Linear self-equivalence : a unifying point-of-view on the known families of APN functions

Jules Baudrin

based on joint works with A. Canteaut & L. Perrin

Crypto seminar, UVSQ, February 21th, 2025

Contact: jules.baudrin@uclouvain.be

Searching for ideal components

Using optimal components

- to reach a high security at *lower costs*
- to achieve ideal properties assumed in security proofs

Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study Introduction •0

A unified PoV on APN functions

Outline

- Symmetric encryption schemes
- Block cipher (security and construction)
- Differential cryptanalysis and APN functions
- Vectorial Boolean function study
- APN state of the art
- Our unified point of view on the known APN functions

Symmetric encryption

Goal

Ensure confidentiality under the assumption of a shared secret $\mathcal{Q}_{\mathbf{v}}$.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions •0

Symmetric encryption

Goal

Ensure confidentiality under the assumption of a shared secret $\mathcal{Q}_{\mathbf{v}}$.

Constraints

- Secure
- Easily implemented ٠
- Arbitrary-long messages

Introduction Symmetric encryption .

Block ciphers Differential cryptanalysis Boolean function study

A unified PoV on APN functions

Building a symmetric encryption scheme

Ingredients

- a key-dependent transformation of *n*-bit words (*e.g.* n = 128). Block cipher ٠
- a chaining method to handle arbitrary-long messages •

Mode of operation

Introduction Symmetric encryption

Block ciphers Differential cryptanalysis Boolean function study

A unified PoV on APN functions

Block ciphers

Block cipher

A key-dependent transformation of *n*-bit words. \rightsquigarrow A family of bijections \mathcal{E} :

$$\mathcal{E} = \left(E_{\mathbf{k}} \colon \mathbb{F}_{2}^{n} \xrightarrow{\sim} \mathbb{F}_{2}^{n} \right)_{\mathbf{k} \in \mathbb{F}_{2}^{\kappa}}$$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

• •

Block ciphers

Block cipher

A key-dependent transformation of *n*-bit words. \rightarrow A family of bijections \mathcal{E} :

$$\mathcal{E} = \left(\mathsf{E}_{\mathbf{k}} \colon \mathbb{F}_{2}^{n} \xrightarrow{\sim} \mathbb{F}_{2}^{n} \right)_{\mathbf{k} \in \mathbb{F}_{2}^{\kappa}}$$

Ideal block cipher

A random family of bijections.

In practice, E should be *indistinguishable* from a random family of bijections

- to satisfy assumptions of security proofs ٠
- to avoid key recoveries.

Iterated block ciphers

Block cipher

A family of bijections
$$\mathcal{E} = \left(\mathsf{E}_{k} \colon \mathbb{F}_{2}^{n} \xrightarrow{\sim} \mathbb{F}_{2}^{n} \right)_{k \in \mathbb{F}_{2}^{n}}$$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

0

Iterated block ciphers

Block cipher

A family of bijections
$$\mathcal{E} = \left(\mathsf{E}_{k} \colon \mathbb{F}_{2}^{n} \xrightarrow{\sim} \mathbb{F}_{2}^{n} \right)_{k \in \mathbb{F}_{2}^{k}}$$
.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

0

Iterated block ciphers

Block cipher

A family of bijections
$$\mathcal{E} = \left(\mathsf{E}_{k} \colon \mathbb{F}_{2}^{n} \xrightarrow{\sim} \mathbb{F}_{2}^{n} \right)_{k \in \mathbb{F}_{2}^{k}}$$
.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

0.

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Principle

Studies for each input difference $\Delta^{in} \in \mathbb{F}_2^n$, the distribution of output differences:

$$\not\subset \Delta^{\mathrm{out}} \in \mathbb{F}_2^n, \quad \mathbb{P}_{x \leftarrow \mathbb{F}_2^n} \left[F(x + \Delta^{\mathrm{in}}) + F(x) = \Delta^{\mathrm{out}} \right] = ?$$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$.

Principle

Studies for each input difference $\Delta^{in} \in \mathbb{F}_2^n$, the distribution of output differences:

$$\not \subset \Delta^{\mathrm{out}} \in \mathbb{F}_2^n, \quad \mathbb{P}_{x \leftarrow \mathbb{F}_2^n} \left[F(x + \Delta^{\mathrm{in}}) + F(x) = \Delta^{\mathrm{out}} \right] = ?$$

Average over all bijections $F(x + \Delta^{in}) + F(x) = \Delta^{out}$ has 1 solution x on average.

00000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^n.$

Principle

Studies for each input difference $\Delta^{in} \in \mathbb{F}_2^n$, the *distribution of output differences*:

$$\not \subset \Delta^{\mathrm{out}} \in \mathbb{F}_2^n, \quad \mathbb{P}_{x \leftarrow \mathbb{F}_2^n} \left[F(x + \Delta^{\mathrm{in}}) + F(x) = \Delta^{\mathrm{out}} \right] = ?$$

Average over all bijections $F(x + \Delta^{in}) + F(x) = \Delta^{out}$ has 1 solution x on average.

Differential distinguisher[BihSha91] $\Delta^{in} \neq 0, \Delta^{out}$ s.t for many k, $E_k(x + \Delta^{in}) + E_k(x) = \Delta^{out}$ has many solutions x.IntroductionSymmetric encryptionBlock ciphersDifferential cryptanalysisBoolean function studyA unified PoV on APN functions9/33

Differential distinguisher

10/33

 $\Delta^{\text{in}} \neq 0, \Delta^{\text{out}}$ s.t for many k, $E_k(x + \Delta^{\text{in}}) + E_k(x) = \Delta^{\text{out}}$ has many solutions x.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Differential distinguisher $\Delta^{\text{in}} \neq 0, \Delta^{\text{out}}$ s.t for many k, $E_k(x + \Delta^{\text{in}}) + E_k(x) = \Delta^{\text{out}}$ has many solutions x.

Differential resistance

For all $\Delta^{\text{in}} \neq 0$, Δ^{out} and all keys k, $E_k(x + \Delta^{\text{in}}) + E_k(x) = \Delta^{\text{out}}$ has few solutions.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Differential distinguisher $\Delta^{\text{in}} \neq 0, \Delta^{\text{out}}$ s.t for many $k_{\text{in}} = E_k(x + \Delta^{\text{in}}) + E_k(x) = \Delta^{\text{out}}$ has many solutions x. Differential resistance For all $\Delta^{\text{in}} \neq 0$, Δ^{out} and all keys k, $E_k(x + \Delta^{\text{in}}) + E_k(x) = \Delta^{\text{out}}$ has few solutions. How to achieve this

For all $\Delta^{\text{in}} \neq 0$, $\Delta^{\text{out}} \delta_{S}(\Delta^{\text{in}}, \Delta^{\text{out}}) := |\{x, S(x + \Delta^{\text{in}}) + S(x) = \Delta^{\text{out}}\}|$ as low as possible.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

00000

Differential distinguisher $\Delta^{\text{in}} \neq 0, \Delta^{\text{out}}$ s.t for many k, $E_k(x + \Delta^{in}) + E_k(x) = \Delta^{out}$ has many solutions x. Differential resistance For all $\Delta^{\text{in}} \neq 0$, Δ^{out} and all keys k, $E_k(x + \Delta^{\text{in}}) + E_k(x) = \Delta^{\text{out}}$ has few solutions. How to achieve this For all $\Delta^{\text{in}} \neq 0$, $\Delta^{\text{out}} \delta_{S}(\Delta^{\text{in}}, \Delta^{\text{out}}) := |\{x, S(x + \Delta^{\text{in}}) + S(x) = \Delta^{\text{out}}\}|$ as low as possible.

