Commutative Cryptanalysis Made Practical

Jules BAUDRIN jules.baudrin@inria.fr Inria, Paris, France

innín -

Joint work with P. Felke, G. Leander, P. Neumann, L. Perrin & L. Stennes.

Séminaire Crypto, UVSQ, 2023

Plaintext $x \in X$, ciphertext $y \in Y$, key $k \in K$.

$$X = \mathbb{F}_2^{n_X}, Y = \mathbb{F}_2^{n_Y}, K = \mathbb{F}_2^{n_K}.$$

Symmetric cryptography : a bit of context

Plaintext $x \in X$, ciphertext $y \in Y$, key $k \in K$.

$$X = \mathbb{F}_2^{n_{\chi}}, Y = \mathbb{F}_2^{n_{\gamma}}, K = \mathbb{F}_2^{n_{\kappa}}.$$

Block cipher

A family $(E_k)_{k \in K}$, where: $\forall k \in K$, $E_k : X \to Y$ is bijective.

 $(\implies n_X = n_Y)$

Symmetric cryptography : a bit of context

Plaintext $x \in X$, ciphertext $y \in Y$, key $k \in K$.

$$X = \mathbb{F}_2^{n_{\chi}}, Y = \mathbb{F}_2^{n_{\gamma}}, K = \mathbb{F}_2^{n_{\kappa}}.$$

Block cipher A family $(E_k)_{k \in K}$, where:

A family $(E_k)_{k \in K}$, where: $\forall k \in K$, $E_k : X \to Y$ is bijective.

 $(\implies n_X = n_Y)$

 \implies Shared key for encryption & decryption.

Symmetric cryptography : a bit of context

Substitution Permutation Network (SPN)

- Subclass of block ciphers
- Round function, a 3-step process:
 - Local non-linear layer,
 - global linear layer,
 - and key/constant addition
- Repeat r times

Security

- Modes + block cipher = confidentiality, integrity, authenticity.
- If the block cipher is secure.

Security

- Modes + block cipher = confidentiality, integrity, authenticity.
- If the block cipher is secure.

Indistinguishability

 $[k \stackrel{\$}{\leftarrow} K, E_k]$ indistinguishable from $[random F \stackrel{\$}{\leftarrow} Bij(\mathbb{F}_2^{n_{\chi}}, \mathbb{F}_2^{n_{\gamma}})].$

Security

- Modes + block cipher = confidentiality, integrity, authenticity.
- If the block cipher is secure.

Indistinguishability

 $[k \stackrel{\$}{\leftarrow} K, E_k]$ indistinguishable from $[random F \stackrel{\$}{\leftarrow} Bij(\mathbb{F}_2^{n_{\chi}}, \mathbb{F}_2^{n_{\gamma}})].$

Security

- Modes + block cipher = confidentiality, integrity, authenticity.
- If the block cipher is secure.

Indistinguishability

 $[k \stackrel{\$}{\leftarrow} K, E_k]$ indistinguishable from $[random F \stackrel{\$}{\leftarrow} Bij(\mathbb{F}_2^{n_{\chi}}, \mathbb{F}_2^{n_{\gamma}})].$

Differential distinguisher

Find α, β st. for many k, $E_k(x + \alpha) = E_k(x) + \beta$ has many solutions x.

Security

- Modes + block cipher = confidentiality, integrity, authenticity.
- If the block cipher is secure.

Indistinguishability

 $[k \stackrel{\$}{\leftarrow} K, E_k]$ indistinguishable from $[random F \stackrel{\$}{\leftarrow} Bij(\mathbb{F}_2^{n_{\chi}}, \mathbb{F}_2^{n_{\gamma}})]$.

Differential distinguisher

Find α, β st. for many k, $E_k(x + \alpha) = E_k(x) + \beta$ has many solutions x.

Random permutation F

 $F(x + \alpha) + F(x) = \beta$ with proba 2^{-n} .

Some security arguments for an SPN

Substitution Permutation Network (SPN)

- Sbox layer, $\rightsquigarrow S(x + \alpha) = S(x) + \beta$ must have few solutions for all α, β
- Linear layer, \rightsquigarrow must diffuse a lot
- Key addition → hard to handle...

