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Symmetric cryptography : a bit of context

Plaintext x ∈ X , ciphertext y ∈ Y , key k ∈ K . X = FnX
2 ,Y = FnY

2 , K = FnK
2 .

Block cipher
A family (Ek)k∈K , where: ∀ k ∈ K , Ek : X → Y is bijective.

( =⇒ nX = nY )

k

x yE

y = Ek(x) ⇐⇒ x = (Ek)−1(y)

=⇒ Shared key for encryption & decryption.
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Symmetric cryptography : a bit of context

Substitution Permutation Network (SPN)
- Subclass of block ciphers
- Round function, a 3-step process:

- Local non-linear layer,
- global linear layer,
- and key/constant addition

- Repeat r times
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Round 0 Round 1 Round r − 1

S-box layer Linear layer Key addition layer
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Security goals

Security
- Modes + block cipher = confidentiality, integrity, authenticity.
- If the block cipher is secure.

Indistinguishability
[ k $←− K , Ek ] indistinguishable from [ random F $←− Bij(FnX

2 ,FnY
2 ) ].
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Security goals

Security
- Modes + block cipher = confidentiality, integrity, authenticity.
- If the block cipher is secure.

Indistinguishability
[ k $←− K , Ek ] indistinguishable from [ random F $←− Bij(FnX

2 ,FnY
2 ) ].

Differential distinguisher
Find α, β st. for many k, Ek(x + α) = Ek(x) + β has many solutions x .

Random permutation F
F(x + α) + F(x) = β with proba 2−n.
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Some security arguments for an SPN

Substitution Permutation Network (SPN)
- Sbox layer,⇝ S(x + α) = S(x) + β must have few solutions for all α, β
- Linear layer,⇝must diffuse a lot
- Key addition⇝ hard to handle. . .
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Round 0 Round 1 Round r − 1

S-box layer Linear layer Key addition layer

As a designer
Estimate E

k $←−K
(# {x st. Ek(x + α) = Ek(x) + β}) and assume representativeness.
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Other cryptanalysis techniques

E(x + α) = E(x) + β

≃

k

x yE

α

k

x yE

β
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Other cryptanalysis techniques

E ◦ Tα(x) = Tβ ◦ E(x)

≃

k

x yETα

k

x yE Tβ
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Other cryptanalysis techniques

E ◦ ρi(x) = ρj ◦ E(x)

≃

k

x yEρi

k

x yE ρj
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Other cryptanalysis techniques

E ◦ Tα ◦ ρi(x) = Tβ ◦ ρj ◦ E(x)

≃

k

x yETαρi

k

x yE Tβρj
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Other cryptanalysis techniques

E ◦ TcA ◦ LA(x) = Tcb ◦ LB ◦ E(x).

≃

k

x yETcALA

k

x yE TcBLB

where A(x) = LA(x) + cA,B(x) = LB(x) + cB
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Other cryptanalysis techniques

E ◦ TcA ◦ LA(x) = Tcb ◦ LB ◦ E(x).

≃

k

x yETcALA

k

x yE TcBLB

where A(x) = LA(x) + cA,B(x) = LB(x) + cB

A tempting desire of unification
Mathematically elegant, better understanding & new attacks

A 20-year-old idea [Wagner, FSE 2004]
Commutative diagram cryptanalysis: not so fruitful1 since.

1to the best of our knowledge...
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Commutative (diagram) cryptanalysis

X Y

X ′ Y ′

πi

E

πo

E′

⟲

Linear cryptanalysis

Any commutants [FSE:Wagner04]
Bijective affine commutants [This work]

Differentials π = Id+ δ,
Rotational-(XOR) π = ρ+ δ
Linear commutants π = L+ 0 . . .
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In this talk

Affine commutation with probability 1: theory + practice

A surprising differential interpretation

A few words about the probabilistic case
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Commutative cryptanalysis principle

Goal
Find bijective affine A,B st. for many k: Ek ◦ A = B ◦ Ek (all x are solutions)

E = Rr−1 ◦ · · · ◦ R1 ◦ R0

Sufficient condition for iterated constructions
There exist A0, · · · ,Ar st. for all i Ai+1 ◦ Ri = Ri ◦ Ai .

