Commutative Cryptanalysis Made Practical

Jules Baudrin jules.baudrin@inria.fr Inria, Paris, France Ingia-

Joint work with P. Felke, G. Leander, P. Neumann, L. Perrin & L. Stennes.

Séminaire Crypto, UVSQ, 2023

Plaintext *x* ∈ *X*, ciphertext *y* ∈ *Y*, key $k \in K$.

$$
X=\mathbb{F}_2^{n_X}, Y=\mathbb{F}_2^{n_Y}, K=\mathbb{F}_2^{n_K}.
$$

Symmetric cryptography : a bit of context

Plaintext $x \in X$, ciphertext $y \in Y$, key $k \in K$.

$$
X=\mathbb{F}_2^{n_X}, Y=\mathbb{F}_2^{n_Y}, K=\mathbb{F}_2^{n_K}.
$$

Block cipher

A family $(E_k)_{k \in K}$, where: $\forall k \in K$, $E_k: X \rightarrow Y$ is bijective.

 $(\implies n_X = n_Y)$

Symmetric cryptography : a bit of context

Plaintext $x \in X$, ciphertext $y \in Y$, key $k \in K$.

$$
X=\mathbb{F}_2^{n_X}, Y=\mathbb{F}_2^{n_Y}, K=\mathbb{F}_2^{n_K}.
$$

Block cipher

A family $(E_k)_{k \in K}$, where: $\forall k \in K$, $E_k: X \rightarrow Y$ is bijective.

 $(\implies n_X = n_Y)$

 \implies Shared key for encryption & decryption.

Symmetric cryptography : a bit of context

Substitution Permutation Network (SPN)

- Subclass of block ciphers
- Round function, a 3-step process:
	- Local non-linear layer,
	- global linear layer,
	- and key/constant addition
- Repeat *r* times

Security

- $-$ Modes $+$ block cipher $=$ confidentiality, integrity, authenticity.
- If the block cipher is secure.

Security

- $-$ Modes $+$ block cipher $=$ confidentiality, integrity, authenticity.
- If the block cipher is secure.

Indistinguishability

 $[k \stackrel{\$}{\leftarrow} K, \quad E_k]$ indistinguishable from $[\text{ random } F \stackrel{\$}{\leftarrow} \text{Bij}(\mathbb{F}_2^{n_x}, \mathbb{F}_2^{n_y})].$

Security

- $-$ Modes $+$ block cipher $=$ confidentiality, integrity, authenticity.
- If the block cipher is secure.

Indistinguishability

 $[k \stackrel{\$}{\leftarrow} K, \quad E_k]$ indistinguishable from $[\text{ random } F \stackrel{\$}{\leftarrow} \text{Bij}(\mathbb{F}_2^{n_x}, \mathbb{F}_2^{n_y})].$

Security

- $-$ Modes $+$ block cipher $=$ confidentiality, integrity, authenticity.
- If the block cipher is secure.

Indistinguishability

 $[k \stackrel{\$}{\leftarrow} K, \quad E_k]$ indistinguishable from $[\text{ random } F \stackrel{\$}{\leftarrow} \text{Bij}(\mathbb{F}_2^{n_x}, \mathbb{F}_2^{n_y})].$

Differential distinguisher

Find α , β st. for many k , $E_k(x + \alpha) = E_k(x) + \beta$ has many solutions *x*.

Security

- $-$ Modes $+$ block cipher $=$ confidentiality, integrity, authenticity.
- If the block cipher is secure.

Indistinguishability

 $[k \stackrel{\$}{\leftarrow} K, \quad E_k]$ indistinguishable from $[\text{ random } F \stackrel{\$}{\leftarrow} \text{Bij}(\mathbb{F}_2^{n_x}, \mathbb{F}_2^{n_y})].$

Differential distinguisher

Find α , β st. for many k , $E_k(x + \alpha) = E_k(x) + \beta$ has many solutions *x*.

Random permutation *F*

 $F(x + \alpha) + F(x) = \beta$ with proba 2^{-*n*}.