On average over all (rk_0, rk_1, rk_2) $\mathbb{P}[\Delta^{\mathrm{in}}, \Delta^{(1)}, \Delta^{\mathrm{out}}] \le \left(\frac{\max_{a \neq \mathbf{0}, b} \delta_{\mathcal{S}}(a, b)}{2^{m}}\right)^{d(\boldsymbol{L})}$

00000

Differential cryptanalysis Boolean function study

A unified PoV on APN functions

How to achieve this For all $\Delta^{\text{in}} \neq 0$, $\Delta^{\text{out}} \delta_{S}(\Delta^{\text{in}}, \Delta^{\text{out}}) := |\{x, S(x + \Delta^{\text{in}}) + S(x) = \Delta^{\text{out}}\}|$ as low as possible.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

How to achieve this For all $\Delta^{\text{in}} \neq 0$, $\Delta^{\text{out}} \delta_{S}(\Delta^{\text{in}}, \Delta^{\text{out}}) := |\{x, S(x + \Delta^{\text{in}}) + S(x) = \Delta^{\text{out}}\}|$ as low as possible.

• For all Δ^{in} , there exists Δ^{out} such that $\delta_{S}(\Delta^{\text{in}}, \Delta^{\text{out}}) > 0$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

00000

How to achieve this For all $\Delta^{\text{in}} \neq 0$, $\Delta^{\text{out}} \delta_{S}(\Delta^{\text{in}}, \Delta^{\text{out}}) := |\{x, S(x + \Delta^{\text{in}}) + S(x) = \Delta^{\text{out}}\}|$ as low as possible.

- For all Δ^{in} , there exists Δ^{out} such that $\delta_{S}(\Delta^{\text{in}}, \Delta^{\text{out}}) > 0$
- For all $\Delta^{\text{in}} \neq 0$, Δ^{out} , x is a solution iff $x + \Delta^{\text{in}}$ is a solution. $\delta_{\varsigma}(\Delta^{\text{in}}, \Delta^{\text{out}})$ is even. ٠

oV on APN functions

How to achieve this For all $\Delta^{\text{in}} \neq 0$, $\Delta^{\text{out}} \delta_{S}(\Delta^{\text{in}}, \Delta^{\text{out}}) := |\{x, S(x + \Delta^{\text{in}}) + S(x) = \Delta^{\text{out}}\}|$ as low as possible.

- For all Δ^{in} , there exists Δ^{out} such that $\delta_{S}(\Delta^{in}, \Delta^{out}) > 0$
- For all $\Delta^{in} \neq 0$, Δ^{out} , x is a solution iff $x + \Delta^{in}$ is a solution. $\delta_{\varsigma}(\Delta^{\text{in}}, \Delta^{\text{out}})$ is even. ٠

Almost perfect non-linear (APN) function [NybKnu92 A function F is APN if: $\forall \Delta^{\text{in}} \neq 0, \Delta^{\text{out}}, \delta_F(\Delta^{\text{in}}, \Delta^{\text{out}}) < 2.$

oduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study

00000

d PoV on APN functions

Almost perfect non-linear (APN) function

Definition (APN function) [NybKnu92] A function F is APN if: $\forall \Delta^{\text{in}} \neq 0, \Delta^{\text{out}}, \quad \delta_F(\Delta^{\text{in}}, \Delta^{\text{out}}) \leq 2.$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Almost perfect non-linear (APN) function

Definition (APN function) [NybKnu92 A function F is APN if: $\forall \Delta^{\text{in}} \neq 0, \Delta^{\text{out}}, \quad \delta_F(\Delta^{\text{in}}, \Delta^{\text{out}}) \leq 2.$ A typical classification problem - Easy definition - *Hard* to find new instances (even for small *n*) - *Hard* to classify the known instances

- Lots of open problems

Almost perfect non-linear (APN) function

Definition (APN function)	[NybKnu92]
A function F is APN if: $\forall \Delta^{in} \neq 0, \Delta^{out}, \delta_F(\Delta^{in}, \Delta^{out}) \leq 2.$	
A typical classification problem	
- <i>Easy</i> definition	
- <i>Hard</i> to find new instances (even for small <i>n</i>)	
- Hard to classify the known instances	
- Lots of open problems	
Big APN problem	[BDMW10]
Find $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ which is APN, bijective for an even <i>n</i> .	
A single example is known for $n = 6$.	

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

00000

Boolean function study

Representing a vectorial Boolean function

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} F_1(x_1, \dots, x_n) \\ \vdots \\ F_n(x_1, \dots, x_n) \end{pmatrix}$$

Each $F_i : \mathbb{F}_2^n \to \mathbb{F}_2$ is a *coordinate*.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

00000000

Representing a vectorial Boolean function

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} F_1(x_1, \dots, x_n) \\ \vdots \\ F_n(x_1, \dots, x_n) \end{pmatrix}$$

Each $F_i : \mathbb{F}_2^n \to \mathbb{F}_2$ is a *coordinate*.

A component of F is a linear combination of coordinate: $\alpha \cdot F := \sum_{i=0}^{n-1} \alpha_i F_i$.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

00000000

.

Representing a vectorial Boolean function

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} F_1(x_1, \dots, x_n) \\ \vdots \\ F_n(x_1, \dots, x_n) \end{pmatrix}$$

.

Each $F_i: \mathbb{F}_2^n \to \mathbb{F}_2$ is a *coordinate*.

A component of F is a linear combination of coordinate: $\alpha \cdot F := \sum_{i=0}^{n-1} \alpha_i F_i$.

Representations we won't look at

- Truth table / graph of F: $\mathcal{G}_F = \{(x, F(x)), x \in \mathbb{F}_2^n\}$
- Walsh transform: Fourier transform of all components $\alpha \cdot F : \mathbb{F}_2^n \to \mathbb{F}_2 \subset \mathbb{C}$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Theorem (Lagrange multivariate interpolation)

 $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a unique polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q +$ $X_1,\ldots,X_m^q+X_m$).

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Theorem (Lagrange multivariate interpolation) $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a unique polynomial representation in $\mathbb{F}_q[X_1]$ $X_1,\ldots,X_m^q+X_m$).

$$[1, ..., X_m]/(X_1^q +$$

Algebraic Normal Form (ANF)

(q=2, m=n). Each coordinate is a polynomial of $\mathbb{F}_2[X_1, \ldots, X_n]/(X_1^2+X_1, \ldots, X_n^2+X_n)$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

00000000

Theorem (Lagrange multivariate interpolation)

 $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a unique polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q + X_1, \ldots, X_m^q + X_m)$.