E ◦ A0 = Rr−1 ◦ · · · ◦ (R0 ◦ A0)

= Rr−1 ◦ · · · ◦ R1 ◦ (A1 ◦ R0)

= · · ·
= Ar ◦ Rr−1 ◦ · · · ◦ R0

= Ar ◦ E

x0 x1 xr−1 E(x0)

z0 z1 zr−1 E(z0)

A0

R0

A1

Rr−1

Ar−1 Ar

R0 Rr−1

⟲ =⇒ round-by-round and layer-by-layer studies.
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Layer-by-layer probability-1 trail

Simplified setting for this presentation
- Commutation only: E ◦ A = A ◦ E (case A = B)
- Parallel mappings: A := A× A× · · · ×A, where A : Fm

2 → Fm
2 .

S-box layer
A ◦ S = S ◦ A ⇐⇒ A ◦ S = S ◦ A =⇒ self-affine equivalent S-box.
Effective search for small m (4, 8 bits).

Constant addition
Tc(x) := x + c, A(x) := LA(x) + cA.

A ◦ Tc(x) = LA(x) + LA(c) + cA and Tc ◦ A(x) = LA(x) + c + cA

A ◦ Tc = Tc ◦ A ⇐⇒ c ∈ Fix(LA).
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A ◦ Tc(x) = LA(x) + LA(c) + cA and Tc ◦ A(x) = LA(x) + c + cA

A ◦ Tc = Tc ◦ A ⇐⇒ c ∈ Fix(LA).

Linear layer
Let L = (Lij) be an invertible block matrix with m-size blocks Lij .
L ◦ A = A ◦ L ⇐⇒ Lij ◦ LA = LA ◦ Lij for all i, j and cA ∈ Fix(L).
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Midori [AC:BBISHA15] in a nutshell

A (not so) standard SPN
- AES-like,
- Standard wide-trail analysis,
- . . . yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

p = AK ◦ AC ◦MC ◦ PC ◦ S
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The Midori case

p = AK ◦ AC ◦MC ◦ PC ◦ S

Sbox layer
There exists a single non-trivial A⋆ st. A⋆ ◦ S = S ◦ A⋆. S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Cells permutation
Parallel mapping A : free commutation.

i

σ(i)

σ

Linear layer
- Mij ◦ LA = LA ◦Mij ∀ i, j. But Mij ∈ {04, Id4}.
- cA ∈ Fix(L). But M(c,c,c,c) = (c,c,c,c).

=⇒ Any A would work.

M M M M

Constants
Fix(LA⋆) = ⟨0x2, 0x5, 0x8⟩. ⇝Consider variantswith modified constants.

Weak-keys: 1-bit condition per nibble⇝ 296 out of 2128. ⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
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⊕
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⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
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The Midori case, part 2

Recap
A⋆ ◦ P = P ◦ A⋆ for every layer P (given weak constants/keys).
A⋆ ◦ Ek = Ek ◦ A⋆ for 1 out of 232 keys k.

x0 x1 xr−1 E(x0)

z0 z1 zr−1 E(z0)
A⋆

R0

A⋆

Rr−1

A⋆ A⋆

R0 Rr−1

P
x $←−X

(A⋆ → A⋆ → · · · → A⋆︸ ︷︷ ︸
r times

) = 1, for any r!
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The Midori case, part 3

x0 x1 xr−1 E(x0)

z0 z1 zr−1 E(z0)
A⋆∆0

R0

A⋆∆1

Rr−1

A⋆∆r−1 A⋆∆r

R0 Rr−1

∆i := xi ⊕ zi = xi ⊕A⋆(xi)

Surprising differential interpretation
δ = 0xf, ∆ = δ⊗16, δ′ = 0xa, ∆′ = δ′⊗16.

- P
x $←−X

(A⋆(x) = x + δ) = 1
2 P

x $←−X
(A⋆(x) = x + δ′) = 1

2 .

- ∀ x , x +A⋆(x) ∈ {δ, δ′}16.

∆
2−16
−−−→ A⋆ 1−→ · · · 1−→ A⋆ 2−16

−−−→ ∆
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Weak-key Differential interpretation

Recap
If k is weak:

- P
x $←−X

(∆→ ∆′) = 2−32 for any ∆,∆′ ∈ {δ, δ′}16.

- P
x $←−X

(
∆→ {δ, δ′}16

)
= 2−16 for any ∆ ∈ {δ, δ′}16.

- For any number of rounds, activate all S-boxes.

Standard case : quite low Pk,x
∆IN

KS

k0
AK

SB SR MC
Round 0

KS

k1
AK

SB SR MC
Round 1

KS

k2
AK

SB SR MC
Round 2

KS

k3
AK

SB SR MC
Round 3

k4
AK

SB SR MC
Round 4

Part of 9-round chosen-key distinguisher for AES-128.
Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

This work: high Px for some k
∆IN

KS

k0
AK

SB SR MC
Round 0

KS

k1
AK

SB SR MC
Round 1

KS

k2
AK

SB SR MC
Round 2

KS

k3
AK

SB SR MC
Round 3

k4
AK

SB SR MC
Round 4

0xf
0xf or 0xa
No diff.



