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In this talk

Ascon rationale, its internal components and our attack setting

Cube attack, main problems, first part of the answer

Conditional cubes, second part of the answer

Overview of the internal-state recovery
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Ascon [DEMS19] design rationale

Authenticated encryption
→ one of the winners of CAESAR (2014 – 2019).

Lightweight
“meets the needs of most use cases where lightweight cryptography is
required” [NIST webpage]

→ winner of NIST LWC standardization process (2018 – 2023).

Permutation-based
Duplex Sponge mode [BDPA11] instantiated with permutation p : F320

2 → F320
2 .
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The permutation

A confusion/diffusion structure. . . . . . studied algebraically

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0
y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0
y2 = x4x3 + x4 + x2 + x1 + 1
y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0
y4 = x4x1 + x4 + x3 + x1x0 + x1

Algebraic Normal Form (ANF) of the S-box

X0 = X0 ⊕ (X0 ≫ 19) ⊕ (X0 ≫ 28)
X1 = X1 ⊕ (X1 ≫ 61) ⊕ (X1 ≫ 39)
X2 = X2 ⊕ (X2 ≫ 1) ⊕ (X2 ≫ 6)
X3 = X3 ⊕ (X3 ≫ 10) ⊕ (X3 ≫ 17)
X4 = X4 ⊕ (X4 ≫ 7) ⊕ (X4 ≫ 41)

ANF of the linear layer pL

State

X4
X3
X2
X1
X0

p = pL ◦ pS ◦ pC

Constant addition pC

X4
X3
X2
X1
X0

Substitution layer pS

X4
X3
X2
X1
X0

Linear layer pL

X4
X3
X2
X1
X0
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The nonce-misuse scenario

Simplified setting of Ascon -128

v0, · · · , v63
a0, · · · ,a63
b0, · · · ,b63
c0, · · · ,c63
d0, · · · ,d63

Unknown internal state

Chosen external state

ΣE State before encryption

k∥N

Initialization

P0 C0

p6

ΣE
Encryption

0∗ C1

- Many reuse of the same (k,N) pair.
- State recovery = compromised confidentiality without interaction.
- No trivial key-recovery nor forgery in that case.
- Different from the generic attack [VV18].
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The main lemma

If v = (v1, · · · , vn) and u = (u1, · · · ,un) we define vu :=
∏n

i=1 vi ui .

Coefficients ↔ values relations
Let f : Fn

2 → F2, v 7→
∑

u∈Fn
2
αuvu. ∀ y ∈ Fn

2 f (y) =
∑

u⪯y αu and

αy =
∑

u⪯y f (u)

Proof.

vu = 1 ⇐⇒ Supp(u) ⊂ Supp(v)

∑
u⪯y

f (u) =
∑
u⪯y

∑
v⪯u

αv =
∑
v⪯y

∑
v⪯u⪯y

αv =
∑
v⪯y

2w(y)−w(v)αv = αy

=⇒ Recovery of αu for 2w(u) chosen queries.
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Cube attack principle

fj : j-th output coordinate, fj ∈ F2[a0, · · · ,d63][v0, · · · , v63].

fj =
∑

(u0,··· ,u63)∈F64
2

αu, j

(
63∏
i=0

vi ui

)
, where αu, j ∈ F2[a0, · · · ,d63].

Cube attack
Polynomial expression of αu, j + value of αu, j

=
equation in unknown variables

≃
recovery of some information

- Online recovery of the value: αu, j =
∑
v≼u

fj(v) for 2w(u) chosen queries.

- Offline recovery of the expression.
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Main problems with the polynomials recovery

Problem 0: impossible access to the full ANF.

Problem 1: Still hard for a single αu, j

Too many combinatorial possibilities.

v0v1 = v0 × v1 = (v0v1)× 1 = (v0v1)× v0 = (v0v1)× v1 = (v0v1)× (v0v1)

Problem 2: finding αu, j with “simple” expressions.
We want to solve the system! (Linear, sparse, low-degree, . . . )
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Problem 1: Still hard for a single αu, j

Too many combinatorial possibilities.

v0v1 = v0 × v1 = (v0v1)× 1 = (v0v1)× v0 = (v0v1)× v1 = (v0v1)× (v0v1)

Problem 2: finding αu, j with “simple” expressions.
We want to solve the system! (Linear, sparse, low-degree, . . . )

▶ Highest-degree terms (degree 2t−1 at round t) are easier to study!
Strong constraint: products of two highest-degree terms one round before.
v0v1 = v0 × v1 =�����(v0v1)× 1 =������

(v0v1)× v0 =������
(v0v1)× v1 =(((((((

(v0v1)× (v0v1)
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A partial answer: highest-degree terms

Strong constraint: products of two former highest-degree terms.
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Strong constraint: products of two former highest-degree terms.

