Practical cube-attack against **nonce-misused** Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin

Inria, Paris, France

May, 2024

Contact: jules.baudrin@inria.fr

In this talk

Ascon [rationale, its internal components and our attack setting](#page-2-0)

Cube attack[, main problems, first part of the answer](#page-5-0)

Conditional cubes[, second part of the answer](#page-20-0)

Overview of the **[internal-state recovery](#page-28-0)**

Ascon [\[DEMS19\]](#page-37-0) design rationale

Authenticated encryption \rightarrow one of the winners of CAESAR (2014 – 2019).

Lightweight

"meets the needs of most use cases where lightweight cryptography is required" [NIST webpage]

 \rightarrow winner of NIST LWC standardization process (2018 – 2023).

Permutation-based Duplex Sponge **mode [\[BDPA11\]](#page-37-1) instantiated with permutation** p : $\mathbb{F}_2^{320} \rightarrow \mathbb{F}_2^{320}$.

The permutation

A confusion/diffusion structure. studied algebraically

 $y_0 = X_4X_1 + X_3 + X_2X_1 + X_2 + X_1X_0 + X_1 + X_0$ $y_1 = X_4 + X_3X_2 + X_3X_1 + X_3 + X_2X_1 + X_2 + X_1 + X_0$ $y_2 = X_4X_3 + X_4 + X_2 + X_1 + 1$ $y_3 = X_4X_0 + X_4 + X_3X_0 + X_3 + X_2 + X_1 + X_0$ $y_4 = X_4X_1 + X_4 + X_3 + X_1X_0 + X_1$

Algebraic Normal Form (ANF) of the S-box

$$
X_0 = X_0 \oplus (X_0 \gg 19) \oplus (X_0 \gg 28)
$$

\n
$$
X_1 = X_1 \oplus (X_1 \gg 61) \oplus (X_1 \gg 39)
$$

\n
$$
X_2 = X_2 \oplus (X_2 \gg 1) \oplus (X_2 \gg 6)
$$

\n
$$
X_3 = X_3 \oplus (X_3 \gg 10) \oplus (X_3 \gg 17)
$$

\n
$$
X_4 = X_4 \oplus (X_4 \gg 7) \oplus (X_4 \gg 41)
$$

ANF of the linear layer *p^L*

Simplified setting of Ascon -128

- Many reuse of the same (*k*, *N*) pair.
- State recovery = compromised confidentiality without interaction.
- No trivial key-recovery nor forgery in that case.
- Different from the generic attack [\[VV18\]](#page-37-2).

The main lemma

If $v = (v_1, \dots, v_n)$ and $u = (u_1, \dots, u_n)$ we define $v^u := \prod_{i=1}^n v_i^{u_i}$.

Coefficients
$$
\Leftrightarrow
$$
 values relations
\nLet $f: \mathbb{F}_2^n \to \mathbb{F}_2, v \mapsto \sum_{u \in \mathbb{F}_2^n} \alpha_u v^u$. $\forall y \in \mathbb{F}_2^n$ $f(y) = \sum_{u \preceq y} \alpha_u$ and
\n
$$
\alpha_y = \sum_{u \preceq y} f(u)
$$

Proof.

$$
v^{\mathsf{u}}=1\iff \mathrm{Supp}(\mathsf{u})\subset \mathrm{Supp}(\mathsf{v})
$$

$$
\sum_{u \preceq y} f(u) = \sum_{u \preceq y} \sum_{v \preceq u} \alpha_v = \sum_{v \preceq y} \sum_{v \preceq u \preceq y} \alpha_v = \sum_{v \preceq y} 2^{w(y) - w(v)} \alpha_v = \alpha_y
$$

 \implies Recovery of α_{μ} for $2^{w(u)}$ chosen queries.