15/23

Weak-key Differential interpretation

Recap
If k is weak:

- P
x $←−X

(∆→ ∆′) = 2−32 for any ∆,∆′ ∈ {δ, δ′}16.

- P
x $←−X

(
∆→ {δ, δ′}16

)
= 2−16 for any ∆ ∈ {δ, δ′}16.

- For any number of rounds, activate all S-boxes.

Standard case : quite low Pk,x
∆IN

KS

k0
AK

SB SR MC
Round 0

KS

k1
AK

SB SR MC
Round 1

KS

k2
AK

SB SR MC
Round 2

KS

k3
AK

SB SR MC
Round 3

k4
AK

SB SR MC
Round 4

Part of 9-round chosen-key distinguisher for AES-128.
Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

This work: high Px for some k
∆IN

KS

k0
AK

SB SR MC
Round 0

KS

k1
AK

SB SR MC
Round 1

KS

k2
AK

SB SR MC
Round 2

KS

k3
AK

SB SR MC
Round 3

k4
AK

SB SR MC
Round 4

0xf
0xf or 0xa
No diff.



15/23

Weak-key Differential interpretation

Recap
If k is weak:

- P
x $←−X

(∆→ ∆′) = 2−32 for any ∆,∆′ ∈ {δ, δ′}16.

- P
x $←−X

(
∆→ {δ, δ′}16

)
= 2−16 for any ∆ ∈ {δ, δ′}16.

- For any number of rounds, activate all S-boxes.

Standard case : quite low Pk,x
∆IN

KS

k0
AK

SB SR MC
Round 0

KS

k1
AK

SB SR MC
Round 1

KS

k2
AK

SB SR MC
Round 2

KS

k3
AK

SB SR MC
Round 3

k4
AK

SB SR MC
Round 4

Part of 9-round chosen-key distinguisher for AES-128.
Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

This work: high Px for some k
∆IN

KS

k0
AK

SB SR MC
Round 0

KS

k1
AK

SB SR MC
Round 1

KS

k2
AK

SB SR MC
Round 2

KS

k3
AK

SB SR MC
Round 3

k4
AK

SB SR MC
Round 4

0xf
0xf or 0xa
No diff.



16/23

Weak-key Differential interpretation, part 2

4 5 6 7 8 9 10 11 12 13 14 15 16
Rounds

2 154

2 132

2 110

2 88

2 66

2 44

2 22

Pr
ob

ab
ilit

y

Wide trail arguments [BBISHA15]
Min. diff. proba. Vert(SC)
Min. diff. proba. Vert(SR)
Expected probabilities [This paper]
Standard diff. for 296 weak-keys,  Vert(SC) [Sec 6.1.3]
Truncated diff. for 296 weak-keys, Vert(SC) [Sec 6.1.3]
Commutative trail for 2120 weak-keys, Vert(SR,2) [Sec 6.2.2] 

The designers’ work
Estimate E

k $←−K
(# {x st. Ek(x + α) = Ek(x) + β})

and assume representativeness.
Blue curve.

This work
Find non-average keys with
easily-distinguishable property.
Purple and red curves.
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Is it that easy to detect this behavior ?

Yes !
Small demo here.
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A bigger weak-key space ?

Constants
Fix(LA⋆) = ⟨0x2, 0x5, 0x8⟩.
Weak-keys: 1-bit condition per nibble⇝ 296 out of 2128.

=⇒ “active” S-boxes reduce the key-space.
A A A A
A A A A
A A A A
A A A A

⇝ Ãi =


Ai0 Ai4 Ai8 Aic

Ai1 Ai5 Ai9 Aid

Ai2 Ai6 Aia Aie

Ai3 Ai7 Aib Aif

 , where A0 = Id,A1 = A

New study
- Constants : 1-bit condition if ij = 1 else, 0.
- S-box: S ◦ A = A ◦ S, S ◦ Id = Id ◦ S
- Cell permutation:

ShiftRows


X0 X4 X8 Xc
X1 X5 X9 Xd
X2 X6 Xa Xe
X3 X7 Xb Xf

 =


X0 X4 X8 Xc
X5 X9 Xd X1
Xa Xe X2 X6
Xf X3 X7 Xb
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A bigger weak-key space ? part 2

New pattern 
A Id A Id

Id Id Id Id

A Id A Id

Id Id Id Id


Commutes with S-box layer, cells perm. and weak-constants/weak-key addition.

