Linear self-equivalence : a unifying point-of-view on
the known families of APN functions

Jules Baudrin
based on joint works with A. Canteaut & L. Perrin

'l UCLouvain

Crypto seminar, UVSQ, February 21th, 2025

Contact: jules.baudrin@uclouvain.be


mailto:jules.baudrin@uclouvain.be

Searching for ideal components

Symmetric crypto. Cryptography

Cryptographic Boolean functions

Using optimal components
- to reach a high security at lower costs

- to achieve ideal properties assumed in security proofs
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Outline

Symmetric encryption schemes

Block cipher (security and construction)
Differential cryptanalysis and APN functions
Vectorial Boolean function study

APN state of the art

Our unified point of view on the known APN functions
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Symmetric encryption

Goal

Ensure confidentiality under the assumption of a shared secret &.
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Symmetric encryption

Goal

Ensure confidentiality under the assumption of a shared secret &.
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Constraints
¢ Secure

* Easily implemented

* Arbitrary-long messages
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Building a symmetric encryption scheme

mo my my mp
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C ol C2 Cn
Ingredients
* a key-dependent transformation of n-bit words (e.g. n = 128). Block cipher
* a chaining method to handle arbitrary-long messages Mode of operation
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Block ciphers

Block cipher
A key-dependent transformation of n-bit words. ~~ A family of bijections &:
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Block ciphers

Block cipher
A key-dependent transformation of n-bit words. ~~ A family of bijections &:

&= (Ek:JFgLFg)

keFy
k=& k
l l
| |
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Ideal block cipher

A random family of bijections.
In practice, £ should be indistinguishable from a random family of bijections
* to satisfy assumptions of security proofs

* to avoid key recoveries.
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Block cipher

A family of bijections & = (Ek: Fp Fg)

Iterated block ciphers

Block ciphers
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Block cipher

A family of bijections £ = <Ek:

Iterated block ciphers

rko rky rk|
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Iterated block ciphers
Block cipher

A family of bijections & = <Ek: Fp Fg)k .
eF;

Sbox layer rko

Linear layer
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Differential cryptanalysis



Differential cryptanalysis
F:Fj - Fj.
Principle

Studies for each input difference A" € 2, the distribution of output differences:

VA™M eFj, P Flx+A™) 4+ F(x) =A"] =7
€ Iy, x<iJF"[ (x + A™) + F(x) ]

2

F(x)

Ain IAOM

F(y)

N4 X
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Differential cryptanalysis
F:FJ — F3.

Principle

Studies for each input difference A" € 2, the distribution of output differences:

v Aout = Fg, P s [F(X+A1n) + F(X) — Aout] =7

x<—F3
X F(x)
IAin IAOM
y F(y)

Average over all bijections
F(x + A™) 4 F(x) = A°" has 1 solution x on average.

Differential cryptanalysis
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Differential cryptanalysis
F:Fj - Fj.
Principle

Studies for each input difference A" € 2, the distribution of output differences:

v Aout = Fg, P s [F(X+A1n) + F(X) — Aout] =7
x<—F2

2

X F(x)
IN“ IAOM
y F(y)
Average over all bijections
F(x + A™) 4 F(x) = A°" has 1 solution x on average.
Differential distinguisher [BihSha91]

A £ 0, A st for many k,  Ei(x + A™) + E.(x) = A°" has many solutions x.
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Resisting against differential attacks

Differential distinguisher [BihShao1]
AN £ 0, A st for many k,  Ex(x + A™) + E.(x) = A°" has many solutions x.
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AN £ 0, A st for many k,  Ex(x + A™) + E.(x) = A°" has many solutions x.

Differential resistance
For all A" £ 0, A°"* and all keys k,  Ex(x + A") 4 E,(x) = A" has few solutions.
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Resisting against differential attacks

Differential distinguisher [BihShao1]
AN £ 0, A st for many k,  Ex(x + A™) + E.(x) = A°" has many solutions x.

Differential resistance
For all A" £ 0, A°"* and all keys k,  Ex(x + A") 4 E,(x) = A" has few solutions.

How to achieve this
Forall A" 2£ 0, A% §5(A™, A%) := |{x, S(x+ A") + 5(x) = A°"}| as low as possible.

I’kz

max 65(2,[))) d(l)

% P[Ain, A(l)7 Aout] < (a#O,bzm

=

On average over all (rko, rky, rka)

Differential cryptanalysis
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Differentially-optimal functions

How to achieve this
For all Al # 0, A §5(A", A°) := |{x, S(x + A") + S(x) = A°*}| as low as possible.
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Differentially-optimal functions

How to achieve this
For all Al # 0, A §5(A", A°) := |{x, S(x + A") + S(x) = A°*}| as low as possible.