 f_j : *j*-th output coordinate, $f_j \in \mathbb{F}_2[\alpha_0, \cdots, \alpha_{63}][v_0, \cdots, v_{63}].$

$$
f_j=\sum_{(u_0,\cdots,u_{63})\in\mathbb{F}_2^{64}}\alpha_{u,j}\left(\prod_{i=0}^{63}v_i^{u_i}\right)
$$
, where $\alpha_{u,j}\in\mathbb{F}_2[a_0,\cdots,a_{63}].$

 f_j : *j*-th output coordinate, $f_j \in \mathbb{F}_2[\alpha_0, \cdots, \alpha_{63}][v_0, \cdots, v_{63}].$

$$
f_j=\sum_{(u_0,\cdots,u_{63})\in\mathbb{F}_2^{64}}\alpha_{u,j}\left(\prod_{i=0}^{63}v_i^{u_i}\right)
$$
, where $\alpha_{u,j}\in\mathbb{F}_2[a_0,\cdots,a_{63}].$

Cube attack Polynomial expression of $\alpha_{u, i}$ + value of $\alpha_{u, i}$ = equation in unknown variables \simeq recovery of some information

- Online recovery of the value: $\quad \alpha_{\mathsf{u},\, \mathsf{j}} = \sum \, f_{\mathsf{j}}(\mathsf{v}) \quad$ for 2^{w(u)} chosen queries. *v*≼*u*
- Offline recovery of the expression.

Problem 1: Still hard for a single α*^u*, *^j* Too many combinatorial possibilities.

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Problem 1: Still hard for a single α*^u*, *^j* Too many combinatorial possibilities.

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Problem 2: finding α*^u*, *^j* with "simple" expressions. We want to solve the system! (Linear, sparse, low-degree, ...)

Problem 1: Still hard for a single α*^u*, *^j* Too many combinatorial possibilities.

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Problem 2: finding α*^u*, *^j* with "simple" expressions. We want to solve the system! (Linear, sparse, low-degree, ...)

Problem 1: Still hard for a single α*^u*, *^j* Too many combinatorial possibilities.

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Problem 2: finding α*^u*, *^j* with "simple" expressions. We want to solve the system! (Linear, sparse, low-degree, ...)

▶ Highest-degree terms (degree 2*t*−¹ at round *t*) are easier to study! **Strong constraint**: products of two highest-degree terms one round before. $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times T = (v_0v_1) \times V_0 = (v_0v_1) \times (v_1v_1) \times (v_0v_1)$

Strong constraint: products of two former highest-degree terms.

For $r = 6$, still too many trails and α_{ij} usually looks horrible! ▶ Cheaper / easier recovery: conditional cubes [\[HWX](#page-37-3)+17, [LDW17,](#page-37-4) [CHK22\]](#page-37-5)

Conditional cube

Conditional cube Look for $\alpha_u = \beta_0 P$ where β_0 simple and known, P unknown.

- Partial knowledge but still: $\alpha_{\mu} = 1 \implies \beta_0 = 1$.
- If β_0 is linear, we get a linear system.

Conditional cube

Conditional cube Look for $\alpha_u = \beta_0 P$ where β_0 simple and known, P unknown.

- Partial knowledge but still: $\alpha_{U} = 1 \implies \beta_{0} = 1$.
- If β_0 is linear, we get a linear system.

Conditional cube

Conditional cube Look for $\alpha_u = \beta_0 P$ where β_0 simple and known, P unknown.

- Partial knowledge but still: $\alpha_{U} = 1 \implies \beta_{0} = 1$.
- If β_0 is linear, we get a linear system.

2nd round A priori: $\forall i \neq 0$ $(\beta_0 P + \frac{1}{Q} + \gamma_0 P + (\beta_0 + 1)S)v_0v_i$

But for some *i*: $\beta_0 P$ or $\gamma_0 R$! (Diffusion has just started)

$$
\begin{bmatrix}\n\frac{V_0}{Q_0} \\
\frac{b_0}{C_0} \\
\frac{c_0}{Q_0}\n\end{bmatrix}\n\mathbf{s}_1\n\begin{bmatrix}\n\frac{(a_0 + 1)v_0 + \cdots}{v_0 + \cdots} \\
\frac{\cdots}{\cdots} \\
\frac{(c_0 + d_0 + 1)v_0 + \cdots}{a_0v_0 + \cdots}\n\end{bmatrix}\n\begin{aligned}\n\mathbf{\Leftrightarrow}\n\beta_0 &:= \alpha_0 + 1 \\
\mathbf{\Leftrightarrow}\n\gamma_0 &:= c_0 + d_0 + 1\n\end{aligned}
$$