Algebraic Normal Form (ANF)

(q=2,m=n). Each coordinate is a polynomial of $\mathbb{F}_2[X_1,\ldots,X_n]/(X_1^2+X_1,\ldots,X_n^2+X_n)$

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{2}x_{3} + x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

Theorem (Lagrange multivariate interpolation)

 $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a unique polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q +$ $X_1,\ldots,X_m^q+X_m$).

Algebraic Normal Form (ANF)

(q=2, m=n). Each coordinate is a polynomial of $\mathbb{F}_2[X_1, \ldots, X_n]/(X_1^2+X_1, \ldots, X_n^2+X_n)$

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

Algebraic degree : $\deg_a(F) := \max_{1 \le i \le n} \deg(F_i)$. Here deg_a(F) = 2

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Theorem (Lagrange multivariate interpolation)

 $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a unique polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q +$ $X_1,\ldots,X_m^q+X_m$).

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

000000000

Theorem (Lagrange multivariate interpolation) $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a unique polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q +$ $X_1,\ldots,X_m^q+X_m$).

 \mathbb{F}_2 -space isomorphisms

$$\mathbb{F}_2^n \simeq \mathbb{F}_{2^n} \simeq \mathbb{F}_{2^k}^\ell, ext{ with } n = \ell k.$$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

000000000
Polynomial representations (2/2)

Theorem (Lagrange multivariate interpolation) $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a unique polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q +$ $X_1,\ldots,X_m^q+X_m)$

 \mathbb{F}_2 -space isomorphisms

$$\mathbb{F}_2^n \simeq \mathbb{F}_{2^n} \simeq \mathbb{F}_{2^k}^\ell, ext{ with } n = \ell k$$

Up to a choice of bases, we get:

Univariate representation

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n$$
 can be seen as $\widetilde{F}: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$.
 $(q = 2^n, m = 1)$

 $\widetilde{F}: \mathbb{F}_{2^4} \to \mathbb{F}_{2^4}$ $X \mapsto \alpha_0 X^{12} + \alpha_1 X^6 + \alpha_2 X^3$

000000000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Polynomial representations (2/2)

Theorem (Lagrange multivariate interpolation) $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a unique polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q +$ $X_1,\ldots,X_m^q+X_m).$

 \mathbb{F}_2 -space isomorphisms

$$\mathbb{F}_2^n \simeq \mathbb{F}_{2^n} \simeq \mathbb{F}_{2^k}^\ell, ext{ with } n = \ell k$$

Up to a choice of bases, we get:

Univariate representation

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n$$
 can be seen as $\widetilde{F}: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$.
 $(q = 2^n, m = 1)$

$$: \mathbb{F}_{2^4} \to \mathbb{F}_{2^4}$$
$$X \mapsto \alpha_0 X^{12} + \alpha_1 X^6 + \alpha_2 X^3$$

ŀ

Multivariate representation(s)

$$F: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{n} \text{ can be seen as } F: \mathbb{F}_{2^{k}}^{\ell} \to \mathbb{F}_{2^{k}}^{\ell}.$$
$$(q = 2^{k}, m = \ell)$$
$$\widetilde{F}: \mathbb{F}_{2^{2}}^{2} \to \mathbb{F}_{2^{2}}^{2}$$

$$\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 x_0^3 + x_0^2 x_1 + \alpha_1 x_0 x_1^2 + \alpha_2 x_1^3 \\ \alpha_3 x_0^3 + \alpha_4 x_0^2 x_1 + \alpha_5 x_0 x_1^2 \end{pmatrix}$$

Ĩ

000000000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions 16/33

$$\delta_{\mathsf{F}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}}) = \left| \left\{ x, \mathsf{F}(x + \Delta^{\mathrm{in}}) + \mathsf{F}(x) = \Delta^{\mathrm{out}} \right\} \right|$$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

000000000

$$\delta_{\mathsf{F}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}}) = \left| \left\{ x, \mathsf{F}(x+\Delta^{\mathrm{in}}) + \mathsf{F}(x) = \Delta^{\mathrm{out}} \right\} \right|$$

 $A: (\mathbb{F}_2^n, +) \to (U, +_u)$ and $B: (V, +_v) \to (\mathbb{F}_2^n, +)$ linear bijective mappings. Then $A \circ F \circ B$: $(V, +_v) \rightarrow (U, +_u)$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

$$\delta_{\mathsf{F}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}}) = \left| \left\{ x, \mathsf{F}(x+\Delta^{\mathrm{in}}) + \mathsf{F}(x) = \Delta^{\mathrm{out}} \right\} \right|$$

 $A: (\mathbb{F}_2^n, +) \to (U, +_u)$ and $B: (V, +_v) \to (\mathbb{F}_2^n, +)$ linear bijective mappings. Then $A \circ F \circ B$: $(V, +_v) \rightarrow (U, +_u)$

$$A \circ F \circ B(x +_{V} \Delta^{in}) +_{U} A \circ F \circ B(x) = \Delta^{out}$$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

000000000

$$\delta_{\mathsf{F}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}}) = \left| \left\{ x, \mathsf{F}(x+\Delta^{\mathrm{in}}) + \mathsf{F}(x) = \Delta^{\mathrm{out}} \right\} \right|$$

 $A: (\mathbb{F}_2^n, +) \to (U, +_u)$ and $B: (V, +_v) \to (\mathbb{F}_2^n, +)$ linear bijective mappings. Then $A \circ F \circ B$: $(V, +_v) \rightarrow (U, +_u)$

$$\begin{array}{rcl} A \circ F \circ B(x +_{v} \Delta^{\mathrm{in}}) & +_{v} & A \circ F \circ B(x) & = & \Delta^{\mathrm{out}} \\ F \circ B(x +_{v} \Delta^{\mathrm{in}}) & + & F \circ B(x) & = & A^{-1}(\Delta^{\mathrm{out}}) \end{array}$$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

$$\delta_{\mathsf{F}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}}) = \left| \left\{ x, \mathsf{F}(x+\Delta^{\mathrm{in}}) + \mathsf{F}(x) = \Delta^{\mathrm{out}} \right\} \right|$$

 $A: (\mathbb{F}_2^n, +) \to (U, +_u)$ and $B: (V, +_v) \to (\mathbb{F}_2^n, +)$ linear bijective mappings. Then $A \circ F \circ B$: $(V, +_v) \rightarrow (U, +_u)$

$$\begin{array}{rcl} A \circ F \circ B(x +_{v} \Delta^{\mathrm{in}}) & +_{v} & A \circ F \circ B(x) & = & \Delta^{\mathrm{out}} \\ F \circ B(x +_{v} \Delta^{\mathrm{in}}) & + & F \circ B(x) & = & A^{-1}(\Delta^{\mathrm{out}}) \\ F(B(x) + B(\Delta^{\mathrm{in}})) & + & F \circ B(x) & = & A^{-1}(\Delta^{\mathrm{out}}) \end{array}$$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

$$\delta_{\mathsf{F}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}}) = \left| \left\{ x, \mathsf{F}(x+\Delta^{\mathrm{in}}) + \mathsf{F}(x) = \Delta^{\mathrm{out}} \right\} \right|$$