αuv0v1v2v3v4v5v6v7

R4

Trail t0

v0v1v2v3

v4v5v6v7

R3

Trail t1

v0v1v6v7

v2v3v4v5

R3

v0v1

v2v3

v4v5

v6v7

R2

v0v7

v1v6

v2v5

v3v4

R2

β0,t0v0
β0,t0v1

β0,t0v2
β0,t0v3

β0,t0v4
β0,t0v5

β0,t0v6
β0,t0v7

R1

β0,t0v0
β0,t0v7

β0,t0v1
β0,t0v6

β0,t0v3
β0,t0v4

β0,t0v2
β0,t0v5

β0,t0R1
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For r = 6, still too many trails and αu usually looks horrible!
▶ Cheaper / easier recovery: conditional cubes [HWX+17, LDW17, CHK22]
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Conditional cube

Conditional cube
Look for αu = β0P where β0 simple and known, P unknown.

- Partial knowledge but still: αu = 1 =⇒ β0 = 1.
- If β0 is linear, we get a linear system.
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Choosing conditional cubes by forcing linear divisors

1st round
v0
a0
b0
c0
d0

(a0 + 1)v0 + · · ·
v0 + · · ·

· · ·
(c0 + d0 + 1)v0 + · · ·

a0v0+ · · ·
γ0 := c0 + d0 + 1

β0 := a0 + 1

S1

2nd round
A priori: ∀i ̸= 0

(
β0P + 1Q + γ0R + (β0 + 1)S

)
v0vi . But for some i: β0P or γ0R !

(Diffusion has just started)

6th round
- With chosen u, αu, j = β0(. . . ) + γ0(. . . ) , for all output coordinates.
-
(
αu,0, · · · , αu,63

)
̸= (0, · · · , 0) =⇒ β0 = 1 or γ0 = 1
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Choosing conditional cubes by forcing linear divisors

6th round
- With chosen u, αu, j = β0(. . . ) + γ0(. . . ) , for all output coordinates.
-
(
αu,0, · · · , αu,63

)
̸= (0, · · · , 0) =⇒ β0 = 1 or γ0 = 1

In practice, reciprocal also true!
[αu, j = 0, ∀ j ] =⇒ β0 = 0 and γ0 = 0
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Step 1, non-adaptative: 32-degree conditional cubes

v0
a0
b0
c0
d0

(a0 + 1)v0 + · · ·
v0 + · · ·

· · ·
(c0 + d0 + 1)v0 + · · ·

a0v0+ · · ·
γ0 := c0 + d0 + 1

β0 := a0 + 1

S1

Output: ei for all i ∈ {0, . . . , 63} and ai for some i ∈ {0, . . . , 63}
for all i ∈ {0, . . . , 63} do

ai ← −1, ei ← −1 ▷ Initialize all variables.
end for

for all i ∈ {0, . . . , 63} do
Zv ← CubeSumVector(xv≫i )
if Zv = (0, · · · , 0) then

ai ← 1, ci + di ← 1 ▷ Assumption 1
else

Zw ← CubeSumVector(xw≫i )
if Zw = (0, · · · , 0) then

ai ← 0, ci + di ← 1 ▷ Assumption 2
else

ci + di ← 0 ▷ No assumption
end if

end if
end for

=⇒ Recovery of all ci + di , and half of the ai for 2× 64× 232 = 239
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Steps 2 and 3

Step 2, adaptative: 32-degree cubes

v0
a0
b0
c0
d0

(a0 + 1)v0 + · · ·
v0 + · · ·

· · ·
(c0 + d0 + 1)v0 + · · ·

a0v0+ · · ·
γ0 := c0 + d0 + 1

β0 := a0 + 1

S1

- The coefficients of 32-degree terms depend only on ai and ci + di .
- Step 1 =⇒ coefficients αu drastically simplifies.
- Simple-enough to be effectively-solved (Cryptominisat, [SNC09]).
▶ Recovery of the remaining ai .