2nd round A priori: $\forall i \neq 0$ $(\beta_0 P + \frac{1}{Q} + \gamma_0 P + (\beta_0 + 1)S)v_0v_i$

But for some *i*: $\beta_0 P$ or $\gamma_0 R$! (Diffusion has just started)

6th round

- With chosen u, $\alpha_{u,\,j} = \beta_0 (\dots) + \gamma_0 (\dots)$, for all output coordinates.

$$
\begin{bmatrix}\n\frac{V_0}{Q_0} \\
\frac{b_0}{C_0} \\
\frac{c_0}{Q_0}\n\end{bmatrix}\n\overbrace{\n\overbrace{\n\begin{bmatrix}\n(C_0 + 1)V_0 + \cdots \\
\frac{(C_0 + C_0 + 1)V_0 + \cdots \\
\frac{(C_0 + C_0 + 1)V_0 + \cdots}{C_0V_0 + \cdots\n\end{bmatrix}}}\n\begin{bmatrix}\n\leftarrow & \beta_0 := \alpha_0 + 1 \\
\leftarrow & \gamma_0 := c_0 + \alpha_0 + 1\n\end{bmatrix}
$$

2nd round A priori: $\forall i \neq 0$ $(\beta_0 P + \frac{1}{Q} + \gamma_0 P + (\beta_0 + 1)S)v_0v_i$

But for some *i*: $\beta_0 P$ or $\gamma_0 R$! (Diffusion has just started)

6th round

- With chosen u, $\alpha_{u,\,j} = \beta_0 (\dots) + \gamma_0 (\dots)$, for all output coordinates.
- $\alpha_{u,0}, \cdots, \alpha_{u,63} \neq (0,\cdots,0) \implies \beta_0 = 1$ or $\gamma_0 = 1$

6th round

- With chosen u, $\alpha_{u,\,j}=\beta_0(\dots)+\gamma_0(\dots)$, for all output coordinates.
- $\alpha_{u,0}, \cdots, \alpha_{u,63} \neq (0,\cdots,0) \implies \beta_0 = 1$ or $\gamma_0 = 1$

In practice, reciprocal also true! $[\alpha_{u, i} = 0, \forall j] \implies \beta_0 = 0$ and $\gamma_0 = 0$

Step 1, non-adaptative: 32-degree conditional cubes


```
Output: e_i for all i \in \{0, \ldots, 63\} and a_i for some i \in \{0, \ldots, 63\}for all i ∈ {0, . . . , 63} do
  a_i \leftarrow -1, e_i \leftarrow -1 b Initialize all variables.
end for
for all i ∈ {0, . . . , 63} do
   Zv ← CubeSumVector(x
v≫i
)
  if Z_v = (0, \cdots, 0) then
     ai ← 1, ci + di ← 1 ▷ Assumption 1
   else
     Zw ← CubeSumVector(x
w≫i
)
     if Z_W = (0, \dots, 0) then
       ai ← 0, ci + di ← 1 ▷ Assumption 2
     else
       ci + di ← 0 ▷ No assumption
     end if
  end if
end for
```
 \implies Recovery of all $c_i + d_i$, and half of the a_i for 2 \times 64 \times 2³² = 2³⁹

Steps 2 and 3

Step 2, adaptative: 32-degree cubes

- The coefficients of 32-degree terms depend only on *aⁱ* and *cⁱ* + *dⁱ* .
- Step $1 \implies$ coefficients α_{ij} drastically simplifies.
- Simple-enough to be effectively-solved (Cryptominisat, [\[SNC09\]](#page-37-6)).
- ▶ Recovery of the remaining *aⁱ* .

Steps 2 and 3

Step 2, adaptative: 32-degree cubes

- The coefficients of 32-degree terms depend only on *aⁱ* and *cⁱ* + *dⁱ* .
- Step $1 \implies$ coefficients α_{ij} drastically simplifies.
- Simple-enough to be effectively-solved (Cryptominisat, [\[SNC09\]](#page-37-6)).
- ▶ Recovery of the remaining *aⁱ* .