Substitution Permutation Network (SPN)

- Sbox layer, $\rightsquigarrow S(x + \alpha) = S(x) + \beta$ must have few solutions for all α, β
- Linear layer, ~> must diffuse a lot
- Key addition ~ hard to handle...

As a designer

Estimate $\mathbb{E}_{k \leftarrow K}$ (# {x st. $E_k(x + \alpha) = E_k(x) + \beta$ }) and assume representativeness.

where $A(x) = L_A(x) + C_A, B(x) = L_B(x) + C_B$

where $A(x) = L_A(x) + c_A$, $B(x) = L_B(x) + c_B$

A tempting desire of unification

Mathematically elegant, better understanding & new attacks

A 20-year-old idea [Wagner, FSE 2004]

Commutative diagram cryptanalysis: not so fruitful¹ since.

¹to the best of our knowledge...

Commutative (diagram) cryptanalysis

 \mathbf{V}'

In this talk

Affine commutation with probability 1: theory + practice

A surprising differential interpretation

A few words about the probabilistic case

Commutative cryptanalysis principle

Goal

Find **bijective affine** A, B st. for many k: $E_k \circ A = B \circ E_k$

(all x are solutions)

Commutative cryptanalysis principle

Goal

Find **bijective affine** A, B st. for many k:
$$E_k \circ A = B \circ E_k$$

(all x are solutions)

$$E = R_{r-1} \circ \cdots \circ R_1 \circ R_0$$

Commutative cryptanalysis principle

Goal

Find **bijective affine** A, B st. for many k: $E_k \circ A = B \circ E_k$

(all x are solutions)

$$E=R_{r-1}\circ\cdots\circ R_1\circ R_0$$

Sufficient condition for iterated constructions

There exist A_0, \dots, A_r st. for all $i \mid A_{i+1} \circ R_i = R_i \circ A_i \mid$.

Goal

Find **bijective affine** A, B st. for many k: $E_k \circ A = B \circ E_k$

 $E = R_{r-1} \circ \cdots \circ R_1 \circ R_0$

Sufficient condition for **iterated** constructions There exist A_0, \dots, A_r st. for all $i | A_{i+1} \circ R_i = R_i \circ A_i |$.

$$E \circ A_0 = R_{r-1} \circ \cdots \circ (R_0 \circ A_0)$$

= $R_{r-1} \circ \cdots \circ R_1 \circ (A_1 \circ R_0)$
= \cdots
= $A_r \circ R_{r-1} \circ \cdots \circ R_0$
= $A_r \circ E$

(all x are solutions)

Goal

Find **bijective affine** A, B st. for many k: $|E_k \circ A| = B \circ E_k$

 $E = R_{r-1} \circ \cdots \circ R_1 \circ R_0$

Sufficient condition for **iterated** constructions There exist A_0, \dots, A_r st. for all $i \mid A_{i+1} \circ R_i = R_i \circ A_i \mid$.

$$E \circ A_0 = R_{r-1} \circ \cdots \circ (R_0 \circ A_0)$$
$$= R_{r-1} \circ \cdots \circ R_1 \circ (A_1 \circ R_0)$$
$$= \cdots$$
$$= A_r \circ R_{r-1} \circ \cdots \circ R_0$$
$$= A_r \circ E$$

 $x_0 \xrightarrow{R_0} x_1 \xrightarrow{R_{r-1}} E(x_0)$ $\begin{vmatrix} A_0 & \\ A_1 & \\ A_{r-1} & A_r & \Rightarrow \textbf{round-by-round and layer-by-layer studies.} \end{vmatrix}$ $z_0 \xrightarrow{R_0} z_1 \xrightarrow{\ldots} z_{r-1} \xrightarrow{R_{r-1}} E(z_0)$

(all x are solutions)

- Commutation only: $E \circ A = A \circ E$ (case A = B)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

Constant addition

 $T_{c}(x) := x + c, \quad A(x) := L_{A}(x) + c_{A}.$

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

Constant addition

 $T_{c}(x) := x + c, \quad A(x) := L_{A}(x) + c_{A}.$

 $A \circ T_c(x) = L_A(x) + L_A(c) + c_A$ and $T_c \circ A(x) = L_A(x) + c + c_A$

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

Constant addition

 $T_{c}(x) := x + c, \quad A(x) := L_{A}(x) + c_{A}.$

 $A \circ T_{c}(x) = L_{A}(x) + L_{A}(c) + c_{A} \quad \text{and} \quad T_{c} \circ A(x) = L_{A}(x) + c + c_{A}$ $A \circ T_{c} = T_{c} \circ A \iff \boxed{c \in \operatorname{Fix}(L_{A})}.$

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \times \mathcal{A} \times \cdots \times \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits).

