Practical cube-attack against nonce-misused Ascon

Jules BAUDRIN, Anne Canteaut & Léo Perrin

Inria, Paris, France

May, 2024

Contact: jules.baudrin@inria.fr

In this talk

Ascon rationale, its internal components and our attack setting

Cube attack, main problems, first part of the answer

Conditional cubes, second part of the answer

Overview of the internal-state recovery

Ascon [DEMS19] design rationale

Authenticated encryption \rightarrow one of the winners of CAESAR (2014 – 2019).

Lightweight

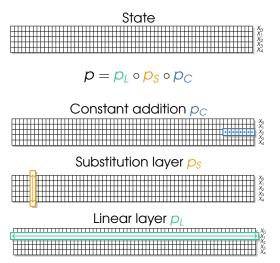
"meets the needs of most use cases where lightweight cryptography is required" [NIST webpage]

 \rightarrow winner of NIST LWC standardization process (2018 – 2023).

Permutation-based Duplex Sponge mode [BDPA11] instantiated with permutation $p: \mathbb{F}_2^{320} \to \mathbb{F}_2^{320}$.

The permutation

A confusion/diffusion structure...



... studied algebraically

$$y_0 = x_4 x_1 + x_3 + x_2 x_1 + x_2 + x_1 x_0 + x_1 + x_0$$

$$y_1 = x_4 + x_3 x_2 + x_3 x_1 + x_3 + x_2 x_1 + x_2 + x_1 + x_0$$

$$y_2 = x_4 x_3 + x_4 + x_2 + x_1 + 1$$

$$y_3 = x_4 x_0 + x_4 + x_3 x_0 + x_3 + x_2 + x_1 + x_0$$

$$y_4 = x_4 x_1 + x_4 + x_3 + x_1 x_0 + x_1$$

Algebraic Normal Form (ANF) of the S-box

$$X_{0} = X_{0} \oplus (X_{0} \implies 19) \oplus (X_{0} \implies 28)$$

$$X_{1} = X_{1} \oplus (X_{1} \implies 61) \oplus (X_{1} \implies 39)$$

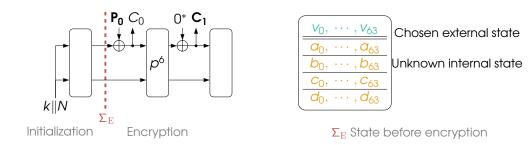
$$X_{2} = X_{2} \oplus (X_{2} \implies 1) \oplus (X_{2} \implies 6)$$

$$X_{3} = X_{3} \oplus (X_{3} \implies 10) \oplus (X_{3} \implies 17)$$

$$X_{4} = X_{4} \oplus (X_{4} \implies 7) \oplus (X_{4} \implies 41)$$

ANF of the linear layer p_L

Simplified setting of Ascon -128



- Many reuse of the same (k, N) pair.
- State recovery = compromised confidentiality without interaction.
- No trivial key-recovery nor forgery in that case.
- Different from the generic attack [VV18].

The main lemma

If $v = (v_1, \cdots, v_n)$ and $u = (u_1, \cdots, u_n)$ we define $v^u := \prod_{i=1}^n v_i^{u_i}$.

$$\begin{array}{rcl} \text{Coefficients} \leftrightarrow \text{values relations} \\ \text{Let } f \colon \mathbb{F}_2^n \to \mathbb{F}_2, v \mapsto \sum_{u \in \mathbb{F}_2^n} \alpha_u v^u. & \forall \ y \in \mathbb{F}_2^n \ f(y) = \sum_{u \preceq y} \alpha_u & \text{and} \\ \hline & \alpha_y = \sum_{u \preceq y} f(u) \end{array}$$

Proof.

$$v^{u} = 1 \iff \operatorname{Supp}(u) \subset \operatorname{Supp}(v)$$
$$\sum_{u \leq y} f(u) = \sum_{u \leq y} \sum_{v \leq u} \alpha_{v} = \sum_{v \leq y} \sum_{v \leq u \leq y} \alpha_{v} = \sum_{v \leq y} 2^{w(y) - w(v)} \alpha_{v} = \alpha_{y}$$