Step 3, adaptative: **31-degree cubes**

- The remaining unknowns are hidden in the constant terms after 1 round.
- Same principle as Step 2, but with quadratic equations in *bⁱ* , *cⁱ* .
- \blacktriangleright Recovery of all b_i and c_i .

Conclusion

- Full-state recovery on the full 6-round encryption.
- About 2⁴⁰ online time and data, but nonce-misuse.
- Hard to study the complexity of the solving of equations. However effective.
- Does not threaten Ascon directly . . . if used properly!

Main questions/openings

- \triangleright Be careful with implementation : nonce \neq constant!
- Can it lead to key-recovery or forgery attacks?
- Free counter-measure : changing the external state row.

Conclusion

- Full-state recovery on the full 6-round encryption.
- About 2⁴⁰ online time and data, but nonce-misuse.
- Hard to study the complexity of the solving of equations. However effective.
- Does not threaten Ascon directly . . . if used properly!

Main questions/openings

- \triangleright Be careful with implementation : nonce \neq constant!
- Can it lead to key-recovery or forgery attacks?
- Free counter-measure : changing the external state row.

Thank you for your attention!

The whole Ascon AEAD mode

[\[DEMS,](#page-37-7) [Jea16\]](#page-37-8)

Justifying the "in practice" reciprocal

 α_{ij} *j* = $(a_0 + 1)p_{i1} + (c_0 + d_0 + 1)p_{i2} \forall j \in [0, \cdots, 63].$

When $(\sigma_0 + 1, \sigma_0 + d_0 + 1) \neq (0, 0)$, $\alpha_{u,i}$ are not expected to be **all** canceled at the same time.

Whenever we observe that $\alpha_{u,i} = 0 \forall j$, we guess that $(a_0, c_0 + d_0) = (1, 1)$.

(1000 random internal states)

Hamming weight of the cube-sum vectors (1000 random internal states)

Counter-Measure: Changing the Input Row

3/5

Counter-Measure: Changing the Input Row

Bibliography

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryptographic sponge functions, 2011.

https://keccak.team/sponge_duplex.html.

Donghoon Chang, Deukjo Hong, and Jinkeon Kang.

Conditional Cube Attacks on Ascon-128 and Ascon-80pq in a Nonce-misuse Setting. Cryptology ePrint Archive, Report 2022/544, 2022. <https://ia.cr/2022/544>.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon Tik7 figures

<https://ascon.iaik.tugraz.at/resources.html>.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and

Martin Schläffer.

Ascon v1.2

Technical report, National Institute of Standards and Technology, 2019.

[https://csrc.nist.gov/Projects/lightweight-cryptography/](https://csrc.nist.gov/Projects/lightweight-cryptography/finalists) [finalists](https://csrc.nist.gov/Projects/lightweight-cryptography/finalists).

Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao.

Conditional cube attack on reduced-round Keccak sponge function.

In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, *EUROCRYPT 2017, Part II*, volume 10211 of *LNCS*, pages 259–288, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

F

F.

E.

Jérémy Jean.

TikZ for Cryptographers.

<https://www.iacr.org/authors/tikz/>, 2016.

Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack on round-reduced ASCON. *IACR Trans. Symm. Cryptol.*, 2017(1):175–202, 2017.

Mate Soos, Karsten Nohl, and Claude Castelluccia.

Extending SAT solvers to cryptographic problems.

In Oliver Kullmann, editor, *Theory and Applications of Satisfiability Testing - SAT 2009*, volume 5584 of *Lecture Notes in Computer Science*, pages 244–257. Springer, 2009.

Serge Vaudenay and Damian Vizár.

Can caesar beat galois? - Robustness of CAESAR candidates against nonce reusing and high data complexity attacks.

In Bart Preneel and Frederik Vercauteren, editors, *ACNS 18*, volume 10892 of *LNCS*, pages 476–494, Leuven, Belgium, July 2–4, 2018. Springer, Heidelberg, Germany.