* For all A, there exists A°"" such that §5(A™, A% > 0
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Differentially-optimal functions

How to achieve this
For all Al # 0, A §5(A", A°) := |{x, S(x + A") + S(x) = A°*}| as low as possible.

* For all A, there exists A°"" such that §5(A™, A% > 0
e For all A™ %0, A°", x is a solution iff x + A™ is a solution. §s(A", A is even.
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Differentially-optimal functions

How to achieve this
For all Al # 0, A §5(A", A°) := |{x, S(x + A") + S(x) = A°*}| as low as possible.

* For all A, there exists A°"" such that §5(A™, A% > 0
e For all A™ %0, A°", x is a solution iff x + A™ is a solution. §s(A", A is even.

Almost perfect non-linear (APN) function [NybKnu92]
A function F is APN if: ¥ A" £ 0, A% §p(AM AU < 2.
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Almost perfect non-linear (APN) function

Definition (APN function) [NybKnu92]
A function F is APN if: ¥ AlY 2£ 0, A% §g(Aln, A0U) < 2,
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Almost perfect non-linear (APN) function

Definition (APN function)
A function F is APN if: ¥ AlY 2£ 0, A% §g(Aln, A0U) < 2,

A typical classification problem
- Easy definition
- Hard to find new instances (even for small n)
- Hard to classify the known instances

- Lots of open problems

Differential cryptanalysis
oce
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Almost perfect non-linear (APN) function

Definition (APN function)
A function F is APN if: ¥ A" £ 0, A% §e(A", AU < 2,

A typical classification problem
- Easy definition
- Hard to find new instances (even for small n)
- Hard to classify the known instances

- Lots of open problems

Big APN problem
Find F: F; — IF5 which is APN, bijective for an even n.

A single example is known for n = 6.

Differential cryptanalysis
oce
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Representing a vectorial Boolean function

X1 F1(X1,...,Xn)
F:F3—=F5 | @ | —
Xn Fo(x1, ...y %n)

Each F; : F; — IF, is a coordinate.

Boolean function stud
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Representing a vectorial Boolean function

X1 F1(X1,...,Xn)
F:F3—=F5 | @ | — :
Xn Fo(x1, ...y %n)

Each F; : F; — IF, is a coordinate.

A component of F is a linear combination of coordinate: o - F := Z, o CiFi.
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Representing a vectorial Boolean function

X1 F1(X1,...,Xn)
[0 O R
Xn Fo(x1, ...y %n)

Each F; : F; — IF, is a coordinate.

A component of F is a linear combination of coordinate: a - F := 27;01 a;F;.

Representations we won't look at
* Truth table / graph of F: Gr = {(x, F(x)),x € F3}
» Walsh transform: Fourier transform of all components a- F : F; — F, Cc C
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Polynomial representations (1/2)

Theorem (Lagrange multivariate interpolation)

f: (Fq)™ — TFq admits a unique polynomial representation in Fg[Xi,..., Xn]/(X{ +
X1, .o X34 Xo).
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Polynomial representations (1/2)

Theorem (Lagrange multivariate interpolation)

f: (Fq)™ — F4 admits a unique polynomial representation in Fq[Xi,...

Xi, ..o, X3+ Xm).

Algebraic Normal Form (ANF)
(g =2, m = n). Each coordinate is a polynomial of Fa[X1, ..., X,]/(X? + X1,

Boolean function study
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Polynomial representations (1/2)

Theorem (Lagrange multivariate interpolation)

f: (Fq)™ — TFq admits a unique polynomial representation in Fg[Xi,..., Xn]/(X{ +
X, X34 Xim)-

Algebraic Normal Form (ANF)

(g = 2, m = n). Each coordinate is a polynomial of Fa[X1, ..., X,]/(XZ + X1,..., X2 + X,)

X0 XoX2 + Xo + X1X0 + X1X3
X XoX1 + XgXo + XoX3 + X
F- Fg —>]F4, 1 N 0X1 0X2 2X3 3
X2 XoX1 + XoXo + Xox3 + X1 X0 + X1 X3 + XoX3 + Xo
X3 X1X3 + X1 + Xox3 + X2 + X3
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Polynomial representations (1/2)

Theorem (Lagrange multivariate interpolation)

f: (Fq)™ — TFq admits a unique polynomial representation in Fg[Xi,..., Xn]/(X{ +
X, X34 Xim)-

Algebraic Normal Form (ANF)

(g = 2, m = n). Each coordinate is a polynomial of Fa[X1, ..., X,]/(XZ + X1,..., X2 + X,)