A: $(\mathbb{F}_2^n, +) \to (U, +_u)$ and B: $(V, +_v) \to (\mathbb{F}_2^n, +)$ linear bijective mappings. Then $A \circ F \circ B$: $(V, +_{V}) \rightarrow (U, +_{U})$

$$\begin{array}{rcl} A \circ F \circ B(x + \sqrt{\Delta^{\text{in}}}) & + \sqrt{A} \circ F \circ B(x) & = & \Delta^{\text{out}} \\ F \circ B(x + \sqrt{\Delta^{\text{in}}}) & + & F \circ B(x) & = & A^{-1}(\Delta^{\text{out}}) \\ F(B(x) + B(\Delta^{\text{in}})) & + & F \circ B(x) & = & A^{-1}(\Delta^{\text{out}}) \end{array}$$

Proposition (Linear equivalence)

- $\forall \Delta^{\text{in}}, \Delta^{\text{out}}, \quad \delta_F(B(\Delta^{\text{in}}), A^{-1}(\Delta^{\text{out}})) = \delta_{AFB}(\Delta^{\text{in}}, \Delta^{\text{out}})$
- F is APN if and only if $A \circ F \circ B$ is APN.

000000000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Linear equivalence

 $F_1 \sim_{\text{lin}} F_2$ if $\exists A, B$, bijective *linear* s.t. $A \circ F_1 \circ B = F_2$.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

000000000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

000000000

000000000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

4 linearly-equivalent functions

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{2}x_{3} + x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

$$F: \mathbb{F}_{4}^{2} \to \mathbb{F}_{4}^{2}, \begin{pmatrix} x_{0} \\ x_{1} \end{pmatrix} \mapsto \begin{pmatrix} \alpha_{0}x_{0}^{3} + x_{0}^{2}x_{1} + \alpha_{1}x_{0}x_{1}^{2} + \alpha_{2}x_{1}^{3} \\ \alpha_{3}x_{0}^{3} + \alpha_{4}x_{0}^{2}x_{1} + \alpha_{5}x_{0}x_{1}^{2} \end{pmatrix}$$

$$F \colon \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_0 X^{12} + \alpha_1 X^6 + \alpha_2 X^3$$

0000000000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

4 linearly-equivalent functions

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{2}x_{3} + x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

$$F: \mathbb{F}_{4}^{2} \to \mathbb{F}_{4}^{2}, \begin{pmatrix} x_{0} \\ x_{1} \end{pmatrix} \mapsto \begin{pmatrix} \alpha_{0}x_{0}^{3} + x_{0}^{2}x_{1} + \alpha_{1}x_{0}x_{1}^{2} + \alpha_{2}x_{1}^{3} \\ \alpha_{3}x_{0}^{3} + \alpha_{4}x_{0}^{2}x_{1} + \alpha_{5}x_{0}x_{1}^{2} \end{pmatrix}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_{0}X^{12} + \alpha_{1}X^{6} + \alpha_{2}X^{3}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto X^{3}$$

0000000000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

4 linearly-equivalent functions

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{2}x_{3} + x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

$$F: \mathbb{F}_{4}^{2} \to \mathbb{F}_{4}^{2}, \begin{pmatrix} x_{0} \\ x_{1} \end{pmatrix} \mapsto \begin{pmatrix} \alpha_{0}x_{0}^{3} + x_{0}^{2}x_{1} + \alpha_{1}x_{0}x_{1}^{2} + \alpha_{2}x_{1}^{3} \\ \alpha_{3}x_{0}^{3} + \alpha_{4}x_{0}^{2}x_{1} + \alpha_{5}x_{0}x_{1}^{2} \end{pmatrix}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_{0}X^{12} + \alpha_{1}X^{6} + \alpha_{2}X^{3}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto X^{3}$$

$$F(X + \Delta^{\mathrm{in}}) + F(X) = \Delta^{\mathrm{out}}$$

0000000000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

4 linearly-equivalent functions

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{2}x_{3} + x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

$$F: \mathbb{F}_{4}^{2} \to \mathbb{F}_{4}^{2}, \begin{pmatrix} x_{0} \\ x_{1} \end{pmatrix} \mapsto \begin{pmatrix} \alpha_{0}x_{0}^{3} + x_{0}^{2}x_{1} + \alpha_{1}x_{0}x_{1}^{2} + \alpha_{2}x_{1}^{3} \\ \alpha_{3}x_{0}^{3} + \alpha_{4}x_{0}^{2}x_{1} + \alpha_{5}x_{0}x_{1}^{2} \end{pmatrix}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_{0}X^{12} + \alpha_{1}X^{6} + \alpha_{2}X^{3}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto X^{3}$$

$$F(X + \Delta^{\mathrm{in}}) + F(X) = \Delta^{\mathrm{out}}$$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

0000000000

 $(X + \Delta)^3 + X^3 = \Delta^{\text{out}}$

4 linearly-equivalent functions

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{2}x_{3} + x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

$$F: \mathbb{F}_{4}^{2} \to \mathbb{F}_{4}^{2}, \begin{pmatrix} x_{0} \\ x_{1} \end{pmatrix} \mapsto \begin{pmatrix} \alpha_{0}x_{0}^{3} + x_{0}^{2}x_{1} + \alpha_{1}x_{0}x_{1}^{2} + \alpha_{2}x_{1}^{3} \\ \alpha_{3}x_{0}^{3} + \alpha_{4}x_{0}^{2}x_{1} + \alpha_{5}x_{0}x_{1}^{2} \end{pmatrix}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_{0}X^{12} + \alpha_{1}X^{6} + \alpha_{2}X^{3}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto X^{3}$$

$$F(X + \Delta^{\mathrm{in}}) + F(X) = \Delta^{\mathrm{out}} \\ (X + \Delta)^{3} + X^{3} = \Delta^{\mathrm{out}}$$

$$\Delta X^2 + \Delta^2 X + \Delta^3 + \Delta^{\rm out} = 0$$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

4 linearly-equivalent functions

$$\begin{split} F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{2}x_{3} + x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix} \\ F: \mathbb{F}_{4}^{2} \to \mathbb{F}_{4}^{2}, \begin{pmatrix} x_{0} \\ x_{1} \end{pmatrix} \mapsto \begin{pmatrix} \alpha_{0}x_{0}^{3} + x_{0}^{2}x_{1} + \alpha_{1}x_{0}x_{1}^{2} + \alpha_{2}x_{1}^{3} \\ \alpha_{3}x_{0}^{3} + \alpha_{4}x_{0}^{2}x_{1} + \alpha_{5}x_{0}x_{1}^{2} \end{pmatrix} \\ F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_{0}X^{12} + \alpha_{1}X^{6} + \alpha_{2}X^{3} \\ F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto X^{3} \\ F(X + \Delta^{\mathrm{in}}) + F(X) = \Delta^{\mathrm{out}} \\ (X + \Delta)^{3} + X^{3} = \Delta^{\mathrm{out}} \\ \Delta X^{2} + \Delta^{2}X + \Delta^{3} + \Delta^{\mathrm{out}} = 0 \end{split}$$

 \implies at most 2 solutions \implies APN !