Some security arguments for an SPN

Substitution Permutation Network (SPN)

- Sbox layer, $\rightsquigarrow S(x + \alpha) = S(x) + \beta$ must have few solutions for all α, β
- Linear layer, \rightsquigarrow must diffuse a lot
- Key addition ⇝ hard to handle. . .

Some security arguments for an SPN

Substitution Permutation Network (SPN)

- Sbox layer, $\rightsquigarrow S(x + \alpha) = S(x) + \beta$ must have few solutions for all α, β
- Linear layer, \rightsquigarrow must diffuse a lot
- $-$ Key addition \rightsquigarrow hard to handle...

As a designer

 $\textsf{Estimate}\ \mathbb{E}_{\kappa\xleftarrow{\textbf{s}}\ \kappa}(\#\ \{\textsf{x}\ \text{st.}\ E_{\kappa}(\textsf{x}+\alpha)=E_{\kappa}(\textsf{x})+\beta\})\ \textsf{and} \ \textsf{assume representation} \},$

where $A(x) = L_A(x) + c_A$, $B(x) = L_B(x) + c_B$

where $A(x) = L_A(x) + c_A$, $B(x) = L_B(x) + c_B$

A tempting desire of unification

Mathematically elegant, better understanding & new attacks

A 20-year-old idea [Wagner, FSE 2004]

Commutative diagram cryptanalysis: not so fruitful¹ since.

¹ to the best of our knowledge...

Commutative (diagram) cryptanalysis

In this talk

[Affine commutation with](#page-20-0) **probability 1**: theory + practice

A **[surprising differential](#page-20-0)** interpretation

[A few words about the](#page-20-0) **probabilistic case**

Commutative cryptanalysis principle

Goal

Find **bijective affine** *A, B* st. for many *k*: $\boxed{E_k \circ A = B \circ E_k}$ (all *x* are solutions)

Commutative cryptanalysis principle

Goal

Find **bijective affine** *A, B* st. for many *k*: $\boxed{E_k \circ A = B \circ E_k}$ (all *x* are solutions)

$$
E = R_{r-1} \circ \cdots \circ R_1 \circ R_0
$$

Goal

Find **bijective affine** A, B st. for many $k: |E_k \circ A = B \circ E_k|$ (all *x* are solutions)

$$
E = R_{r-1} \circ \cdots \circ R_1 \circ R_0
$$

Sufficient condition for **iterated** constructions

There exist A_0, \cdots, A_r st. for all $i | A_{i+1} \circ R_i = R_i \circ A_i |$.

Goal

Find **bijective affine** *A, B* st. for many $k: |E_k \circ A = B \circ E_k|$ (all *x* are solutions)

$$
E = R_{r-1} \circ \cdots \circ R_1 \circ R_0
$$

Sufficient condition for **iterated** constructions There exist A_0, \cdots, A_r st. for all $i | A_{i+1} \circ R_i = R_i \circ A_i |$.

$$
E \circ A_0 = R_{r-1} \circ \cdots \circ (R_0 \circ A_0)
$$

= $R_{r-1} \circ \cdots \circ R_1 \circ (A_1 \circ R_0)$
= \cdots
= $A_r \circ R_{r-1} \circ \cdots \circ R_0$
= $A_r \circ E$

Goal

Find **bijective affine** A, *B* st. for many $k: |E_k \circ A = B \circ E_k|$ (all *x* are solutions)

 $F = R_{r-1} \circ \cdots \circ R_1 \circ R_0$

Sufficient condition for **iterated** constructions There exist A_0, \cdots, A_r st. for all $i | A_{i+1} \circ R_i = R_i \circ A_i |$.

 $E \circ A_0 = R_{r-1} \circ \cdots \circ (R_0 \circ A_0)$ $= R_{r-1} \circ \cdots \circ R_1 \circ (A_1 \circ R_0)$ $= \cdots$ $= A_r \circ R_{r-1} \circ \cdots \circ R_0$ $= A_r \circ F$ $x_0 \longrightarrow x_1 \longrightarrow x_{r-1} \longrightarrow \frac{R_{r-1}}{r} E(x_0)$ *z*₀ *→ z*₁ -----> *z*_{*r*−1} _{*R*_{*r*−1} *E*(*z*₀)} A_0 A_1 \circlearrowleft A_{r-1} A_r \implies **round-by-round** and **layer-by-layer** studies.