X0 XoX2 + Xo + X1X0 + X1X3
F- IF‘z‘ N ]F“, X1 . XoX1 + XoX2 + xox3 + X3
X0 XoX1 + Xox2 + XpXx3 + X1 X2 + X1X3 + XoX3 + X0
X3 X1X3 + X1 + Xox3 + X2 + X3
Algebraic degree : deg,(F) := max deg(F;). Here deg,(F) =2
<i<n
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Polynomial representations (2/2)

Theorem (Lagrange multivariate interpolation)

f: (Fq)™ — TFq admits a unique polynomial representation in Fg[Xi,..., Xn]/(X{ +
X1, .o X34 Xo).
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Polynomial representations (2/2)

Theorem (Lagrange multivariate interpolation)
f: (Fq)™ — TFq admits a unique polynomial representation in Fg[Xi,..., Xn]/(X{ +
X, X34 Xim)-

[Fo-space isomorphisms

Fg ~ an ~ W(

Lok Wlth nZEk.
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Polynomial representations (2/2)

Theorem (Lagrange multivariate interpolation)
f: (Fq)™ — F4 admits a unique polynomial representation in Fq[Xi,...
Xt X3+ Xo).

Xl /(X +

[F»-space isomorphisms
F§ =~ Fap =~ F;k, with n = /k.

Up to a choice of bases, we get:
Univariate representation
F:F} — F] can be seen as F: Fyn — [Fn.
(g=2"m=1)
E: ]F24 — IF24
X apX? 4+ a1 X® + X3

Boolean function stud
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Polynomial representations (2/2)

Theorem (Lagrange multivariate interpolation)

f: (Fq)™ — TFq admits a unique polynomial representation in Fg[Xi,..., Xn]/(X{ +
Xty X8+ Xim).
[F»-space isomorphisms
F§ =~ Fap =~ F(Qk, with n = /k.
Up to a choice of bases, we get:
Univariate representation Multivariate representation(s)
F: F5 — [F5 can be seen as F: Fon — Fon. F: F5 — [F% can be seen as F: TF;/\, — T’2,
(g=2",m=1) (g=2Km=1)
F:Fp — Fa F:F% —F%
X = OOX12 + (llx6 + O’2X3 X0 . (1oxg + ngl + <11X0X12 = <12x13
X1 (lgxg + (\4xgx1 + (15X0X12
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Polynomial representations and APN functions

5F(Ain,Aout) _ }{X, F(X-i-Ain) + F(X) _ AoutH
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Polynomial representations and APN functions

SF(A™, A%) = |{x, F(x + A™) + F(x) = A" }|

:(F3,4) = (U,+,) and 5: (V,+,) = (F3, +) linear bijective mappings.
Then Ao FoB:(V,+,)— (U, +,)
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SF(A™, A%) = |{x, F(x + A™) + F(x) = A" }|

: (F3,4+) — (U, +,) and (V +,) — (F3,+) linear bijective mappings.
Then Ao FoB: (V ,+V)—>( +,)

oFobB(x+, A") +, oFoB(x) = Aot

Boolean function stud
ocoooe Y 17/33



Polynomial representations and APN functions

5F(Ain,Aout) — }{X, F(X—|— Ain) + F(X) — Aout}’
: (F3,4+) — (U, +,) and (V +,) — (F3,+) linear bijective mappings.
Then A0 Fo 5: (V. +,) = (U.+,)

oFobB(x+, A") +, oFoB(x) = Aot
Foblct, B7) +  Foi() = A&
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Polynomial representations and APN functions

5F(Ain,Aout) — }{X, F(X—|— Ain) + F(X) — Aout}’

: (F3,4+) — (U, +,) and (V +,) — (F3,+) linear bijective mappings.
Then Ao Fo B: (Voty) = (U t,)

oFoB(x+, A") +, AoFoB(x) = A
FoB(x+, A")  +  FoB(x) = ATA™)
F(E)+B(AM)  +  FoB(x) = ATH(A™)
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Polynomial representations and APN functions

5F(Ain,Aout) — HX’ F(X—|— Ain) + F(X) — Aout}’

: (F3,4+) — (U, +,) and (V +,) — (F3,+) linear bijective mappings.
Then Ao Fo B: (Voty) = (U t,)

oFoB(x+, A") +, AoFoB(x) = A
FoB(x+, A")  +  FoB(x) = ATA™)
F(E)+B(AM)  +  FoB(x) = ATH(A™)

Proposition (Linear equivalence)
A VAin Aout 5[__( (Ain) —1(A0ut,)) =4 E (Ain Aoui,)
* Fis APN if and only if Ao Fo B is APN.

Boolean function stud
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Equivalence relations

Linear equivalence
F1 ~in Fo if 3 A, B, bijective linear s.t. AoFioB = Fy.
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Equivalence relations

Linear equivalence
Fi ~jip Fo if 3 A, B, bijective linear s.t. AoFioB =F;.