0000000000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

The APN family tree

A common descent

[Nyberg93]

The function $F \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}, X \mapsto X^3$ is APN.

- F is a power mapping
- F is quadratic: $\deg_a(F) = wt(3) = 2$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

000000000

The APN family tree

20/33

Descendants

- 6 infinite families of APN power mappings, some are not quadratic.
- About 20 infinite families of quadratic APN mappings.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

The APN family tree

Descendants

- 6 infinite families of APN power mappings, some are not quadratic.
- About 20 infinite families of quadratic APN mappings.

A single counter-example

[BriLea08, EdePot09]

A single APN function *inequivalent* to a power mapping or a quadratic mapping is known.

Infinite families of quadratic APN mappings

	Multivariate
Univariate	$(x,y)\mapsto \left(\begin{array}{c}x^{2^s+1}+ay^{(2^s+1)2^i}\\xy\end{array}\right)$
$x^{2^{5}+1} + ax^{2^{(3-i)k+s}+2^{ik}}$	$(x,y) \mapsto \left(\begin{array}{c} x^{2^{2s}+2^{3s}} + ax^{2^{2s}}y^{2^s} + by^{2^s+1} \\ xy \end{array}\right)$
$x^{2^{s}+1} + ax^{2^{(4-i)k+s}+2^{ik}}$	$(x, y) \mapsto \left(x^{2^{s}+1} + x^{2^{s+k/2}} y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s}+1} \right)$
$ax^{2^{k}+1} + x^{2^{s}+1} + x^{2^{s+k}+2^{k}} + bx^{2^{k+s}+1} + b^{2^{k}}x^{2^{s}+2^{k}}$	$(x^{2^{s}+1} + x^{2^{s}} + y^{2^{s}+1})$
$x^3+a^{-1}\mathrm{Tr}_{\mathbb{F}_2n/\mathbb{F}_2}(a^3x^9)$	$(x,y) \mapsto \left(\begin{array}{c} x^{2^{2s}+1} + x^{2^{2s}}y + y^{2^{2s}+1} \\ x^{2^{2s}+1} + x^{2^{2s}}y + y^{2^{2s}+1} \end{array}\right)$
$x^3 + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^3 x^9 + a^6 x^{18})$	$(x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + y^{2^{s}+1} \\ x^{2^{3s}}y + xy^{2^{3s}} \end{pmatrix}$
$x^3 + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^6 x^{18} + a^{12} x^{36})$	$(x, y) \mapsto (x^{2^{s+1}} + by^{2^{s+1}})$
$ax^{2^{s}+1} + a^{2^{k}}x^{2^{2k}+2^{k+s}} + bx^{2^{2k}+1} + ca^{2^{k}+1}x^{2^{s}+2^{k+s}}$	$(x, y) \mapsto \left(x^{2^{s+k/2}} y + \frac{a}{b} x y^{2^{s+k/2}} \right)$
$a^{2}x^{2^{2^{k+1}}+1} + b^{2}x^{2^{k+1}+1} + ax^{2^{2^{k}}+2} + bx^{2^{k}+2} + dx^{3}$	$\left \begin{array}{c} (x,y) \mapsto \begin{pmatrix} x^{2^{s+1}} + xy^{2^{s}} + ay^{2^{s}+1} \\ x^{2^{2s}+1} + ax^{2^{2s}}y + (1+a)^{2^{s}}xy^{2^{2s}} + ay^{2^{2s}+1} \end{pmatrix} \right $
$x^{3} + ax^{2^{s+i}+2^{i}} + a^{2}x^{2^{k+1}+2^{k}} + x^{2^{s+i+k}+2^{i+k}}$	$\left(x^{2^{s}+1} + x^{2^{s}}z + yz^{2^{s}} \right)$
$a\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^k}}(bx^{2^i+1}) + a^{2^k}\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^k}}(cx^{2^s+1})$	$ (x, y, z) \mapsto \begin{pmatrix} x^2 \ z + y^{2+1} \\ xy^{2^s} + y^{2^s}z + z^{2^{s+1}} \end{pmatrix} $
$L(x)^{2^{k}+1} + bx^{2^{k}+1}$	$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + yz^{2^{s}} \\ xy^{2^{s}} + z^{2^{s}+1} \\ x^{2^{s}} z + y^{2^{s}+1} + y^{2^{s}} z \end{pmatrix}$

000000000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Infinite families of guadratic APN mappings

00000000

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

A unified point-of-view on the known APN functions

An APN binomial [BudCarLea08] $F: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{528}$

 $F(x) = x^{3}(1 + x^{525}) = x^{3}P(x^{15})$, where $P = 1 + X^{35}$ $(525 = 35 \times 15)$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

An APN binomial

[BudCarLea08]

23/33

$$F: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{528}$$

$$F(x) = x^3(1 + x^{525}) = x^3 P(x^{15}), \text{ where } P = 1 + X^{35} \qquad (525 = 35 \times 15)$$

 $\mathbb{F}_{2^4}^* \subset \mathbb{F}_{2^{12}}^* \qquad \mathbb{F}_{2^{12}}^* = \bigsqcup_{\gamma \in \Gamma} \gamma \mathbb{F}_{2^4}^* \text{ for some system of representatives } \Gamma.$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

An APN binomial

[BudCarLea08]

23/33

$$F: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{528}$$

$$F(x) = x^3(1 + x^{525}) = x^3 P(x^{15}), \text{ where } P = 1 + X^{35} \qquad (525 = 35 \times 15)$$

 $\mathbb{F}_{2^4}^* \subset \mathbb{F}_{2^{12}}^* \qquad \mathbb{F}_{2^{12}}^* = \bigsqcup_{\gamma \in \Gamma} \gamma \mathbb{F}_{2^4}^* \text{ for some system of representatives } \Gamma.$ $\forall \varphi \in \mathbb{F}_{2^4}^*, \quad F(\varphi) = \varphi^3 P(\varphi^{15}) = \varphi^3 P(1).$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

An APN binomial $F: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{528}$ $F(x) = x^{3}(1 + x^{525}) = x^{3}P(x^{15})$, where $P = 1 + X^{35}$ $(525 = 35 \times 15)$ $\mathbb{F}_{2^4}^* \subset \mathbb{F}_{2^{12}}^* \qquad \mathbb{F}_{2^{12}}^* = \bigsqcup_{\gamma \in \Gamma} \gamma \mathbb{F}_{2^4}^* \text{ for some system of representatives } \Gamma.$

$$\forall \varphi \in \mathbb{F}_{2^4}^*, \quad F(\varphi) = \varphi^3 P(\varphi^{15}) = \varphi^3 P(1).$$

Proposition

The restriction of F to each multiplicative coset $\gamma \mathbb{F}_{2^4}^*$ acts as a power mapping.