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $A := A \times A \times \cdots \times A$, where $A : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $A := A \times A \times \cdots \times A$, where $A : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $A := A \times A \times \cdots \times A$, where $A : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

Constant addition

 $T_c(x) := x + c$, $A(x) := L_A(x) + c_A$.

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $A := A \times A \times \cdots \times A$, where $A : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

Constant addition

 $T_c(x) := x + c$, $A(x) := L_A(x) + c_A$.

 $A \circ T_c(x) = L_A(x) + L_A(c) + c_A$ and $T_c \circ A(x) = L_A(x) + c + c_A$

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $A := A \times A \times \cdots \times A$, where $A : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

Constant addition

 $T_c(x) := x + c$, $A(x) := L_A(x) + c_A$.

 $A \circ T_c(x) = L_A(x) + L_A(c) + c_A$ and $T_c \circ A(x) = L_A(x) + c + c_A$ $A \circ T_c = T_c \circ A \iff \boxed{c \in \text{Fix}(L_A)}$.

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $A := A \times A \times \cdots \times A$, where $A : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

Constant addition

$$
T_C(x) := x + c, \quad A(x) := L_A(x) + c_A.
$$

$$
A \circ T_{C}(x) = L_{A}(x) + L_{A}(C) + c_{A} \quad \text{and} \quad T_{C} \circ A(x) = L_{A}(x) + c + c_{A}
$$

$$
A \circ T_{C} = T_{C} \circ A \iff \boxed{C \in \text{Fix}(L_{A})}.
$$

Linear layer

Let $\mathcal{L} = (\mathcal{L}_{ii})$ be an invertible block matrix with *m*-size blocks \mathcal{L}_{ii} . $\mathcal{L} \circ \mathcal{A} = \mathcal{A} \circ \mathcal{L} \iff \boxed{\mathcal{L}_{ij} \circ L_{\mathcal{A}} = L_{\mathcal{A}} \circ \mathcal{L}_{ij}}$ for all *i*, *j* and $c_{\mathcal{A}} \in \text{Fix}(\mathcal{L})$.

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

p = *AK* ◦ *AC* ◦ *MC* ◦ *PC* ◦ *S*

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$

p = *AK* ◦ *AC* ◦ *MC* ◦ *PC* ◦ *S*

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$

Cells permutation Parallel mapping A : free commutation.

p = *AK* ◦ *AC* ◦ *MC* ◦ *PC* ◦ *S*

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$

Cells permutation Parallel mapping $\mathcal A$: free commutation.

Linear layer

-
$$
M_{ij} \circ L_A = L_A \circ M_{ij} \forall i, j.
$$

 B ut $M_{ij} \in \{0_4, \text{Id}_4\}.$ $-c_A \in \text{Fix}(\mathcal{L}).$ But $M(c, c, c, c) = (c, c, c, c).$

 \implies Any A would work.

p = *AK* ◦ *AC* ◦ *MC* ◦ *PC* ◦ *S*

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$

Cells permutation Parallel mapping A : free commutation.

Linear layer

- $-M_{ii} \circ L_A = L_A \circ M_{ii} \forall i,j.$ But $M_{ii} \in \{0_4, \text{Id}_A\}.$
-
- $-c_A \in \text{Fix}(\mathcal{L}).$ But $M(c, c, c, c) = (c, c, c, c).$

 \implies Any A would work.

Constants

 $Fix(L_{A*}) = \langle 0x2, 0x5, 0x8 \rangle$. \rightsquigarrow Consider **variants** with modified constants.

Weak-keys: 1-bit condition per nibble $\rightsquigarrow 2^{96}$ out of $2^{128}.$

Recap

 $A^* \circ P = P \circ A^*$ for every layer P (given weak constants/keys).

 $A^* \circ E_k = E_k \circ A^*$ for 1 out of 2³² keys *k*.