Affine equivalence

F1 ~.¢ Fo if 3 A, B, bijective affine st. Ao FLo0B=F,.

Linear

— N\ \ \

J

Affine
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Equivalence relations

Linear equivalence
Fi ~jip Fo if 3 A, B, bijective linear s.t. AoFioB =F;.

Affine equivalence
F1 ~.¢ Fo if 3 A, B, bijective affine st. Ao FLo0B=F,.

CCZ equivalence [CCZ98]
Fi:F8 — FD ~ooz Fo: F§ — FS if: 3 A: F x FS — F2 x FJ
bijective affine s.t.

A (gFl) = gF27

where Gr = {(x, F(x),x € FJ)}.

Boolean function study
°
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Equivalence relations

Linear equivalence
Fi ~jip Fo if 3 A, B, bijective linear s.t. AoFioB =F;.

Affine equivalence
F1 ~.¢ Fo if 3 A, B, bijective affine st. Ao FLo0B=F,.

CCZ equivalence [CCZ98]
Fi:F8 — FD ~ooz Fo: F§ — FS if: 3 A: F x FS — F2 x FJ
bijective affine s.t.

A (gFl) = ng7

where Gr = {(x, F(x),x € FJ)}.

Proposition
If F1 ~ccz Fo, then  F APN <= F, APN.

Boolean function study
°

Linear
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J

Affine

N CCz
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Proper representation for easier proofs

4 linearly-equivalent functions

Xo XoX2 + Xp + X1x2 + X1X3
E-Fm || o XoX1 + Xoxo + x2X3 + X3
2 2 X XoX1 + XoXx2 + Xox3 + X1 X0 + X1 X3 + Xox3 + Xo
X3 X1X3 + X1 + Xox3 + X2 + X3

F: F2 F2 X0 (\OXg +X3X1 +(11X0X12 -I-(lzxf’
: F2 — 2, — 05 R ;
3Xg + uxgxy + asxXpXi

F: Fig — Flﬁ,X — an)(l2 o (1'1X6 ol (12X3

Boolean function study
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Proper representation for easier proofs

4 linearly-equivalent functions

Xo XoX2 + Xo + X1 X2 + X1X3
X XoX1 + XoXo + XoXx3 + X

XoX1 + XoXx2 + Xox3 + X1 X0 + X1 X3 + Xox3 + Xo
X3 X1X3 + X1 + Xox3 + X2 + X3

F: F2 F2 X0 (\OXg +X3X1 +(11X0X12 -I-(lzxf’
: F2 — 2, — 05 R ;
3Xg + uxgxy + asxXpXi

F: Fig — Flﬁ,X — an)(l2 o (1'1X6 ol (12X3

F:F16—>F16,XI—>X3 .
F(X+ Aln) 4 F(X) — Aout
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Proper representation for easier proofs

4 linearly-equivalent functions

Xo XoX2 + Xp + X1x2 + X1X3
E-Fm || o XoX1 + Xoxo + x2X3 + X3
2 2 X XoX1 + XoXx2 + Xox3 + X1 X0 + X1 X3 + Xox3 + Xo
X3 X1X3 + X1 + Xox3 + X2 + X3

F: F2 F2 X0 (\OXg +X3X1 +(11X0X12 -I-(lzxf’
: F2 — 2, — 05 R ;
3Xg + uxgxy + asxXpXi

F: Fig — Flﬁ,X — an)(l2 o (1'1X6 +(12X3
F: F]_ﬁ —>F16,X — X3

F(X+ Ain) + F(X) — Aout
(X+A)3+X3 :Aout
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Proper representation for easier proofs

4 linearly-equivalent functions

Xo XoX2 + Xp + X1x2 + X1X3
E-Fm || o XoX1 + Xoxo + x2X3 + X3
2 2 X XoX1 + XoXx2 + Xox3 + X1 X0 + X1 X3 + Xox3 + Xo
X3 X1X3 + X1 + Xox3 + X2 + X3

3 2 2 3

i w2 0 0 1 1

F-F2 _ F2 X0 N apXy + Xg3X1 + a1 XpX; + aosx:
- By 4 3 2 2
a3Xy + Qaxgxy + asXpXi

F: Fig — Flﬁ,X — ()LOX12 o (1'1X6 ol (12X3

F:F16—>F16,XI—>X3 .
F(X+ Aln) 4 F(X) — Aout

(X+A)3+X3 :Aout
AX2 4+ AZX + A3+ AU =

Boolean function study

19/33



Proper representation for easier proofs

4 linearly-equivalent functions

Xo XoX2 + Xp + X1x2 + X1X3
F- T4 4 X1 - XoX1 + XpX2 + XoX3 + X3
2 2 X XoX1 + XoXx2 + Xox3 + X1 X0 + X1 X3 + Xox3 + Xo
X3 X1X3 + X1 + Xox3 + X2 + X3

E- Xo Xg o ngl ol Xox12 T Xf’
vy — I, = 3 2 2
X1 X + uxgxy + asXpXi

F: Fig — Flﬁ,X — (10X12 o ()1X6 ol (12X3

F:Fi6 — Fi, X — X3 .
F(X+ Aln) 4 F(X) — Aout

(X+A)3+X3 :Aout
AX2 4+ AZX + A3+ AU =

— at most 2 solutions = APN !