What about M ?

M :=


0 Id Id Id

Id 0 Id Id

Id Id 0 Id

Id Id Id 0


We indeed have M ij ∈ {0, Id} and M(c,c,c,c) = (c,c,c,c).
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A bigger weak-key space ? part 3

M :=


0 Id Id Id

Id 0 Id Id

Id Id 0 Id

Id Id Id 0



M


Ax0
x1
Ax2
x3

 =


x1 + Ax2 + x3
Ax0 + Ax2 + x3
Ax0 + x1 + x3
Ax0 + x1 + Ax2

 =


x1 + LAx2 + x3 + cA
LAx0 + LAx2 + x3

LAx0 + x1 + x3 + cA
LAx0 + x1 + LAx2

 (1)

A× Id× A× Id ◦M(x0, x1, x2, x3) =


A(x1 + x2 + x3)
x0 + x2 + x3

A(x0 + x1 + x3)
x0 + x1 + x2

 =


LAx1 + LAx2 + LAx3 + cA

x0 + x2 + x3
LAx0 + LAx1 + LAx3 + cA

x0 + x1 + x2

 (2)

(1) = (2) ⇐⇒


LAx1 + x1 + LAx3 + x3
LAx0 + x0 + LAx2 + x2
LAx1 + x1 + LAx3 + x3
LAx0 + x0 + LAx2 + x2

 =


0
0
0
0

 ⇐⇒ (LA + Id)(x0 + x2) = 0
(LA + Id)(x1 + x3) = 0
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A bigger weak-key space ? final

Recap
A× Id× A× Id ◦M(x0, x1, x2, x3) = M (Ax0, x1,Ax2, x3) if and only if
x0 + x2 ∈ ker(LA + Id) and x1 + x3 ∈ ker(LA + Id)

Fact
dim(ker(LA + Id)) = 2.

First probabilistic commutation, first trade-off
P
x $←−X

(A ◦M(x) =M◦A(x)) = 22
24 ×

22
24 = 2−4.

For 2128−2×4 = 2120 weak keys, P
x $←−X

(R ◦M(x) =M◦ R(x)) = 2−4.

3 4 5 6 7 8
Round r

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(E
A(

r)
TA

(r)
)/

TA
(r)

trail w/ weak constants
hull w/ weak constants
trail w/ null constants
hull w/ null constants
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A few words about probabilistic commutation

4 5 6 7 8 9 10 11 12 13 14 15 16
Rounds

2 154

2 132

2 110

2 88

2 66

2 44

2 22

Pr
ob

ab
ilit

y

Wide trail arguments [BBISHA15]
Min. diff. proba. Vert(SC)
Min. diff. proba. Vert(SR)
Expected probabilities [This paper]
Standard diff. for 296 weak-keys,  Vert(SC) [Sec 6.1.3]
Truncated diff. for 296 weak-keys, Vert(SC) [Sec 6.1.3]
Commutative trail for 2120 weak-keys, Vert(SR,2) [Sec 6.2.2] 

Probabilistic commutation with different layers
Let p ∈ [0, 1].

- A ◦ Tk
p
= Tk ◦ B : well-understood.

- A ◦ L p
= L ◦ B : manageable for parallel mappings.

- A ◦ S p
= S ◦ B : 4-bit mappings can be listed exhaustively.
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Conclusion

In practice
- Trade-offs: number-of-weak-keys VS probability-of-success.
- Independence of rounds must be supposed . . .but often too optimistic.

Further studies
- Algorithm for probabilistic affine-equivalence.
- Study the dependencies.
- Hybridization: e.g. commutative-differential ?

Standard case : quite low Pk,x
∆IN

KS

k0
AK

SB SR MC
Round 0

KS

k1
AK

SB SR MC
Round 1

KS

k2
AK

SB SR MC
Round 2
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k3
AK

SB SR MC
Round 3

k4
AK

SB SR MC
Round 4

Part of 9-round chosen-key distinguisher for AES-128.
Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

This work: high Px for some weak k
∆IN
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AK

SB SR MC
Round 0
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Round 1
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k2
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Round 2
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Round 4

0xf
0xf or 0xa
No diff.
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- Hybridization: e.g. commutative-differential ?

Standard case : quite low Pk,x
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Part of 9-round chosen-key distinguisher for AES-128.
Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

This work: high Px for some weak k
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