Recap

 $A^* \circ P = P \circ A^*$ for every layer P (given weak constants/keys). $A^* \circ E_k = E_k \circ A^*$ for 1 out of 2³² keys *k*.

$$
x_0 \xrightarrow{R_0} x_1 \xrightarrow{...} x_{r-1} \xrightarrow{R_{r-1}} E(x_0)
$$

\n
$$
\downarrow \lambda^* \qquad \qquad \downarrow \lambda^* \qquad \qquad \downarrow \lambda^*
$$

\n
$$
z_0 \xrightarrow{R_0} z_1 \xrightarrow{...} z_{r-1} \xrightarrow{R_{r-1}} E(z_0)
$$

$$
\mathbb{P}_{X \xleftarrow{\$} X} (\underbrace{\mathcal{A}^* \to \mathcal{A}^* \to \cdots \to \mathcal{A}^*}_{r \text{ times}}) = 1, \text{ for any } r!
$$

 $\Delta_i := X_i \oplus Z_i = X_i \oplus \mathcal{A}^*(X_i)$

$$
x_0 \xrightarrow{R_0} x_1 \xrightarrow{R_{r-1}} x_{r-1} \xrightarrow{R_{r-1}} E(x_0)
$$

\n
$$
\Delta_0 \downarrow \mathcal{A}^* \qquad \Delta_1 \downarrow \mathcal{A}^* \qquad \Delta_{r-1} \downarrow \mathcal{A}^* \qquad \Delta_r \downarrow \mathcal{A}^*
$$

\n
$$
Z_0 \xrightarrow[R_0]{R_0} Z_1 \xrightarrow{R_{r-1}} Z_{r-1} \xrightarrow[R_{r-1}]{R_{r-1}} E(Z_0)
$$

$$
\Delta_i := x_i \oplus z_i = x_i \oplus \mathcal{A}^*(x_i)
$$

Surprising differential interpretation $\delta = 0 \text{xf}, \quad \Delta = \delta^{\otimes 16}, \quad \delta' = 0 \text{xa}, \quad \Delta' = \delta'^{\otimes 16}.$

$$
x_0 \xrightarrow{R_0} x_1 \xrightarrow{R_{r-1}} x_{r-1} \xrightarrow{R_{r-1}} E(x_0)
$$

\n
$$
\Delta_0 \downarrow \mathcal{A}^* \qquad \Delta_1 \downarrow \mathcal{A}^* \qquad \Delta_{r-1} \downarrow \mathcal{A}^* \qquad \Delta_r \downarrow \mathcal{A}^*
$$

\n
$$
Z_0 \xrightarrow[R_0]{R_0} Z_1 \xrightarrow{R_{r-1}} Z_{r-1} \xrightarrow[R_{r-1}]{R_{r-1}} E(Z_0)
$$

$$
\Delta_i := x_i \oplus z_i = x_i \oplus \mathcal{A}^*(x_i)
$$

Surprising differential interpretation $\delta = 0 \text{xf}, \quad \Delta = \delta^{\otimes 16}, \quad \delta' = 0 \text{xa}, \quad \Delta' = \delta'^{\otimes 16}.$

$$
\mathbb{P}_{X \xleftarrow{\mathbf{S}}} (A^*(X) = X + \delta) = \frac{1}{2} \quad \mathbb{P}_{X \xleftarrow{\mathbf{S}}} (A^*(X) = X + \delta') = \frac{1}{2}.
$$

 $\forall x, \quad x + A^*(x) \in {\delta, \delta'}\}^{16}.$

$$
x_0 \xrightarrow{R_0} x_1 \xrightarrow{R_{r-1}} x_{r-1} \xrightarrow{R_{r-1}} E(x_0)
$$

\n
$$
\Delta_0 \downarrow \mathcal{A}^* \qquad \Delta_1 \downarrow \mathcal{A}^* \qquad \Delta_{r-1} \downarrow \mathcal{A}^* \qquad \Delta_r \downarrow \mathcal{A}^*
$$