Boolean function study
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The APN family tree

A common descent [Nyberg93]
The function F: Fon — Fon, X — X3 is APN.

* F is a power mapping

* Fis quadratic: deg,(F) = wt(3) =2

Boolean function stud
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The APN family tree

A common descent [Nyberg93]
The function F: Fon — Fon, X — X3 is APN.

* F is a power mapping

s Fis o deg,(F) = wt(3) =2
S N
*o‘}“(:oééo L
N <
%#v§§§
1995 2000 2005 2010 2015 2020
Descendants

* 6 infinite families of APN power mappings, some are not quadratic.

* About 20 infinite families of APN mappings.
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The APN family tree

A common descent
The function F: Fon — Fon, X — X3 is APN.

* F is a power mapping

s Fis o deg,(F) = wt(3) =2
S N
*o‘}“(:oééo L
N <
% ———] v —f— —f—————]—
1995 2000 2005 2010 2015 2020
Descendants

* 6 infinite families of APN power mappings, some are not quadratic.

* About 20 infinite families of APN mappings.

A single counter-example

[BIIL 108, EdePot ';'9‘]

A single APN function inequivalent to a power mapping or a quadratic mapping is known.
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Infinite families of quadratic APN mappings

Multivariate

Univariate
(3—i)k+s_yoik
X2HL | gy 2@ k2
4—i)k+ ik
X 2L gy 2kt 0

k +k_ ok k+ k k
ax2 L 2L jesthgak o poktspn ok 9040
3 —i 3,9
x>+ a Tern/Fz(a x?)

3 -1 3,9 6,18
x>+ a Tl“an/F23(3X —+ a®x'®)

3 —il 6,18 12,36
x*+a Trp,, p (X +a2x°°)

s k 2k k+s 2k k s k+s
ax 2L g g2k rkaakts | p 02kt | 2kl 20542
2k+1 k+1 2k k
a2X2 +1 + b2X2 +1 + ax2 +2 + bX2 +2 4 dX3
s+i i k+1 k s+i+k i+k
X3 4 ax2 T2 g2, 2kyak | 2 +2
2041 2k 2541
aTr[an/Fﬂ (bX ) + a rI‘r]Fz"/]sz (CX )

L(x)2k+1 4 bx? 1

(x,y) —
G [

xy
(x,y) = ( X2 axy? g by )

(x,y) = X225+1 4 X225y n y225+1
2541 25 2541
X +xy< +y
(X’y) = ( X2 + Xy235 >
( ))_) ( X2+ 4 by25+1 )
X, s s
o
(X,y) d 22511 X22:r txy +;y :25 22511
x4 ax ):+(1+sa) xy® +ay
xZHL X2 z+yz2
(x,y,2) = Xz 4yP
xy? 4+ y¥z 4 2@t
X2+ JEXyzs +yz%
(x,y,2) = xy? 4 22

X2+ ay(25+1)2"
Xy
2% ax225y25 + by?*+1

Xy
xZHL 4 2 42
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Infinite families of quadratic APN mappings

Multivariate
5 5 2541 (25+1)2
Univariate ‘ ‘ (x,y) ( x> tay
Xy
s 3—i)k sty 225 2s 2541
x2+1+ax2( ) +ax y* + by

x¥H 4 ax

24—k [ Where to look for a new function 7 ]/zy2k/2

k +k k
aX2 +1 +X25+1 + X2s +2 _|_ bXL +1 + b4 x< T4

|| \ e
* 1y

x3 4+ a7 1Ty

X3 + a_lTr]an/E

[ How to prove that a new F is actually new ? ]25y+y25+1

E 6,18 | 12,36
x>+ a Ter,,/]Fzz(ax -+ )

- Xy

N 2
| 1 X2y 2

k o2k 4 ok+ 2k
ax25+1+32 X271 +2 s+bX2 +1

2k+1 k+1 2k 4 ¢
a2X2 +1+b2X2 +1—|—ax2 +:

[ Intersection between families ?

