕ (X0 ≫ 28)
X1 = X1 ⊕ (X1 ≫ 61) ⊕ (X1 ≫ 39)
X2 = X2 ⊕ (X2 ≫ 1) ⊕ (X2 ≫ 6)
X3 = X3 ⊕ (X3 ≫ 10) ⊕ (X3 ≫ 17)
X4 = X4 ⊕ (X4 ≫ 7) ⊕ (X4 ≫ 41)

ANF of the linear layer pL

The state

X4
X3
X2
X1
X0

The constant addition pC

X4
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X2

X1

X0

The substitution layer pS
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The nonce-misuse scenario

Slimplified setting

v0, · · · , v63

a0, · · · ,a63
b0, · · · ,b63
c0, · · · ,c63
d0, · · · ,d63

Unknown internal state

Chosen external state

⋆After initialization

IV∥k∥N

Initialization

P0 C0

p6

⋆
Encryption

0∗ C1

- Many reuse of the same (k,N) pair
- Chosen-plaintexts attack
- If the whole state is recovered, confidentiality is compro-
mised
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Cube attack principle

fj denotes the jth output coordinate. Instead of
fj ∈ F2[v0, · · · , v63,a0, · · · ,d63], we separate public variables
from secret variables:

fj ∈ F2[a0, · · · ,d63][v0, · · · , v63] fj =
∑

(u0,··· ,u63)∈F64
2

αu, j

(
63∏
i=0

vi ui

)
where αu, j ∈ F2[a0, · · · ,d63].

Polynomial expression of αu, j + value of αu, j =
equation in the unknown variables ≃

recovery of some information (if easily-solvable)

0. Select a monomial (cube) in fj and target its coefficient: αu, j
1. Offline phase: recovery of the algebraic expression of αu, j
2. Online phase: recovery of the value of αu, j :

αu, j =
∑
v≼u

f (v) (chosen queries).
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Recovery of the polynomial: main problems
Problem 0: impossible access to the full ANF
p ◦ · · · ◦ p: 6 iterations, 256 unknown variables.
S-box layer squares the number of terms. Linear layer triples it.
Impossible.

Pb. 1: impossible access to a given αu, j expression
Finding αu, j for fixed u and j. Too many combinatorial
possibilities to track!

Pb. 2: Finding exploitable αu, j

We need to be able to solve the system!
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Highest-degree terms in theory

Strong constraint: products of two former highest-degree terms.
v0v1 = v0 × v1 =�����(v0v1)× 1 =������

(v0v1)× v0 =������
(v0v1)× v1 =(((((((

(v0v1)× (v0v1)



8/12

Highest-degree terms in theory
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Highest-degree terms in theory
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- Fewer combinatorial choices
- Known structure of αu: sum of products of former coefficients

Strong constraint: products of two former highest-degree terms.
v0v1 = v0 × v1 =�����(v0v1)× 1 =������
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Highest-degree terms in practice
For r = 6

- Still costly to recover the polynomial expressions:
computations have to be done round after round.

- The polynomials look horrible!

▶ Need for a cheaper and easier recovery:
conditional cubes [HWX+17, LDW17]
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Conditional cubes
- We look for αu with a simple divisor: β0.
- Even without the full knowledge of αu we know that:
αu = 1 =⇒ β0 = 1.

- If β0 is linear, the system will be linear.
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Choice of the cube: forcing some linear divisors

Study of the first rounds: Column C0 after the first S-box layer

v0
a0
b0
c0
d0

(a0 + 1)v0 + · · ·
v0 + · · ·

· · ·
(c0 + d0 + 1)v0 + · · ·

a0v0+ · · ·
γ0 := c0 + d0 + 1

β0 := a0 + 1

S1

αu, j = β0(. . . ) + γ0(. . . ) for all output coordinate indices j ∈ J0, 63K.

-
(
αu,0, · · · , αu,63

)
̸= (0, · · · , 0) =⇒ β0 = 1 or γ0 = 1

- In practice, reciprocal also true! ∀ j, αu, j = 0 =⇒ β0 = 0 and γ0 = 0

An effective attack in 3 steps
1. Conditional cube attack: recovery of all ci + di + 1 and some ai

2. Cube attack: recovery of remaining ai (adaptive step)
3. Cube attack: recovery of all bi and ci (target sub-leading terms)
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Conclusion

- Looking at diffusion through the ANF.
- Effective full-state recovery on the full 6-round encryption:
240 in time and data.

- Does not threaten Ascon (and Isap) directly.
- Good reminder that a nonce is not a constant!
- Importance of studying misused ciphers.

Main questions
▶ Can theoretical arguments underpin the “in practice it

works” parts of the study?
▶ Are 6 rounds enough for encryption? (No cube attacks

seem feasible on 7 rounds)
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- Importance of studying misused ciphers.

Main questions
▶ Can theoretical arguments underpin the “in practice it

works” parts of the study?
▶ Are 6 rounds enough for encryption? (No cube attacks

seem feasible on 7 rounds)

Thank you for
your attention!
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