\n
$$
Z_0 \xrightarrow[R_0]{R_0} Z_1 \xrightarrow{R_{r-1}} Z_{r-1} \xrightarrow[R_{r-1}]{R_{r-1}} E(Z_0)
$$

$$
\Delta_i := x_i \oplus z_i = x_i \oplus \mathcal{A}^*(x_i)
$$

Surprising differential interpretation $\delta = 0 \text{xf}, \quad \Delta = \delta^{\otimes 16}, \quad \delta' = 0 \text{xa}, \quad \Delta' = \delta'^{\otimes 16}.$

$$
\begin{aligned} &\quad - \mathbb{P}_{\chi \xleftarrow{\mathbf{S}} X} \left(A^*(x) = x + \delta \right) = \frac{1}{2} \quad \mathbb{P}_{\chi \xleftarrow{\mathbf{S}} X} \left(A^*(x) = x + \delta' \right) = \frac{1}{2}. \\ &\quad - \forall x, \quad x + A^*(x) \in \{ \delta, \delta' \}^{16}. \end{aligned}
$$

$$
\Delta \xrightarrow{2^{-16}} \mathcal{A}^{\star} \xrightarrow{1} \cdots \xrightarrow{1} \mathcal{A}^{\star} \xrightarrow{2^{-16}} \Delta
$$

Weak-key Differential interpretation

Recap

If *k* is **weak**:

- $\mathbb{P}_{\chi^{\mathcal{S}} \to \chi} (\Delta \to \Delta') = 2^{-32}$ for any $\Delta, \Delta' \in \{\delta, \delta'\}^{16}.$
- $\mathbb{P}_{\chi^{\mathbf{5}} \to \chi}$ (Δ $\to \{\delta, \delta'\}^{16}$) = 2⁻¹⁶ for any Δ ∈ $\{\delta, \delta'\}^{16}$.
- For any number of rounds, activate all S-boxes.

Weak-key Differential interpretation

Recap

If *k* is **weak**:

- $\mathbb{P}_{\chi^{\mathcal{S}} \to \chi} (\Delta \to \Delta') = 2^{-32}$ for any $\Delta, \Delta' \in \{\delta, \delta'\}^{16}.$
- $\mathbb{P}_{\chi^{\mathbf{5}} \to \chi}$ (Δ $\to \{\delta, \delta'\}^{16}$) = 2⁻¹⁶ for any Δ ∈ $\{\delta, \delta'\}^{16}$.
- For any number of rounds, activate all S-boxes.

Standard case : quite low P*^k*,*^x*

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Weak-key Differential interpretation

Recap

If *k* is **weak**:

-
$$
\mathbb{P}_{\chi\xleftarrow{\mathcal{S}}\chi}(\Delta \to \Delta') = 2^{-32}
$$
 for any $\Delta, \Delta' \in \{\delta, \delta'\}^{16}$.

-
$$
\mathbb{P}_{\chi\xi}
$$
 $(\Delta \to {\delta, \delta'}^{\text{16}}) = 2^{-16}$ for any $\Delta \in {\delta, \delta'}^{\text{16}}$.

- For any number of rounds, activate all S-boxes.

Standard case : quite low P*^k*,*^x*

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Weak-key Differential interpretation, part 2

The designers' work

 $\textsf{Estimate } \mathbb{E}_{\kappa \stackrel{\S}{\leftarrow} \kappa}(\#\left\{ \mathsf{x} \text{ st. } E_{\kappa}(\mathsf{x}+\alpha)=E_{\kappa}(\mathsf{x})+\beta \right\})$ and assume representativeness. Blue curve.

This work

Find non-average keys with easily-distinguishable property. Purple and red curves.

Is it that easy to detect this behavior ?

Yes ! Small demo here.

Constants

 $Fix(\mathcal{L}_{A^*}) = \langle 0x2, 0x5, 0x8 \rangle.$

Weak-keys: 1-bit condition per nibble $\rightsquigarrow 2^{96}$ out of $2^{128}.$

Constants

 $Fix(L_{A^*}) = \langle 0x2, 0x5, 0x8 \rangle.$

Weak-keys: 1-bit condition per nibble $\rightsquigarrow 2^{96}$ out of $2^{128}.$

⇒ "active" S-boxes reduce the key-space.