s+k/2 s+k/2
Ty g
+1 + Xy2 4 ay2 +1

X3 + aX2s+i+2i + 32X2k+1+2k + X2s+i+k+2i+k

i k s
a'I'Tlen/lek(bX2 )+ a? TrIan/Isz(CX2 1)
L(x)2k+1 4 X2t

S X2 T2 yzzs
X2z 4 y2H
xy? 4+ y¥z 4 2@t
xZH L xy? 4y
xy? 4 72

(x,¥,2) =

(x,y,2) =

xZz4yPH ¥,

T Uy + (14 a) X2 4 ay? L >

Boolean function study

21/33



A unified point-of-view on the known APN
functions



One of the first non-power functions

An APN binomial [BudCarlLea08]

F:Fsi2 — Foiz Xr—>X3+OéX528
2 2

F(x) = x3(1 + x®?°) = x3P(x15), where P =1 + X35 (525 = 35 x 15)
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One of the first non-power functions
An APN binomial [BudCarlLea08]
F:Foz — Foz x = x5+ ax®8
F(x) = x3(1 + x52%) = x3P(x!%), where P =1 4 X%® (525 = 35 x 15)

[ CFe o = L] 15, for some system of representatives I'.
~yel
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One of the first non-power functions

An APN binomial [BudCarLea08]
F: lez = ]F212 X > X3 + CYX528
F(x) = x3(1 + x®?°) = x3P(x15), where P =1 + X35 (525 = 35 x 15)

[, CFhp. Fo, = [ ] 417, for some system of representatives .
~yel

Vo€l F(o)=2P(R) = 2*P(1).
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One of the first non-power functions

An APN binomial [BudCarLea08]

F: F212 = ]F212 X > X3 + OAX528

F(x) = x3(1 + x®?°) = x3P(x15), where P =1 + X35 (525 = 35 x 15)

[ CFe o = L] 15, for some system of representatives I'.
~yel

Ve, F(o)=7P) = 2P

Proposition
The restriction of F to each multiplicative coset I, acts as a power mapping.
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The multiplicative point of view

Recap k)
o F:Forz = Foiz x— x3 + ax5?®

* Flp, : o~ cg®
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The multiplicative point of view

Recap k)

o F:Forz = Foiz x— x3 + ax5?®

* Flp, : o~ cg®
Multivariate point-of-view
F is linearly equivalent to F: (75:)3 = (F50)3 (31, X2, Xx3) — <//EI(X),/F\;(X),F;(X))
Fi(x) = xPxo+ xix3 + x5+ xBxs+ XBxa+ x1x3 + xoxd+ x3.

All coordinates of F are homogeneous of the same degree 3.
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The multiplicative point of view

Recap )

o F:Fp2 —Fpz x> x3+ax®®

* Flp, : o~ cg®
Multivariate point-of-view
F is linearly equivalent to F: (15:)3 — (54)3 (x1, %2, x3) (ﬁ(x),l?g(x),/l-:;(x))

Fi(x) = x2xo+ xix3 + 3+ xPxs+ x3x3 + x1x3 + xox3 + x3.

All coordinates of F are homogeneous of the same degree 3.
An APN bivariate functions
F:TF2, = F2,, (x,y) — (xy,x3 + ay®)
F1 homogeneous of order 2, F» homogeneous of order 3

A unified PoV APN functi
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Linear self-equivalence
F(x) = x¢
Let A\ € Fan. Then for all x, F(Ax) = A°x® = A°F(x).
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Linear self-equivalence
F(x) = x®
Let A € Fon. Then for all x, F(Ax) = A°x® = A®F(x).
Power mapping
Let A € F%,, B(x) := Ax, A(x):=A"°x. Then: AcFoB =F .
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Linear self-equivalence
F(x) = x°
Let A € Fan. Then for all x, F(Ax) = A¢x® = A°F(x).

Power mapping
Let A € F%,, B(x) := Ax, A(x):=A"°x. Then: AcFoB =F .

Let © € [5x. Then for all x, F(yx) = ©¢x€P (sz—1) = ¢F(x).
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Linear self-equivalence
F(x) = x°
Let A € Fan. Then for all x, F(Ax) = A¢x® = A°F(x).

Power mapping

Let A € F3., B(x) := Ax, A(x):=A"x. Then: AocFoB =F .

Let © € [5x. Then for all x, F(yx) = ©¢x€P (sz—1) = p°F(x).

Cyclotomic mapping w.r.t a subfield

Let ¢ € For, B(x) :== ¢x, A(x):= ¢ ¢x. Then: AcFoB=F.

[Wang07]

A unified PoV on APN functions
°

25/33



Linear self-equivalence
F(x) = x°
Let A € Fon. Then for all x, F(Ax) = A°x® = A®F(x).
Power mapping
Let A € F3., B(x) := Ax, A(x):=A"x. Then: AcFoB =F.