The multiplicative point of view

Recap

- $F: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{528}$
- $F|_{\mathbb{F}_{2^4}}: \varphi \mapsto c\varphi^3$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

The multiplicative point of view

Recap

- $F: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{528}$
- $F|_{\mathbb{F}_{2^4}}: \varphi \mapsto c\varphi^3$

Multivariate point-of-view

$$F$$
 is linearly equivalent to $\widetilde{F}: (\mathbb{F}_{2^4})^3 \to (\mathbb{F}_{2^4})^3 (x_1, x_2, x_3) \mapsto \left(\widetilde{F_1}(x), \widetilde{F_2}(x), \widetilde{F_3}(x)\right)$

$$\widetilde{F}_1(x) = ?x_1^2 x_2 + ?x_1 x_2^2 + ?x_2^3 + ?x_1^2 x_3 + ?x_2^2 x_3 + ?x_1 x_3^2 + ?x_2 x_3^2 + ?x_3^3.$$

All coordinates of \widetilde{F} are *homogeneous* of the *same degree* 3.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

The multiplicative point of view

Recap

- $F: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}}$ $x \mapsto x^3 + \alpha x^{528}$
- $F|_{\mathbb{F}_{2^4}}: \varphi \mapsto c\varphi^3$

Multivariate point-of-view

$$F$$
 is linearly equivalent to $\widetilde{F}: (\mathbb{F}_{2^4})^3 \to (\mathbb{F}_{2^4})^3 (x_1, x_2, x_3) \mapsto \left(\widetilde{F_1}(x), \widetilde{F_2}(x), \widetilde{F_3}(x)\right)$

$$\widetilde{F}_1(x) = ?x_1^2 x_2 + ?x_1 x_2^2 + ?x_2^3 + ?x_1^2 x_3 + ?x_2^2 x_3 + ?x_1 x_3^2 + ?x_2 x_3^2 + ?x_3^3$$

All coordinates of \tilde{F} are *homogeneous* of the same degree 3.

An APN bivariate functions

$$F \colon \mathbb{F}^2_{64} o \mathbb{F}^2_{64}, (x, y) \mapsto (xy, x^3 + ay^3)$$

 F_1 homogeneous of order 2, F_2 homogeneous of order 3

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A u

Iy A unified PoV on APN functions

$$F(x) = x^e$$

Let $\lambda \in \mathbb{F}_{2^n}$. Then for all x, $F(\lambda x) = \lambda^e x^e = \lambda^e F(x)$.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

$$F(x) = x^{\epsilon}$$

Let $\lambda \in \mathbb{F}_{2^n}$. Then for all x, $F(\lambda x) = \lambda^e x^e = \lambda^e F(x)$.

Power mapping

Let $\lambda \in \mathbb{F}_{2^n}^*$, $B(x) := \lambda x$, $A(x) := \lambda^{-e} x$. Then: $A \circ F \circ B = F$.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

$$F(x) = x^{\epsilon}$$

Let $\lambda \in \mathbb{F}_{2^n}$. Then for all x, $F(\lambda x) = \lambda^e x^e = \lambda^e F(x)$.

Power mapping

Let $\lambda \in \mathbb{F}_{2^n}^*$, $B(x) := \lambda x$, $A(x) := \lambda^{-e} x$. Then: $A \circ F \circ B = F$.

$$F(x) = x^e P\left(x^{2^k-1}
ight), n = \ell k$$

Let $\varphi \in \mathbb{F}_{2^k}$. Then for all x , $F(\varphi x) = \varphi^e x^e P\left(x^{2^k-1}
ight) = \varphi^e F(x)$.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

$$F(x) = x^{\epsilon}$$

Let $\lambda \in \mathbb{F}_{2^n}$. Then for all x, $F(\lambda x) = \lambda^e x^e = \lambda^e F(x)$.

Power mapping

Let $\lambda \in \mathbb{F}_{2^n}^*$, $B(x) := \lambda x$, $A(x) := \lambda^{-e} x$. Then: $A \circ F \circ B = F$.

$$F(x) = x^e P\left(x^{2^k-1}\right), n = \ell k$$

Let $\varphi \in \mathbb{F}_{2^k}$. Then for all x , $F(\varphi x) = \varphi^e x^e P\left(x^{2^k-1}\right) = \varphi^e F(x)$.

Cyclotomic mapping w.r.t a subfield

Let $\varphi \in \mathbb{F}_{2^k}$, $B(x) := \varphi x$, $A(x) := \varphi^{-e}x$. Then: $A \circ F \circ B = F$.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

$$F(x) = x^{\epsilon}$$

Let $\lambda \in \mathbb{F}_{2^n}$. Then for all x, $F(\lambda x) = \lambda^e x^e = \lambda^e F(x)$.

Power mapping

Let $\lambda \in \mathbb{F}_{2^n}^*$, $B(x) := \lambda x$, $A(x) := \lambda^{-e}x$. Then: $A \circ F \circ B = F$.

$$F(x) = x^{e}P\left(x^{2^{k}-1}\right), n = \ell k$$

Let $\varphi \in \mathbb{F}_{2^{k}}$. Then for all x , $F(\varphi x) = \varphi^{e}x^{e}P\left(x^{2^{k}-1}\right) = \varphi^{e}F(x)$.

Cyclotomic mapping w.r.t a subfield

Let
$$\varphi \in \mathbb{F}_{2^k}$$
, $B(x) := \varphi x$, $A(x) := \varphi^{-e}x$. Then: $A \circ F \circ B = F$.

l-projective mapping

[BCP24,Göloğlu22]

25/33

$$F: \mathbb{F}_{2^k}^\ell \to \mathbb{F}_{2^k}^\ell \ (x_1, \ldots, x_\ell) \mapsto (F_1(x), \ldots, F_\ell(x)),$$

 $\forall i, F_i \text{ is homogeneous of order } e_i.$ $A \circ F \circ B = F \text{ with } B(x) = (\varphi x_1, \dots, \varphi x_\ell), \quad A(x) = (\varphi^{-e_1} x_1, \dots, \varphi^{-e_\ell} x_\ell)$ $\text{Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean functions tudy A unified PoV on APN functions } \Theta = 0$
Our main result (1/2)

Among the 22 known infinite APN families, 19 consist entirely of cyclotomic or ℓ -projective mappings, up to linear equivalence.

Univariate $x^{2^{s}+1} + ax^{2^{(3-i)k+s}+2^{ik}}$ $x^{2^{s}+1} + ax^{2^{(4-i)k+s}+2^{ik}}$ $ax^{2^{k}+1} + x^{2^{s}+1} + x^{2^{s+k}+2^{k}} + bx^{2^{k+s}+1} + b^{2^{k}}x^{2^{s}+2^{k}}$ $x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2n}/\mathbb{F}_{2}}(a^{3}x^{9})$ $x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{3}}}(a^{3}x^{9} + a^{6}x^{18})$ $x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{20}/\mathbb{F}_{23}}(a^{6}x^{18} + a^{12}x^{36})$ $ax^{2^{s}+1} + a^{2^{k}}x^{2^{2k}+2^{k+s}} + bx^{2^{2k}+1} + ca^{2^{k}+1}x^{2^{s}+2^{k+s}}$ $a^{2}x^{2^{2k+1}+1} + b^{2}x^{2^{k+1}+1} + ax^{2^{2k}+2} + bx^{2^{k}+2} + dx^{3}$ $x^{3} + ax^{2^{s+i}+2^{i}} + a^{2}x^{2^{k+1}+2^{k}} + x^{2^{s+i+k}+2^{i+k}}$ $a \operatorname{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{r^k}}(bx^{2^i+1}) + a^{2^k} \operatorname{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{r^k}}(cx^{2^s+1})$ $L(x)^{2^{k}+1} + bx^{2^{k}+1}$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Our main result (1/2)

Among the 22 known infinite APN families, 19 consist entirely of cyclotomic or ℓ -projective mappings, up to linear equivalence.