Step 3, adaptative: 31-degree cubes
- The remaining unknowns are hidden in the constant terms after 1 round.
- Same principle as Step 2, but with quadratic equations in bi ,ci .
▶ Recovery of all bi and ci .
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Conclusion

- Full-state recovery on the full 6-round encryption.
- About 240 online time and data, but nonce-misuse.
- Hard to study the complexity of the solving of equations.
However effective.

- Does not threaten Ascon directly . . . if used properly!

Main questions/openings
▶ Be careful with implementation : nonce ̸= constant!
▶ Can it lead to key-recovery or forgery attacks?
▶ Free counter-measure : changing the external state row.
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Conclusion

- Full-state recovery on the full 6-round encryption.
- About 240 online time and data, but nonce-misuse.
- Hard to study the complexity of the solving of equations.
However effective.

- Does not threaten Ascon directly . . . if used properly!

Main questions/openings
▶ Be careful with implementation : nonce ̸= constant!
▶ Can it lead to key-recovery or forgery attacks?
▶ Free counter-measure : changing the external state row.

Thank you for
your attention!



1/5

The whole Ascon AEAD mode

IV∥K∥N

pa

Initialization

0∗∥K

ΣAD

A1
r

pb
c

As
r

pb
c

Associated Data

0∗∥1

ΣE

P1C1
r

c
pb

Pt−1Ct−1
r

c
pb

Plaintext

PtCt
r

c

ΣF

K∥0∗

pa

Finalization

K

T

128

[DEMS, Jea16]
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Justifying the “in practice” reciprocal

αu, j = (a0 + 1)pj,1 + (c0 + d0 + 1)pj,2 ∀ j ∈ J0, · · · , 63K.

When (a0 + 1,c0 + d0 + 1) ̸= (0, 0), αu, j are not expected to be all canceled at the same
time.

Whenever we observe that αu, j = 0 ∀ j, we guess that (a0,c0 + d0) = (1, 1).
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0 20 40 60
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200
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Individual cancellations of each αu,j
(1000 random internal states)
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a0 = 1, e0 = 1

(64, 0.5) probability mass function

Hamming weight of the cube-sum vectors
(1000 random internal states)



3/5

Counter-Measure: Changing the Input Row

State after Linear terms Size of Analysisinitialization after S1 the sets

a0 (a0 + b0 + d0 + 1)v0 5
v0 (b0 + c0 + 1)v0 3
b0 v0 5+ 3+ 5+ 12 < 31
c0 v0 No conditional cube
d0 (a0 + d0 + 1)v0 5 as we describe.

Nb of variables not multiplied 12by v0 after S2
a0 (b0 + 1)v0 4
b0 (b0 + c0 + 1)v0 6 4+ 6+ 23 > 31.
v0 v0 Cubes can be built as
c0 v0 described but less effective.
d0 *

Nb of variables not multiplied 23 (32 of the 256-bit state in avg.)
by v0 after S2

Table: Example : the first row states that, for 5 indices i, the coefficients of all v0vi share
(a0 + b0 + d0 + 1) as a factor.
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Counter-Measure: Changing the Input Row

State after Linear terms Size of Analysisinitialization after S1 the sets

a0 v0
b0 (b0 + c0 + 1)v0 3
c0 d0v0 4 3+ 4+ 5+ 12 < 31
v0 (a0 + 1)v0 5 No conditional cube
d0 v0 as we describe.

Nb of variables not multiplied 12by v0 after S2
a0 b0v0 5
b0 v0 5+ 4+ 5+ 5+ 12 = 31
c0 (d0 + 1)v0 4 but b0 and b0 + 1 cannot
d0 (a0 + 1)v0 5 be used at the same time.
v0 (b0 + 1)v0 5

Nb of variables not multiplied 12 No conditional cube
by v0 after S2 as we describe.

Table: Example : the second row states that, for 3 indices i, the coefficients of all v0vi share
(b0 + c0 + 1) as a factor.
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