 \implies Recovery of α_u for $2^{w(u)}$ chosen queries.

 f_j : *j*-th output coordinate, $f_j \in \mathbb{F}_2[a_0, \cdots, a_{63}][v_0, \cdots, v_{63}]$.

$$f_j = \sum_{(u_0, \cdots, u_{63}) \in \mathbb{F}_2^{64}} \alpha_{u, j} \left(\prod_{i=0}^{63} v_i^{u_i} \right) \text{, where } \alpha_{u, j} \in \mathbb{F}_2[\alpha_0, \cdots, \alpha_{63}].$$

 f_j : *j*-th output coordinate, $f_j \in \mathbb{F}_2[a_0, \cdots, a_{63}][v_0, \cdots, v_{63}]$.

$$f_j = \sum_{(u_0, \cdots, u_{63}) \in \mathbb{F}_2^{64}} \alpha_{u, j} \left(\prod_{i=0}^{63} v_i^{u_i} \right) \text{, where } \alpha_{u, j} \in \mathbb{F}_2[\alpha_0, \cdots, \alpha_{63}].$$

Cube attack Polynomial expression of $\alpha_{u, j}$ + value of $\alpha_{u, j}$ = equation in unknown variables \simeq recovery of some information

- Online recovery of the value: $\alpha_{u, j} = \sum_{v \preccurlyeq u} f_j(v)$ for $2^{w(u)}$ chosen queries.
- Offline recovery of the expression.

Problem 1: Still hard for a single $\alpha_{u, j}$ Too many combinatorial possibilities.

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Problem 1: Still hard for a single $\alpha_{u, j}$ Too many combinatorial possibilities.

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Problem 2: finding $\alpha_{u, j}$ with "simple" expressions. We want to solve the system! (Linear, sparse, low-degree, ...)

Problem 1: Still hard for a single $\alpha_{u, j}$ Too many combinatorial possibilities.

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

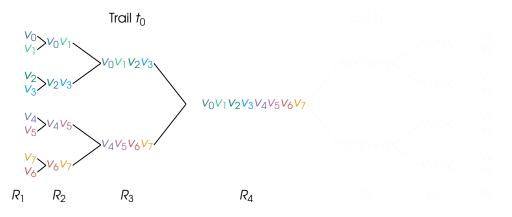
Problem 2: finding $\alpha_{u, j}$ with "simple" expressions. We want to solve the system! (Linear, sparse, low-degree, ...)

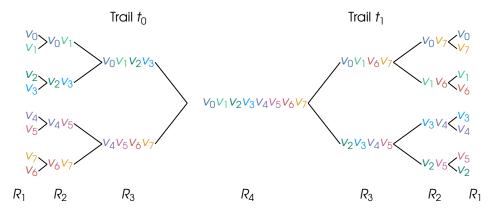
Problem 1: Still hard for a single $\alpha_{u, j}$ Too many combinatorial possibilities.

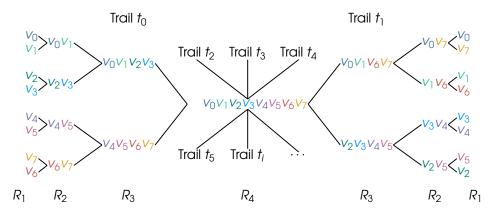
 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

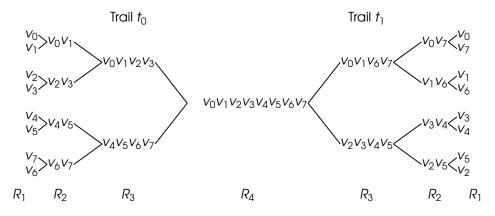
Problem 2: finding $\alpha_{u, j}$ with "simple" expressions. We want to solve the system! (Linear, sparse, low-degree, ...)