Constant addition

$$T_c(x) := x + c, \quad A(x) := L_A(x) + c_A.$$

$$A \circ T_{c}(x) = L_{A}(x) + L_{A}(c) + c_{A} \quad \text{and} \quad T_{c} \circ A(x) = L_{A}(x) + c + c_{A}$$
$$A \circ T_{c} = T_{c} \circ A \iff \boxed{c \in \operatorname{Fix}(L_{A})}.$$

Linear layer

Let $\mathcal{L} = (\mathcal{L}_{ij})$ be an invertible block matrix with *m*-size blocks \mathcal{L}_{ij} . $\mathcal{L} \circ \mathcal{A} = \mathcal{A} \circ \mathcal{L} \iff \boxed{\mathcal{L}_{ij} \circ \mathcal{L}_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} \circ \mathcal{L}_{ij}}$ for all i, j and $c_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L})$.

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

$p = AK \circ AC \circ MC \circ PC \circ S$

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

S	S	S	S
S	S	S	S
S	S	S	S
S	S	S	S

$p = AK \circ AC \circ MC \circ PC \circ S$

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

Cells permutation Parallel mapping A : free commutation.

 $p = AK \circ AC \circ MC \circ PC \circ S$

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

Cells permutation

Parallel mapping \mathcal{A} : free commutation.

Linear layer

$$- M_{ij} \circ L_{A} = L_{A} \circ M_{ij} \forall i, j.$$
 But

- $C_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L}).$

But $M_{ij} \in \{0_4, \mathrm{Id}_4\}$. But M(c, c, c, c, c) = (c, c, c, c).

 \implies Any \mathcal{A} would work.

S	S	S	S
S	S	S	S
S	S	S	S
S	S	S	S

 $p = AK \circ AC \circ MC \circ PC \circ S$

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

Cells permutation

Parallel mapping \mathcal{A} : free commutation.

Linear layer

-
$$M_{ij} \circ L_A = L_A \circ M_{ij} \forall i, j.$$
 But M_{ij}

- $C_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L}).$

But M(c, c, c, c, c) = (c, c, c, c).

 $\in \{0_4, Id_4\}.$

 \implies Any \mathcal{A} would work.

Constants

 $Fix(L_{A^*}) = \langle 0x2, 0x5, 0x8 \rangle$. \rightsquigarrow Consider variants with modified constants.

Weak-keys: 1-bit condition per nibble $\rightarrow 2^{96}$ out of 2^{128} .

B	Ø	ø	3
#	ø	ø	ø
#	ø	ø	Ð
#	#	#	Ð

Recap

 $\mathcal{A}^* \circ P = P \circ \mathcal{A}^*$ for every layer P (given weak constants/keys).

 $\mathcal{A}^{\star} \circ E_k = E_k \circ \mathcal{A}^{\star}$ for 1 out of 2³² keys k.

Recap

 $\mathcal{A}^* \circ \mathcal{P} = \mathcal{P} \circ \mathcal{A}^*$ for every layer \mathcal{P} (given weak constants/keys). $\mathcal{A}^* \circ \mathcal{E}_k = \mathcal{E}_k \circ \mathcal{A}^*$ for 1 out of 2³² keys *k*.

$$\mathbb{P}_{x \xleftarrow{s} X}(\underbrace{\mathcal{A}^* \to \mathcal{A}^* \to \cdots \to \mathcal{A}^*}_{r \text{ times}}) = 1, \text{ for any } r!$$

 $\Delta_i := x_i \oplus z_i = x_i \oplus \mathcal{A}^*(x_i)$

$$\Delta_i := x_i \oplus z_i = x_i \oplus \mathcal{A}^*(x_i)$$

Surprising differential interpretation $\delta = 0xf$, $\Delta = \delta^{\otimes 16}$, $\delta' = 0xa$, $\Delta' = \delta'^{\otimes 16}$.