Let v € 5. Then for all x, F(ox) = ©¢x¢P (sz—1) = ¢F(x).

Cyclotomic mapping w.r.t a subfield

Let ¢ € For, B(x) :== ¢x, A(x):= ¢ ¢x. Then: AcFoB=F.

(-projective mapping B
F: ]ng — ng (X1, ...y x0) = (F(x), ..., Fo(x)),

Y i, F; is homogeneous of order
o FoB = F with (x) = (px,- .-, oxp), (x)=(p %x,..., 0 %xp)
A un.iﬁed PoV on APN functions 25/33



Our main result (1/2)

Among the 22 known infinite APN families, 19 consist entirely of

cyclotomic or (-projective mappings, up to linear equivalence.
Univariate

25+ 4 aX2(3—i)k+s+2ik

xZH 4 ax

P S e T S T S I A A

2(4—i)k+s+2ik

X3+ a~1Try,, /5, (a°x°)
x3 + a_lTI‘an/F23 (33X9 + 36X18)
x3 4+ a_lTrF2,,/]F23 (a%x18 + a12x39)
a2+ 4 asz22k+2k+s N bX22k+1 X C32k+1X25+2k+5
a2X22k+1+1 + b2x2k“+1 + aX22k+2 + bX2k+2 i dX3
x3 4 aX25+i+2i + 32X2k+1+2k 4 X25+i+k+2i+k
alrp,, /w,, (bx2+1) + aszr]F2n/]F2k (ex®t1)

k k
L(X)2 +1 4 bX2 +1
A unified PoV on APN functions 26/33
°



Our main result (1/2)

Among the 22 known infinite APN families, 19 consist entirely of
cyclotomic or (-projective mappings, up to linear equivalence.

Univariate Observations
XEHL gy 202k cyclotomic
X2°HL gy 2kt g0k cyclotomic
ax2Hl 2L g 252K 2 gk 2040k ~lin biprojective
X3 + a ' Try,, /r, (a°x°) cyclotomic/(~y ) frob.
x3+a 1TrF2,,/F23 (a3x° + a%x18) cyclotomic/(~, ) frob.
x3+ 2 1Tr]F2n/]F 3(36 18 1 12x39) cyclotomic/(~iin) frob.
axZHL g g2, 22T L p 22T | 2K, 20420 cyclotomic
PP L g2 2L 9,272y 2642 g3 cyclotomic
X3 4 axZ 2 g2yl 2k | stk ~lin biprojective
aTer,,/sz(bxzi“) + aszrlpz,,/]sz(cx?H) ~lin biprojective
L(X)2k+1 _|_bx2k+1 ?

A unified PoV APN functi
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Our main result (2/2)

Among the 22 known infinite APN families, 19 consist entirely of
cyclotomic or (-projective mappings, up to linear equivalence.

Multivariate

2541 2541)21
(X7y) o x2°+ +Xay( +1) )
22s+235 22ys 2s 2s+1
(x,y) — +ax“ y~ + by
7

%5y
( x2H1 25+k/2y2k/2 + axy? + by?+1 )

X,y) —
( ) S yS s
X2 L xy? g 2L

(y) = XA 2% 20
2541 25 | 2541
o (T
X251 | py2Ht
(X,y) — ( X2s+k/2y+ a y2s+k/2 )
’ + ax y+(1+a)2xy +ay2 1
XEHL L
(x,y,2) — Xz 4yl
xy? 4+ y¥z 4 27+t
X2 Loy 4y
(x,y,2) = xy? 4 22+

xTz 4 YTt 4y

)

Observations

~Iin biprojective

~1in biprojective

~1in 4-projective
biprojective
biprojective
biprojective
biprojective

3-projective
~1in Cyclotomic

3-projective
~1in cyclotomic

A unified PoV APN functi
uni |e. oV on unctions 27/33



Sketch of proof

Linear self-equivalence & conjugacy

Let F be linearly self-equivalent: F = AoFo
Let G be linearly equivalentto F: G =FoFo

Then G is linearly self-equivalent:

G=(PoAo )*1oGo( -1,

A unified PoV on APN functions
©0000
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Sketch of proof

Linear self-equivalence & conjugacy

Let F be linearly self-equivalent: F = AoFo
Let G be linearly equivalentto F: G =FoFo

Then G is linearly self-equivalent:
G=(PoAo )710Go(

1

-1

(¢]

(¢]

)

Furthermore, A and P o Ao P~* are similar and thus share the same elementary divisors.

A unified PoV on APN functions
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Sketch of proof

Linear self-equivalence & conjugacy

Let F be linearly self-equivalent: F = AoFo
Let G be linearly equivalentto F: G =FoFo

Then G is linearly self-equivalent:
G=(PoAo )710Go( 1oB0 )

Furthermore, A and P o Ao P! are similar and thus share the same elementary divisors.