Constants

 $Fix(L_{A^*}) = \langle 0x2, 0x5, 0x8 \rangle.$

Weak-keys: 1-bit condition per nibble $\rightsquigarrow 2^{96}$ out of $2^{128}.$

⇒ "active" S-boxes reduce the key-space.

$$
\begin{pmatrix}\nA & A & A & A \\
A & A & A & A \\
A & A & A & A \\
A & A & A & A\n\end{pmatrix}\n\rightsquigarrow \widetilde{\mathcal{A}}_i = \begin{pmatrix}\nA^{i_0} & A^{i_4} & A^{i_6} & A^{i_c} \\
A^{i_1} & A^{i_5} & A^{i_6} & A^{i_d} \\
A^{i_2} & A^{i_6} & A^{i_6} & A^{i_6} \\
A^{i_3} & A^{i_7} & A^{i_6} & A^{i_7}\n\end{pmatrix}, \text{ where } A^0 = \text{Id}, A^1 = A
$$

Constants

 $Fix(L_{A^*}) = \langle 0x2, 0x5, 0x8 \rangle.$

Weak-keys: 1-bit condition per nibble $\rightsquigarrow 2^{96}$ out of $2^{128}.$

 \implies "active" S-boxes reduce the key-space.

$$
\begin{pmatrix}\nA & A & A & A \\
A & A & A & A \\
A & A & A & A \\
A & A & A & A\n\end{pmatrix}\n\rightsquigarrow \widetilde{\mathcal{A}}_i = \begin{pmatrix}\nA^{i_0} & A^{i_4} & A^{i_6} & A^{i_c} \\
A^{i_1} & A^{i_5} & A^{i_6} & A^{i_d} \\
A^{i_2} & A^{i_6} & A^{i_6} & A^{i_6} \\
A^{i_3} & A^{i_7} & A^{i_6} & A^{i_7}\n\end{pmatrix}, \text{ where } A^0 = \text{Id}, A^1 = A
$$

New study

- Constants : 1-bit condition if $i_j = 1$ else, 0.
- $-S$ -box: $S \circ A = A \circ S$, $S \circ Id = Id \circ S$
- Cell permutation:

$$
\text{ShiftRows}\begin{pmatrix} X_0 & X_4 & X_8 & X_c \\ X_1 & X_5 & X_9 & X_d \\ X_2 & X_6 & X_9 & X_9 \\ X_3 & X_7 & X_9 & X_7 \end{pmatrix} = \begin{pmatrix} X_0 & X_4 & X_8 & X_c \\ X_5 & X_9 & X_9 & X_1 \\ X_0 & X_8 & X_2 & X_6 \\ X_1 & X_3 & X_7 & X_9 \end{pmatrix}
$$

New pattern

Commutes with S-box layer, cells perm. and weak-constants/weak-key addition.

New pattern

Commutes with S-box layer, cells perm. and weak-constants/weak-key addition.

What about *M* ?

$$
M:=\begin{pmatrix}0&\operatorname{Id}&\operatorname{Id}&\operatorname{Id}\\ \operatorname{Id}&0&\operatorname{Id}&\operatorname{Id}\\ \operatorname{Id}&\operatorname{Id}&0&\operatorname{Id}\\ \operatorname{Id}&\operatorname{Id}&\operatorname{Id}&0\end{pmatrix}
$$

We indeed have $M_{ii} \in \{0, \text{Id}\}\$ and $M(c, c, c, c) = (c, c, c, c)$.