$$\Delta_i := x_i \oplus z_i = x_i \oplus \mathcal{A}^*(x_i)$$

Surprising differential interpretation $\delta = 0 \operatorname{xf}, \quad \Delta = \delta^{\otimes 16}, \quad \delta' = 0 \operatorname{xa}, \quad \Delta' = \delta'^{\otimes 16}.$

$$- \mathbb{P}_{x \stackrel{\mathsf{s}}{\leftarrow} \chi} \left(A^{\star}(x) = x + \delta \right) = \frac{1}{2} \quad \mathbb{P}_{x \stackrel{\mathsf{s}}{\leftarrow} \chi} \left(A^{\star}(x) = x + \delta' \right) = \frac{1}{2}.$$
$$- \forall x, \quad x + \mathcal{A}^{\star}(x) \in \{\delta, \delta'\}^{16}.$$

$$\Delta_i := x_i \oplus z_i = x_i \oplus \mathcal{A}^*(x_i)$$

Surprising differential interpretation $\delta = 0 \operatorname{xf}, \quad \Delta = \delta^{\otimes 16}, \quad \delta' = 0 \operatorname{xa}, \quad \Delta' = \delta'^{\otimes 16}.$

$$-\mathbb{P}_{x \xleftarrow{} X} (A^*(x) = x + \delta) = \frac{1}{2} \mathbb{P}_{x \xleftarrow{} X} (A^*(x) = x + \delta') = \frac{1}{2}.$$

$$-\forall x, x + A^*(x) \in \{\delta, \delta'\}^{16}.$$

$$\Delta \xrightarrow{2^{-16}} \mathcal{A}^* \xrightarrow{1} \cdots \xrightarrow{1} \mathcal{A}^* \xrightarrow{2^{-16}} \Delta$$

Weak-key Differential interpretation

Recap

If k is weak:

-
$$\mathbb{P}_{x \xleftarrow{\delta} X} (\Delta \to \Delta') = 2^{-32}$$
 for any $\Delta, \Delta' \in \{\delta, \delta'\}^{16}$.

$$- \mathbb{P}_{\mathbb{P}_{\lambda} \overset{\bullet}{\leftarrow} \lambda} \left(\Delta \to \{\delta, \delta'\}^{16} \right) = 2^{-16} \text{ for any } \Delta \in \{\delta, \delta'\}^{16}.$$

- For any number of rounds, activate all S-boxes.

Weak-key Differential interpretation

Recap

If k is weak:

$$\mathbb{P}_{\mathbb{X}\overset{\$}{\leftarrow}\mathbb{X}}\left(\Delta\to\Delta'\right)=2^{-32}\text{ for any }\Delta,\Delta'\in\{\delta,\delta'\}^{16}.$$

$$\mathbb{P}_{\mathbb{P}_{\mathcal{A}^{\underline{\delta}}\times\mathcal{A}}}\left(\Delta\to\{\delta,\delta'\}^{16}\right)=2^{-16}\text{ for any }\Delta\in\{\delta,\delta'\}^{16}.$$

- For any number of rounds, activate all S-boxes.

Standard case : quite low $\mathbb{P}_{k,x}$

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Weak-key Differential interpretation

Recap

If k is weak:

-
$$\mathbb{P}_{X \xleftarrow{\delta} X} (\Delta \to \Delta') = 2^{-32}$$
 for any $\Delta, \Delta' \in \{\delta, \delta'\}^{16}$.

$$\mathbb{P}_{\mathbb{P}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}}}^{\mathbf{5}}}}\left(\Delta \to \{\delta, \delta'\}^{\mathsf{16}}\right) = 2^{-\mathsf{16}} \text{ for any } \Delta \in \{\delta, \delta'\}^{\mathsf{16}}.$$

- For any number of rounds, activate all S-boxes.

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Weak-key Differential interpretation, part 2

The designers' work Estimate $\mathbb{E}_{k} (\# \{x \text{ st. } E_k(x + \alpha) = E_k(x) + \beta\})$

and assume representativeness. Blue curve.

This work

Find non-average keys with easily-distinguishable property. Purple and red curves.

Is it that easy to detect this behavior?

Yes ! Small demo here.

 $\frac{\text{Constants}}{\text{Fix}(\mathcal{L}_{A^*})} = \langle 0x2, 0x5, 0x8 \rangle.$

Weak-keys: 1-bit condition per nibble $\rightarrow 2^{96}$ out of 2^{128} .