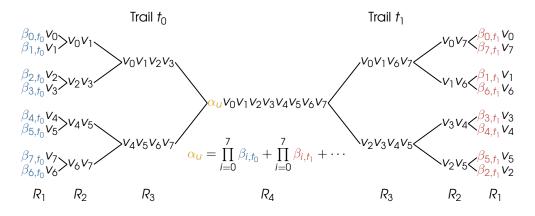
► Highest-degree terms (degree 2^{t-1} at round t) are easier to study! **Strong constraint**: products of two highest-degree terms one round before. $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times T = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$



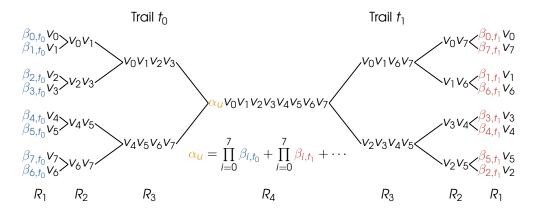








Strong constraint: products of two former highest-degree terms.



For r = 6, still too many trails and α_u usually looks horrible! Cheaper / easier recovery: conditional cubes [HWX⁺17, LDW17, CHK22]

Conditional cube

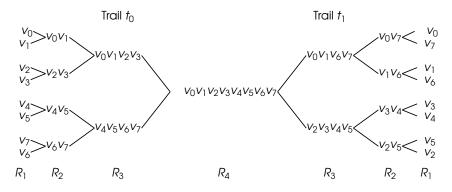
Conditional cube Look for $\alpha_u = \beta_0 P$ where β_0 simple and known, P unknown.

- Partial knowledge but still: $\alpha_u = 1 \implies \beta_0 = 1$.
- If β_0 is linear, we get a linear system.

Conditional cube

Conditional cube Look for $\alpha_u = \beta_0 P$ where β_0 simple and known, P unknown.

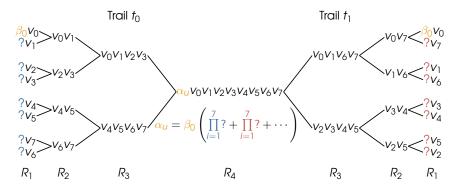
- Partial knowledge but still: $\alpha_u = 1 \implies \beta_0 = 1$.
- If β_0 is linear, we get a linear system.

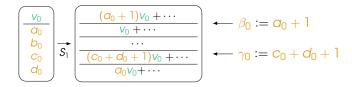


Conditional cube

Conditional cube Look for $\alpha_u = \beta_0 P$ where β_0 simple and known, P unknown.

- Partial knowledge but still: $\alpha_u = 1 \implies \beta_0 = 1$.
- If β_0 is linear, we get a linear system.





2nd round A priori: $\forall i \neq 0 \left(\beta_0 P + 1Q + \gamma_0 R + (\beta_0 + 1)S \right) v_0 v_i$.

But for some *i*: $\beta_0 P$ or $\gamma_0 R$! (Diffusion has just started)

2nd round A priori: $\forall i \neq 0 \left(\beta_0 P + 1Q + \gamma_0 R + (\beta_0 + 1)S \right) v_0 v_i$.

But for some *i*: $\beta_0 P$ or $\gamma_0 R$! (Diffusion has just started)

6th round

- With chosen u, $\alpha_{u, j} = \beta_0(...) + \gamma_0(...)$, for all output coordinates.

2nd round A priori: $\forall i \neq 0 \left(\beta_0 P + 1Q + \gamma_0 R + (\beta_0 + 1)S \right) v_0 v_i$.