Univariate	Observations
$x^{2^{s}+1}+ax^{2^{(3-i)k+s}+2^{ik}}$	cyclotomic
$x^{2^{s}+1} + ax^{2^{(4-i)k+s}+2^{ik}}$	cyclotomic
$ax^{2^{k}+1} + x^{2^{s}+1} + x^{2^{s+k}+2^{k}} + bx^{2^{k+s}+1} + b^{2^{k}}x^{2^{s}+2^{k}}$	$\sim_{ m lin}$ biprojective
$x^3+a^{-1}\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_2}(a^3x^9)$	<code>cyclotomic/($\sim_{ m lin}$) frob.</code>
$x^3 + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^3 x^9 + a^6 x^{18})$	<code>cyclotomic/($\sim_{ m lin}$) frob.</code>
$x^3 + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^6 x^{18} + a^{12} x^{36})$	<code>cyclotomic/($\sim_{ m lin}$) frob.</code>
$ax^{2^{s}+1} + a^{2^{k}}x^{2^{2k}+2^{k+s}} + bx^{2^{2k}+1} + ca^{2^{k}+1}x^{2^{s}+2^{k+s}}$	cyclotomic
$a^{2}x^{2^{2^{k+1}+1}} + b^{2}x^{2^{k+1}+1} + ax^{2^{2^{k}+2}} + bx^{2^{k}+2} + dx^{3}$	cyclotomic
$x^{3} + ax^{2^{s+i}+2^{i}} + a^{2}x^{2^{k+1}+2^{k}} + x^{2^{s+i+k}+2^{i+k}}$	$\sim_{ m lin}$ biprojective
$a\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^k}}(bx^{2^i+1})+a^{2^k}\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^k}}(cx^{2^s+1})$	$\sim_{ m lin}$ biprojective
$L(x)^{2^k+1} + bx^{2^k+1}$?

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Our main result (2/2)

Among the 22 known infinite APN families, 19 consist entirely of cyclotomic or ℓ -projective mappings, up to linear equivalence.

Multivariate	Observations
$(x,y)\mapsto \left(\begin{array}{c} x^{2^s+1}+ay^{(2^s+1)2^i}\\ xy\end{array}\right)$	$\sim_{ m lin}$ biprojective
$(x,y) \mapsto \left(\begin{array}{c} x^{2^{2s}+2^{3s}}+ax^{2^{2s}}y^{2^{s}}+by^{2^{s}+1}\\ xy \end{array} \right)$	$\sim_{ m lin}$ biprojective
$(x,y)\mapsto \left(\begin{array}{c} x^{2^{s+1}}+x^{2^{s+k/2}}y^{2^{k/2}}+axy^{2^s}+by^{2^{s+1}}\\ xy\end{array}\right)$	$\sim_{ m lin}$ 4-projective
$(x,y)\mapsto egin{pmatrix} x^{2^s+1}+xy^{2^s}+y^{2^s+1}\ x^{2^{2^s}+1}+x^{2^{2^s}}y+y^{2^{2^s}+1} \end{pmatrix}$	biprojective
$(x,y)\mapsto \left(egin{array}{c} x^{2^{s}+1}+xy^{2^{s}}+y^{2^{s}+1}\ x^{2^{3s}}y+xy^{2^{3s}} \end{array} ight)$	biprojective
$(x,y)\mapsto igg(rac{x^{2^{s}+1}+by^{2^{s}+1}}{x^{2^{s+k/2}}y+rac{\partial}{b}xy^{2^{s+k/2}}} igg)$	biprojective
$(x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + ay^{2^{s}+1} \\ x^{2^{2s}+1} + ax^{2^{2s}}y + (1+a)^{2^{s}}xy^{2^{2s}} + ay^{2^{2s}+1} \end{pmatrix}$	biprojective
$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s}}z + yz^{2^{s}} \\ x^{2^{s}}z + y^{2^{s}+1} \\ xy^{2^{s}} + y^{2^{s}}z + z^{2^{s}+1} \end{pmatrix}$	3-projective $\sim_{ m lin}$ cyclotomic
$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + yz^{2^{s}} \\ xy^{2^{s}} + z^{2^{s}+1} \\ x^{2^{s}}z + y^{2^{s}+1} + y^{2^{s}}z \end{pmatrix}$	3-projective $\sim_{ m lin}$ cyclotomic

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

000000000000

Linear self-equivalence & conjugacy

Let F be linearly self-equivalent: $F = A \circ F \circ B$. Let G be linearly equivalent to F: $G = P \circ F \circ Q$.

Then G is linearly self-equivalent:

$$G = (P \circ A \circ P)^{-1} \circ G \circ (Q^{-1} \circ B \circ Q)$$

Introduction Symmetric encryption Block ciphers

Differential cryptanalysis Boolean function study A unified PoV on APN functions 000000000000

Linear self-equivalence & conjugacy

Let F be linearly self-equivalent: $F = A \circ F \circ B$. Let G be linearly equivalent to F: $G = P \circ F \circ Q$.

Then G is linearly self-equivalent:

$$G = (P \circ A \circ P)^{-1} \circ G \circ (Q^{-1} \circ B \circ Q)$$

A unified PoV on APN functions

000000000000

28/33

Furthermore, A and $P \circ A \circ P^{-1}$ are similar and thus share the same elementary divisors.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study

Linear self-equivalence & conjugacy

Let F be linearly self-equivalent: $F = A \circ F \circ B$. Let G be linearly equivalent to F: $G = P \circ F \circ Q$.

Then G is linearly self-equivalent:

$$G = (P \circ A \circ P)^{-1} \circ G \circ (Q^{-1} \circ B \circ Q)$$

Furthermore, A and $P \circ A \circ P^{-1}$ are similar and thus share the same elementary divisors.

$$G = P \circ F \circ Q = P \circ A \circ F \circ B \circ Q = P \circ A \circ P^{-1} \circ G \circ Q^{-1} \circ B \circ Q$$

Linear self-equivalence & conjugacy

Let F be linearly self-equivalent: $F = A \circ F \circ B$. Let G be linearly equivalent to F: $G = P \circ F \circ Q$.

Then G is linearly self-equivalent:

$$G = (P \circ A \circ P)^{-1} \circ G \circ (Q^{-1} \circ B \circ Q)$$

Furthermore, A and $P \circ A \circ P^{-1}$ are similar and thus share the same elementary divisors.

$$G = P \circ F \circ Q = P \circ A \circ F \circ B \circ Q = P \circ A \circ P^{-1} \circ G \circ Q^{-1} \circ B \circ Q$$

Theorem (Alternative formulation)

Most of the known infinite APN families are made of *linearly self-equivalent mappings* with very specific mappings A, B. This can be detected independently of the representation.