Constants

 $\operatorname{Fix}(\boldsymbol{L}_{A^{\star}}) = \langle 0 x 2, 0 x 5, 0 x 8 \rangle.$

Weak-keys: 1-bit condition per nibble $\rightarrow 2^{96}$ out of 2^{128} .

 \implies "active" S-boxes reduce the key-space.

Constants

 $\operatorname{Fix}(\boldsymbol{L}_{A^{\star}}) = \langle \texttt{0x2}, \texttt{0x5}, \texttt{0x8} \rangle.$

Weak-keys: 1-bit condition per nibble $\rightarrow 2^{96}$ out of 2^{128} .

 \implies "active" S-boxes reduce the key-space.

Constants

 $\operatorname{Fix}(\mathcal{L}_{\mathcal{A}^*}) = \langle 0x2, 0x5, 0x8 \rangle.$

Weak-keys: 1-bit condition per nibble $\rightarrow 2^{96}$ out of 2^{128} .

 \implies "active" S-boxes reduce the key-space.

New study

- Constants : 1-bit condition if $i_j = 1$ else, 0.
- S-box: $S \circ A = A \circ S, S \circ Id = Id \circ S$
- Cell permutation:

ShiftRows
$$\begin{pmatrix} X_{0} & X_{4} & X_{8} & X_{c} \\ X_{1} & X_{5} & X_{9} & X_{d} \\ X_{2} & X_{6} & X_{a} & X_{e} \\ X_{3} & X_{7} & X_{b} & X_{f} \end{pmatrix} = \begin{pmatrix} X_{0} & X_{4} & X_{8} & X_{c} \\ X_{5} & X_{9} & X_{d} & X_{1} \\ X_{a} & X_{e} & X_{2} & X_{6} \\ X_{f} & X_{3} & X_{7} & X_{b} \end{pmatrix}$$

New pattern

A	Id	Α	Ιd
Id	Id	Id	Id
Α	Id	Α	Id
d	Id	Id	Id/

Commutes with S-box layer, cells perm. and weak-constants/weak-key addition.

New pattern

A	Id	Α	Ιd
Id	Id	Id	Id
Α	Id	Α	Id
Id	Id	Id	Id/

Commutes with S-box layer, cells perm. and weak-constants/weak-key addition.

What about M ?

$$\mathcal{M} := egin{pmatrix} 0 & \mathrm{Id} & \mathrm{Id} & \mathrm{Id} \ \mathrm{Id} & 0 & \mathrm{Id} & \mathrm{Id} \ \mathrm{Id} & \mathrm{Id} & \mathrm{Id} & \mathrm{Id} \ \mathrm{Id} & \mathrm{Id} & 0 & \mathrm{Id} \ \mathrm{Id} & \mathrm{Id} & \mathrm{Id} & \mathrm{Id} & 0 \end{pmatrix}$$

We indeed have $M_{ij} \in \{0, \text{Id}\}$ and M(c, c, c, c, c) = (c, c, c, c).

$$\mathcal{M} := egin{pmatrix} 0 & {
m Id} & {
m Id} & {
m Id} \ {
m Id} & {
m Id} & {
m Id} \ {
m Id} & {
m Id} & {
m Id} \ {
m Id} & {
m Id} & {
m Id} \ {
m Id} & {
m Id} & {
m Id} \ {
m Id} & {
m Id} & {
m Id} & {
m Id} \end{pmatrix}$$

$$\mathcal{M} := egin{pmatrix} 0 & \mathrm{Id} & \mathrm{Id} & \mathrm{Id} \ \mathrm{Id} & 0 & \mathrm{Id} & \mathrm{Id} \ \mathrm{Id} & \mathrm{Id} & \mathrm{Id} & \mathrm{Id} \ \mathrm{Id} & \mathrm{Id} & 0 & \mathrm{Id} \ \mathrm{Id} & \mathrm{Id} & \mathrm{Id} & \mathrm{Id} \end{pmatrix}$$

$$M\begin{pmatrix}Ax_{0}\\x_{1}\\Ax_{2}\\x_{3}\end{pmatrix} = \begin{pmatrix}x_{1} + Ax_{2} + x_{3}\\Ax_{0} + Ax_{2} + x_{3}\\Ax_{0} + x_{1} + x_{3}\\Ax_{0} + x_{1} + Ax_{2}\end{pmatrix} = \begin{pmatrix}x_{1} + L_{A}x_{2} + x_{3} + C_{A}\\L_{A}x_{0} + L_{A}x_{2} + x_{3}\\L_{A}x_{0} + x_{1} + X_{3} + C_{A}\\L_{A}x_{0} + x_{1} + L_{A}x_{2}\end{pmatrix}$$