But for some *i*: $\beta_0 P$ or $\gamma_0 R$! (Diffusion has just started)

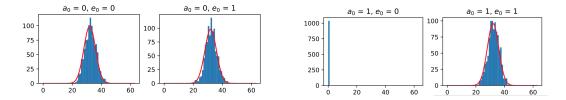
6th round

- With chosen u, $\alpha_{u, j} = \beta_0(...) + \gamma_0(...)$, for all output coordinates.
- $(\alpha_{u,0}, \cdots, \alpha_{u,63}) \neq (0, \cdots, 0) \implies \beta_0 = 1 \text{ or } \gamma_0 = 1$

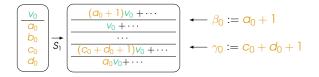
6th round

- With chosen u, $\alpha_{u, j} = \beta_0(...) + \gamma_0(...)$, for all output coordinates.
- $(\alpha_{u,0}, \cdots, \alpha_{u,63}) \neq (0, \cdots, 0) \implies \beta_0 = 1 \text{ or } \gamma_0 = 1$

In practice, reciprocal also true! $[\alpha_{u, j} = 0, \forall j] \implies \beta_0 = 0 \text{ and } \gamma_0 = 0$



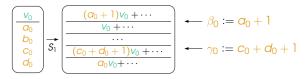
Step 1, non-adaptative: 32-degree conditional cubes



 \implies Recovery of all $c_i + d_i$, and half of the a_i for $2 \times 64 \times 2^{32} = 2^{39}$

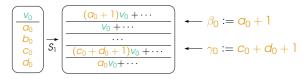
Steps 2 and 3

Step 2, adaptative: 32-degree cubes



- The coefficients of 32-degree terms depend only on a_i and $c_i + d_i$.
- Step 1 \implies coefficients α_u drastically simplifies.
- Simple-enough to be effectively-solved (Cryptominisat, [SNC09]).
- Recovery of the remaining a_i .

Step 2, adaptative: 32-degree cubes



- The coefficients of 32-degree terms depend only on a_i and $c_i + d_i$.
- Step 1 \implies coefficients α_u drastically simplifies.
- Simple-enough to be effectively-solved (Cryptominisat, [SNC09]).
- Recovery of the remaining a_i .

Step 3, adaptative: 31-degree cubes

- The remaining unknowns are hidden in the constant terms after 1 round.
- Same principle as Step 2, but with quadratic equations in b_i, c_i .
- Recovery of all b_i and c_i .

Conclusion

- Full-state recovery on the full 6-round encryption.
- About 2⁴⁰ online time and data, but nonce-misuse.
- Hard to study the complexity of the solving of equations. However effective.
- Does not threaten Ascon directly ... if used properly!

Main questions/openings

- ▶ Be careful with implementation : nonce \neq constant!
- Can it lead to key-recovery or forgery attacks?
- ▶ Free counter-measure : changing the external state row.

Conclusion

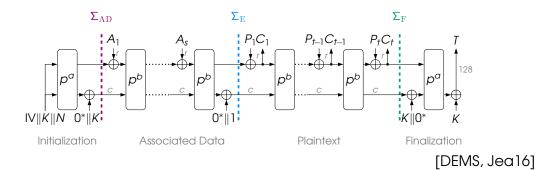
- Full-state recovery on the full 6-round encryption.
- About 2⁴⁰ online time and data, but nonce-misuse.
- Hard to study the complexity of the solving of equations. However effective.
- Does not threaten Ascon directly ... if used properly!

Main questions/openings

- ▶ Be careful with implementation : nonce \neq constant!
- Can it lead to key-recovery or forgery attacks?
- ▶ Free counter-measure : changing the external state row.

Thank you for your attention!

The whole Ascon AEAD mode

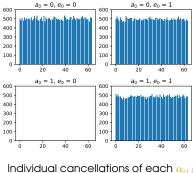


Justifying the "in practice" reciprocal

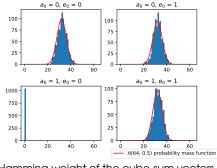
 $\alpha_{u, j} = (a_0 + 1)p_{j,1} + (c_0 + d_0 + 1)p_{j,2} \ \forall j \in [[0, \cdots, 63]].$

When $(a_0 + 1, c_0 + d_0 + 1) \neq (0, 0)$, $\alpha_{u, j}$ are not expected to be **all** canceled at the same time.