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study

Example: Cyclotomic mappings

Recap $F(x) = x^{e} P\left(x^{2^{k}-1}\right), n = \ell k$ $B(x) = \lambda x$, $A(x) = \lambda^{-e} x$ for any $\lambda \in \mathbb{F}_{2k}^*$ Univariate: $A \circ F \circ B = F$ with Multivariate: $\widetilde{A} \circ \widetilde{F} \circ \widetilde{B} = \widetilde{F}$ with $\widetilde{B}(v) = (\lambda v_1, \dots, \lambda v_\ell), \quad \widetilde{A}(v) = (\lambda^{-e} v_1, \dots, \lambda^{-e} v_\ell)$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

Example: Cyclotomic mappings

Recap

$$F(x) = x^{e} P\left(x^{2^{k}-1}\right), n = \ell k$$

 $B(x) = \lambda x$, $A(x) = \lambda^{-e} x$ for any $\lambda \in \mathbb{F}_{2k}^*$ Univariate: $A \circ F \circ B = F$ with

Multivariate: $\widetilde{A} \circ \widetilde{F} \circ \widetilde{B} = \widetilde{F}$ with $\widetilde{B}(v) = (\lambda v_1, \dots, \lambda v_\ell), \quad \widetilde{A}(v) = (\lambda^{-e} v_1, \dots, \lambda^{-e} v_\ell)$

Proposition (Up to linear equivalence)

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. F is linearly equivalent to a cyclotomic mapping w.r.t a subfield \mathbb{F}_{2^k} iff:

- $\exists A, B$ such that $A \circ F \circ B = F$ and:
 - min(A), min(B) are *irreducible* polynomials
 - $\operatorname{ord}(B) = 2^k 1$ and $\operatorname{ord}(A) | \operatorname{ord}(B)$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study

A unified PoV on APN functions

Linear self-equivalence and APN functions

Sum up

- Pen-and-paper functions: linearly self-equivalent with very specific A, B ٠
- From computer searches: most are linearly self-equivalent with less structured A, B. ٠

Linear self-equivalence and APN functions

Sum up

- Pen-and-paper functions: linearly self-equivalent with very specific A, B
- From computer searches: most are linearly self-equivalent with less structured A, B.

The only solution to the big APN problem

A single bijective APN mapping is known when n is even. It is *CCZ-equivalent* to the "Kim mapping":

$$\kappa \colon \mathbb{F}_{2^6} \to \mathbb{F}_{2^6}, X \mapsto X^3 + X^{10} + uX^{24},$$

for some specific $u \in \mathbb{F}_{2^6}$.

Linear self-equivalence and APN functions

Sum up

- Pen-and-paper functions: linearly self-equivalent with very specific A, B ٠
- From computer searches: most are linearly self-equivalent with less structured A, B. ٠

The only solution to the big APN problem

A single bijective APN mapping is known when n is even. It is *CCZ-equivalent* to the "Kim mapping":

$$\kappa \colon \mathbb{F}_{2^6} \to \mathbb{F}_{2^6}, X \mapsto X^3 + X^{10} + uX^{24},$$

for some specific $u \in \mathbb{F}_{2^6}$.

$$\kappa(X) = X^{3}(1 + X^{7} + uX^{21}) = X^{3}P(X^{2^{3}-1}) \qquad \text{cyclotomic w.r.t } \mathbb{F}_{2^{3}}.$$

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study

A unified PoV on APN functions

A (re)open problem

Question

For an APN function F, does there always exist a CCZ-equivalent function G which is linear self-equivalent $(A \circ G \circ B = G)$?

00000000000000

A (re)open problem

Question

For an APN function F, does there always exist a CCZ-equivalent function G which is linear self-equivalent $(A \circ G \circ B = G)$?

Element of answers

- A data base of the known functions (sporadic / infinite families) for small n.
- Some of the properties of A, B are still preserved by affine and CCZ equivalences.

More self-equivalent APN functions ?

Previous works

Linearly self-equivalence to speed up searches

[BeiBriLea21,BeiLea22].

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study A unified PoV on APN functions

More self-equivalent APN functions ?

Previous works

Linearly self-equivalence to speed up searches

[BeiBriLea21,BeiLea22].

Toward new APN functions ?

- Non-quadratic linearly self-equivalent functions for n = 6 ?
- Cyclotomic mappings $F(x) = x^e P(x^{2^k-1})$ with *non-quadratic* e?
- ℓ -projective mappings with $\ell > 4$?

Introduction Symmetric encryption Block ciphers Differential cryptanalysis Boolean function study 00000000000 32/33

Take away

Theorem

Among the 22 known infinite APN families, 19 consist entirely of cyclotomic or ℓ -projective mappings, up to linear equivalence.

Sum up

- Characterization of very specific self-equivalences
- Unify most of the approaches
- Linearly self-equivalent APN functions from computer searches are generally less structured. [BeiBriLea21,BeiLea22]

Take away

Theorem

Among the 22 known infinite APN families, 19 consist entirely of cyclotomic or ℓ -projective mappings, up to linear equivalence.

Sum up

- Characterization of *very specific* self-equivalences
- Unify most of the approaches
- Linearly self-equivalent APN functions from computer searches are generally less structured. [BeiBriLea21,BeiLea22]

Open questions

- Link between self-equivalence and APN-ness

[BeiBriLea21, Conjecture 1]

- Cyclotomic mappings outside the known classes? (from non-quadratic APN monomial)
- Projective mappings outside the known classes? (with *more* coordinates)

About the naming

Definition (APN function)

[NybKnu92]

A function F is APN if: $\forall \Delta^{\text{in}} \neq 0, \Delta^{\text{out}}, \quad \delta_F(\Delta^{\text{in}}, \Delta^{\text{out}}) \leq 2.$

About the naming

About the naming

Definition (APN function) [NybKnu92 A function F is APN if: $\forall \Delta^{\text{in}} \neq 0, \Delta^{\text{out}}, \quad \delta_F(\Delta^{\text{in}}, \Delta^{\text{out}}) \leq 2.$ The linear case F linear. $F(x + \Delta^{in}) + F(x) = F(x) + F(\Delta^{in}) + F(x) = F(\Delta^{in})$ $\Delta^{\mathrm{in}} \neq 0. \qquad \delta_F(\Delta^{\mathrm{in}}, \Delta^{\mathrm{out}}) = \begin{cases} 2^n & \text{if } \Delta^{\mathrm{out}} = F(\Delta^{\mathrm{in}}) \\ 0 & \text{otherwise.} \end{cases}$ The APN case

 $F \text{ APN. Then } \forall \ \Delta^{\text{in}} \neq 0, \quad \left| \left\{ \Delta^{\text{out}}, \ \delta_F(\Delta^{\text{in}}, \Delta^{\text{out}}) > 0 \right\} \right| = 2^{n-1}.$