(1)

$$\mathcal{M} := egin{pmatrix} 0 & \mathrm{Id} & \mathrm{Id} & \mathrm{Id} \ \mathrm{Id} & 0 & \mathrm{Id} & \mathrm{Id} \ \mathrm{Id} & \mathrm{Id} & 0 & \mathrm{Id} \ \mathrm{Id} & \mathrm{Id} & \mathrm{Id} & 0 \ \end{array}$$

$$M\begin{pmatrix}Ax_{0}\\x_{1}\\Ax_{2}\\x_{3}\end{pmatrix} = \begin{pmatrix}x_{1} + Ax_{2} + x_{3}\\Ax_{0} + Ax_{2} + x_{3}\\Ax_{0} + x_{1} + x_{3}\\Ax_{0} + x_{1} + Ax_{2}\end{pmatrix} = \begin{pmatrix}x_{1} + L_{A}x_{2} + x_{3} + C_{A}\\L_{A}x_{0} + L_{A}x_{2} + x_{3}\\L_{A}x_{0} + x_{1} + X_{3} + C_{A}\\L_{A}x_{0} + x_{1} + L_{A}x_{2}\end{pmatrix}$$
(1)

$$A \times \mathrm{Id} \times A \times \mathrm{Id} \circ M(x_0, x_1, x_2, x_3) = \begin{pmatrix} A(x_1 + x_2 + x_3) \\ x_0 + x_2 + x_3 \\ A(x_0 + x_1 + x_3) \\ x_0 + x_1 + x_2 \end{pmatrix} = \begin{pmatrix} L_A x_1 + L_A x_2 + L_A x_3 + C_A \\ x_0 + x_2 + x_3 \\ L_A x_0 + L_A x_1 + L_A x_3 + C_A \\ x_0 + x_1 + x_2 \end{pmatrix}$$
(2)

$$\mathcal{M} := egin{pmatrix} 0 & \mathrm{Id} & \mathrm{Id} & \mathrm{Id} \ \mathrm{Id} & 0 & \mathrm{Id} & \mathrm{Id} \ \mathrm{Id} & \mathrm{Id} & 0 & \mathrm{Id} \ \mathrm{Id} & \mathrm{Id} & \mathrm{Id} & 0 \end{pmatrix}$$

$$M\begin{pmatrix}Ax_{0}\\x_{1}\\Ax_{2}\\x_{3}\end{pmatrix} = \begin{pmatrix}x_{1} + Ax_{2} + x_{3}\\Ax_{0} + Ax_{2} + x_{3}\\Ax_{0} + x_{1} + x_{3}\\Ax_{0} + x_{1} + Ax_{2}\end{pmatrix} = \begin{pmatrix}x_{1} + L_{A}x_{2} + x_{3} + C_{A}\\L_{A}x_{0} + L_{A}x_{2} + x_{3}\\L_{A}x_{0} + x_{1} + X_{3} + C_{A}\\L_{A}x_{0} + x_{1} + L_{A}x_{2}\end{pmatrix}$$
(1)

$$A \times \mathrm{Id} \times A \times \mathrm{Id} \circ M(x_0, x_1, x_2, x_3) = \begin{pmatrix} A(x_1 + x_2 + x_3) \\ x_0 + x_2 + x_3 \\ A(x_0 + x_1 + x_3) \\ x_0 + x_1 + x_2 \end{pmatrix} = \begin{pmatrix} L_A x_1 + L_A x_2 + L_A x_3 + C_A \\ x_0 + x_2 + x_3 \\ L_A x_0 + L_A x_1 + L_A x_3 + C_A \\ x_0 + x_1 + x_2 \end{pmatrix}$$
(2)

$$(1) = (2) \iff \begin{pmatrix} L_A x_1 + x_1 + L_A x_3 + x_3 \\ L_A x_0 + x_0 + L_A x_2 + x_2 \\ L_A x_1 + x_1 + L_A x_3 + x_3 \\ L_A x_0 + x_0 + L_A x_2 + x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} L_A + \mathrm{Id} (x_0 + x_2) = 0 \\ (L_A + \mathrm{Id})(x_1 + x_3) = 0 \\ 0 \\ 0 \end{pmatrix}$$