Whenever we observe that $\alpha_{u,j} = 0 \forall j$, we guess that $(\alpha_0, c_0 + d_0) = (1, 1)$.



Individual cancellations of each $\alpha_{u,j}$ (1000 random internal states)



Hamming weight of the cube-sum vectors (1000 random internal states)

Counter-Measure: Changing the Input Row

State after initialization	Linear terms after S ₁	Size of the sets	Analysis
<i>a</i> ₀	$(a_0 + b_0 + d_0 + 1)v_0$	5	
V ₀	$(b_0 + c_0 + 1)v_0$	3	
b_0	V ₀		5 + 3 + 5 + 12 < 31
c_0	V ₀		No conditional cube
d_0	$(a_0 + d_0 + 1)v_0$	5	as we describe.
Nb of variables not multiplied by v_0 after S_2		12	-
a ₀	$(b_0 + 1)v_0$	4	
b_0	$(b_0 + c_0 + 1)v_0$	6	4 + 6 + 23 > 31.
V ₀	V ₀		Cubes can be built as
c_0	V_0		described but less effective.
d_0	*		
Nb of variables not multiplied		23	(32 of the 256-bit state in avg.)
by v_0 after S_2			

3/5

Counter-Measure: Changing the Input Row

State after initialization	Linear terms after S ₁	Size of the sets	Analysis
<i>a</i> ₀	V ₀		
b_0	$(b_0 + c_0 + 1)v_0$	3	
c_0	$d_0 v_0$	4	3 + 4 + 5 + 12 < 31
V ₀	$(a_0 + 1)v_0$	5	No conditional cube
d_0	V ₀		as we describe.
Nb of variables not multiplied by v_0 after S_2		12	
		5	
<i>a</i> ₀	$b_0 v_0$	5	
b_0	V ₀		5 + 4 + 5 + 5 + 12 = 31
<i>C</i> ₀	$(d_0 + 1)v_0$	4	but b_0 and $b_0 + 1$ cannot
d_0	$(a_0 + 1)v_0$	5	be used at the same time.
V ₀	$(b_0 + 1)v_0$	5	
Nb of variables not multiplied		12	No conditional cube
by v_0 after S_2		ΙZ	as we describe.

Bibliography

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryptoaraphic sponae functions. 2011.

https://keccak.team/sponge_duplex.html.

Donghoon Chang, Deukjo Hong, and Jinkeon Kang.

Conditional Cube Attacks on Ascon-128 and Ascon-80pq in a Nonce-misuse Setting. Cryptology ePrint Archive, Report 2022/544, 2022.

Cryptology ePrint Archive, Report 2022/544, 2022. https://ia.cr/2022/544.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon TikZ figures.

https://ascon.iaik.tugraz.at/resources.html.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and

Martin Schläffer.

Ascon v1.2.

Technical report, National Institute of Standards and Technology, 2019.

https://csrc.nist.gov/Projects/lightweight-cryptography/ finalists.

Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao.

Conditional cube attack on reduced-round Keccak sponge function.

In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 259–288, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

Jérémy Jean.

TikZ for Cryptographers.

https://www.iacr.org/authors/tikz/,2016.

Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack on round-reduced ASCON. IACR Trans. Symm. Cryptol., 2017(1):175–202, 2017.

Mate Soos, Karsten Nohl, and Claude Castelluccia.

Extending SAT solvers to cryptographic problems.

In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT 2009, volume 5584 of Lecture Notes in Computer Science, pages 244–257. Springer, 2009.

Serge Vaudenay and Damian Vizár.

Can caesar beat galois? - Robustness of CAESAR candidates against nonce reusing and high data complexity attacks.

In Bart Preneel and Frederik Vercauteren, editors, *ACNS 18*, volume 10892 of *LNCS*, pages 476–494, Leuven, Belgium, July 2–4, 2018. Springer, Heidelberg, Germany.