$$
M := \begin{pmatrix} 0 & \text{Id} & \text{Id} & \text{Id} \\ \text{Id} & 0 & \text{Id} & \text{Id} \\ \text{Id} & \text{Id} & 0 & \text{Id} \\ \text{Id} & \text{Id} & \text{Id} & 0 \end{pmatrix}
$$

$$
M:=\begin{pmatrix}0&\operatorname{Id}&\operatorname{Id}&\operatorname{Id}\\ \operatorname{Id}&0&\operatorname{Id}&\operatorname{Id}\\ \operatorname{Id}&\operatorname{Id}&0&\operatorname{Id}\\ \operatorname{Id}&\operatorname{Id}&\operatorname{Id}&0\end{pmatrix}
$$

$$
M\begin{pmatrix} Ax_0 \\ x_1 \\ Ax_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + Ax_2 + x_3 \\ Ax_0 + Ax_2 + x_3 \\ Ax_0 + x_1 + x_3 \\ Ax_0 + x_1 + Ax_2 \end{pmatrix} = \begin{pmatrix} x_1 + L_Ax_2 + x_3 + c_A \\ L_Ax_0 + L_Ax_2 + x_3 \\ L_Ax_0 + x_1 + x_3 + c_A \\ L_Ax_0 + x_1 + L_Ax_2 \end{pmatrix}
$$

(1)

$$
M:=\begin{pmatrix}0&\operatorname{Id}&\operatorname{Id}&\operatorname{Id}\\ \operatorname{Id}&0&\operatorname{Id}&\operatorname{Id}\\ \operatorname{Id}&\operatorname{Id}&0&\operatorname{Id}\\ \operatorname{Id}&\operatorname{Id}&\operatorname{Id}&0\end{pmatrix}
$$

$$
\frac{M}{M} \begin{pmatrix} Ax_0 \\ x_1 \\ Ax_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + Ax_2 + x_3 \\ Ax_0 + Ax_2 + x_3 \\ Ax_0 + x_1 + x_3 \\ Ax_0 + x_1 + Ax_2 \end{pmatrix} = \begin{pmatrix} x_1 + L_A x_2 + x_3 + c_A \\ L_A x_0 + L_A x_2 + x_3 \\ L_A x_0 + x_1 + x_3 + c_A \\ L_A x_0 + x_1 + L_A x_2 \end{pmatrix}
$$
(1)

$$
A \times \text{Id} \times A \times \text{Id} \circ M(x_0, x_1, x_2, x_3) = \begin{pmatrix} A(x_1 + x_2 + x_3) \\ x_0 + x_2 + x_3 \\ A(x_0 + x_1 + x_3) \\ x_0 + x_1 + x_2 \end{pmatrix} = \begin{pmatrix} L_A x_1 + L_A x_2 + L_A x_3 + C_A \\ x_0 + x_2 + x_3 \\ L_A x_0 + L_A x_1 + L_A x_3 + C_A \\ x_0 + x_1 + x_2 \end{pmatrix}
$$
(2)

$$
M := \begin{pmatrix} 0 & \text{Id} & \text{Id} & \text{Id} \\ \text{Id} & 0 & \text{Id} & \text{Id} \\ \text{Id} & \text{Id} & 0 & \text{Id} \\ \text{Id} & \text{Id} & \text{Id} & 0 \end{pmatrix}
$$

$$
\frac{M}{M} \begin{pmatrix} Ax_0 \\ x_1 \\ Ax_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + Ax_2 + x_3 \\ Ax_0 + Ax_2 + x_3 \\ Ax_0 + x_1 + x_3 \\ Ax_0 + x_1 + Ax_2 \end{pmatrix} = \begin{pmatrix} x_1 + L_A x_2 + x_3 + C_A \\ L_A x_0 + L_A x_2 + x_3 \\ L_A x_0 + x_1 + x_3 + C_A \\ L_A x_0 + x_1 + L_A x_2 \end{pmatrix}
$$
(1)

$$
A \times \text{Id} \times A \times \text{Id} \circ M(x_0, x_1, x_2, x_3) = \begin{pmatrix} A(x_1 + x_2 + x_3) \\ x_0 + x_2 + x_3 \\ A(x_0 + x_1 + x_3) \\ x_0 + x_1 + x_2 \end{pmatrix} = \begin{pmatrix} L_A x_1 + L_A x_2 + L_A x_3 + C_A \\ x_0 + x_2 + x_3 \\ L_A x_0 + L_A x_1 + L_A x_3 + C_A \\ x_0 + x_1 + x_2 \end{pmatrix}
$$
(2)

$$
(1) = (2) \iff \begin{pmatrix} L_A x_1 + x_1 + L_A x_3 + x_3 \\ L_A x_0 + x_0 + L_A x_2 + x_2 \\ L_A x_1 + x_1 + L_A x_3 + x_3 \\ L_A x_0 + x_0 + L_A x_2 + x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} L_A + \text{Id}(x_0 + x_2) = 0 \\ (L_A + \text{Id})(x_1 + x_3) = 0 \end{pmatrix}
$$