A bigger weak-key space ? final

Recap

 $A \times \text{Id} \times A \times \text{Id} \circ M(x_0, x_1, x_2, x_3) = M(Ax_0, x_1, Ax_2, x_3)$ if and only if $x_0 + x_2 \in \text{ker}(L_A + \text{Id})$ and $x_1 + x_3 \in \text{ker}(L_A + \text{Id})$

A bigger weak-key space ? final

Recap

 $\begin{array}{l} A \times \operatorname{Id} \times A \times \operatorname{Id} \circ M(x_0, x_1, x_2, x_3) = M\left(Ax_0, x_1, Ax_2, x_3\right) \text{ if and only if } \\ x_0 + x_2 \in \operatorname{ker}(L_A + \operatorname{Id}) \text{ and } x_1 + x_3 \in \operatorname{ker}(L_A + \operatorname{Id}) \end{array}$

Fact

 $\dim(\ker(\underline{L}_A + \mathrm{Id})) = 2.$

First probabilistic commutation, first trade-off

$$\mathbb{P}_{x \xleftarrow{s} X} \left(\mathcal{A} \circ \mathcal{M}(x) = \mathcal{M} \circ \mathcal{A}(x) \right) = \frac{2^2}{2^4} \times \frac{2^2}{2^4} = 2^{-4}.$$

For $2^{128-2\times4} = 2^{120}$ weak keys, $\mathbb{P}_{x \xleftarrow{s} X} \left(R \circ \mathcal{M}(x) = \mathcal{M} \circ R(x) \right) = 2^{-4}$

A bigger weak-key space ? final

Recap

 $\begin{array}{l} A \times \operatorname{Id} \times A \times \operatorname{Id} \circ M(x_0, x_1, x_2, x_3) = M(Ax_0, x_1, Ax_2, x_3) \text{ if and only if } \\ x_0 + x_2 \in \operatorname{ker}(L_A + \operatorname{Id}) \text{ and } x_1 + x_3 \in \operatorname{ker}(L_A + \operatorname{Id}) \end{array}$

Fact

 $\dim(\ker(\underline{L}_{A} + \mathrm{Id})) = 2.$

First probabilistic commutation, first trade-off

$$\mathbb{P}_{x \stackrel{\$}{\leftarrow} X} \left(\mathcal{A} \circ \mathcal{M}(x) = \mathcal{M} \circ \mathcal{A}(x) \right) = \frac{2^2}{2^4} \times \frac{2^2}{2^4} = 2^{-4}.$$

For $2^{128-2\times4} = 2^{120}$ weak keys, $\mathbb{P}_{x \stackrel{\$}{\leftarrow} X} \left(R \circ \mathcal{M}(x) = \mathcal{M} \circ R(x) \right) = 2^{-4}$

A few words about probabilistic commutation

A few words about probabilistic commutation

Probabilistic commutation with different layers

Let $p \in [0, 1]$.

- $A \circ T_k \stackrel{p}{=} T_k \circ B$: well-understood.
- $A \circ L \stackrel{p}{=} L \circ B$: manageable for parallel mappings.
- $A \circ S \stackrel{p}{=} S \circ B$: 4-bit mappings can be listed exhaustively.

Conclusion

In practice

- Trade-offs: number-of-weak-keys VS probability-of-success.
- Independence of rounds must be supposed ... but often too optimistic.

Further studies

- Algorithm for probabilistic affine-equivalence.
- Study the dependencies.
- Hybridization: e.g. commutative-differential?

Conclusion

In practice

- Trade-offs: number-of-weak-keys VS probability-of-success.
- Independence of rounds must be supposed ... but often too optimistic.

Further studies

- Algorithm for probabilistic affine-equivalence.
- Study the dependencies.
- Hybridization: e.g. commutative-differential?

Standard case : quite low $\mathbb{P}_{k,x}$