A bigger weak-key space ? final

Recap

 $A \times$ Id \times *A* \times Id \circ *M*(x_0, x_1, x_2, x_3) = *M* (Ax_0, x_1, Ax_2, x_3) if and only if $x_0 + x_2 \in \text{ker}(L_A + \text{Id})$ and $x_1 + x_3 \in \text{ker}(L_A + \text{Id})$

A bigger weak-key space ? final

Recap

 $A \times \text{Id} \times A \times \text{Id} \circ M(x_0, x_1, x_2, x_3) = M(Ax_0, x_1, Ax_2, x_3)$ if and only if $x_0 + x_2 \in \text{ker}(L_A + \text{Id})$ and $x_1 + x_3 \in \text{ker}(L_A + \text{Id})$

Fact

 $\dim(\ker(L_A + \mathrm{Id})) = 2.$

First probabilistic commutation, first trade-off

$$
\mathbb{P}_{x \stackrel{\$}{\longleftrightarrow} X} (\mathcal{A} \circ \mathcal{M}(x) = \mathcal{M} \circ \mathcal{A}(x)) = \frac{2^2}{2^4} \times \frac{2^2}{2^4} = 2^{-4}.
$$

For $2^{128-2 \times 4} = 2^{120}$ weak keys, $\mathbb{P}_{x \stackrel{\$}{\longleftrightarrow} X} (R \circ \mathcal{M}(x) = \mathcal{M} \circ R(x)) = 2^{-4}.$

A bigger weak-key space ? final

Recap

 $A \times \text{Id} \times A \times \text{Id} \circ M(x_0, x_1, x_2, x_3) = M(Ax_0, x_1, Ax_2, x_3)$ if and only if $x_0 + x_2 \in \text{ker}(L_A + \text{Id})$ and $x_1 + x_3 \in \text{ker}(L_A + \text{Id})$

Fact

 $\dim(\ker(L_A + \mathrm{Id})) = 2.$

First probabilistic commutation, first trade-off

$$
\mathbb{P}_{x \stackrel{\$}{\longleftrightarrow} X} (\mathcal{A} \circ \mathcal{M}(x) = \mathcal{M} \circ \mathcal{A}(x)) = \frac{2^2}{2^4} \times \frac{2^2}{2^4} = 2^{-4}.
$$

For $2^{128 - 2 \times 4} = 2^{120}$ weak keys, $\mathbb{P}_{x \stackrel{\$}{\longleftrightarrow} X} (R \circ \mathcal{M}(x) = \mathcal{M} \circ R(x)) = 2^{-4}.$

A few words about probabilistic commutation

A few words about probabilistic commutation

Probabilistic commutation with different layers Let $p \in [0, 1]$.

- $-$ *A* ∘ *T_k* $\stackrel{p}{=}$ *T_k* ∘ *B* : well-understood.
- $A \circ L \stackrel{p}{=} L \circ B$: manageable for parallel mappings.
- *A S p* = *S B* : 4-bit mappings can be listed exhaustively.

Conclusion

In practice

- Trade-offs: number-of-weak-keys VS probability-of-success.
- Independence of rounds must be supposed ... but often too optimistic.

Further studies

- Algorithm for probabilistic affine-equivalence.
- Study the dependencies.
- Hybridization: *e.g.* commutative-differential ?

Conclusion

In practice

- Trade-offs: number-of-weak-keys VS probability-of-success.
- Independence of rounds must be supposed ... but often too optimistic.

Further studies

- Algorithm for probabilistic affine-equivalence.
- Study the dependencies.
- Hybridization: *e.g.* commutative-differential ?

Standard case : quite low P*^k*,*^x*