G=PoFoQ=PoAoFoBoQ=PoAoP loGo®Q loBo
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Sketch of proof

Linear self-equivalence & conjugacy

Let F be linearly self-equivalent: F = AoFo
Let G be linearly equivalentto F: G =FoFo

Then G is linearly self-equivalent:
G=(PoAo )710Go( 1oB0 )

Furthermore, A and P o Ao P! are similar and thus share the same elementary divisors.

G=PoFoQ=PoAoFoBoQ=PoAoP loGo®Q loBo

Theorem (Alternative formulation)

Most of the known infinite APN families are made of linearly self-equivalent mappings with
very specific mappings A, 5. This can be detected independently of the representation.

A unified PoV APN functi
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Example: Cyclotomic mappings

Recap k)
F(x) = x°P (xzk_1> ,n="/lk
Univariate: /Ao Fo B = F with (x) = Ax, (x) = A"¢x for any A € I},

Multivariate: Ao Fo 5 =F with  B(v) = (Av,...,Av), A(v)=(A"°v,..., A\ V)

A unified PoV APN functions
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Example: Cyclotomic mappings

Recap
F(x) = x°P <x2k71> ,n="/lk

Univariate: /Ao Fo B = F with (x) = Ax, (x) = A"¢x for any A € I},
Multivariate: 2o Fo 2= F with  B(v) = (Avi,...,Av),  A(v) = (A"°vi,...,A"%v)
Proposition (Up to linear equivalence)

F:F5 — F5. Fis linearly equivalent to a cyclotomic mapping w.r.t a subfield F,« iff:

3 A, B such that Ao Fo B = F and:

* min(A), min(2) are irreducible polynomials
+ ord(B) =2k —1 and ord(A) | ord(5)

A unified PoV on APN functions
0®000
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Linear self-equivalence and APN functions

Sum up
* Pen-and-paper functions: linearly self-equivalent with very specific A, B

* From computer searches: most are linearly self-equivalent with less structured A, B.
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Linear self-equivalence and APN functions

Sum up
* Pen-and-paper functions: linearly self-equivalent with very specific A,

* From computer searches: most are linearly self-equivalent with less structured A,

The only solution to the big APN problem
A single bijective APN mapping is known when n is even. It is CCZ-equivalent to the “Kim
mapping’:

Kk Fos — Fos, X — X3 4+ X0 4 ux?4,

for some specific u € Fye.



Linear self-equivalence and APN functions

Sum up
* Pen-and-paper functions: linearly self-equivalent with very specific A,

* From computer searches: most are linearly self-equivalent with less structured A,

The only solution to the big APN problem
A single bijective APN mapping is known when n is even. It is CCZ-equivalent to the “Kim

mapping’:
Kk Fos — Fos, X — X3 4+ X0 4 ux?4,

for some specific u € Fye.

/(X)) = X3(1 + X7 + ux?) = X3P(X21) cyclotomic w.r.t Fs.

A unified PoV APN functi
unifie: OO;)Ooon unctions 30/33



A (re)open problem

Question
For an APN function F, does there always exist a CCZ-equivalent function G which is linear
self-equivalent (Ao Go B = G) ?
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A (re)open problem

Question
For an APN function F, does there always exist a CCZ-equivalent function G which is linear
self-equivalent (Ao Go B = G) ?

Element of answers
* A data base of the known functions (sporadic / infinite families) for small n.

* Some of the properties of A, 5 are still preserved by affine and CCZ equivalences.
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More self-equivalent APN functions ?

Previous works
Linearly self-equivalence to speed up searches [BeiBriLea21,Beilea22].
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More self-equivalent APN functions ?

Previous works
Linearly self-equivalence to speed up searches [BeiBriLea21,Beilea22].

Toward new APN functions ?
* Non-quadratic linearly self-equivalent functions for n =6 7
* Cyclotomic mappings F(x) = x¢P (sz_1> with non-quadratic e ?

» [-projective mappings with / > 4 7

A unified PoV APN functi
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Take away

Theorem
Among the 22 known infinite APN families, 19 consist entirely of
cyclotomic or (-projective mappings, up to linear equivalence.

Sum up
- Characterization of very specific self-equivalences
- Unify most of the approaches

- Linearly self-equivalent APN functions from computer searches are generally less struc-
tured. [BeiBriLea21,BeiLea22]
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Take away

Theorem
Among the 22 known infinite APN families, 19 consist entirely of
cyclotomic or (-projective mappings, up to linear equivalence.

Sum up
- Characterization of very specific self-equivalences
- Unify most of the approaches

- Linearly self-equivalent APN functions from computer searches are generally less struc-
tured.

Open questions
- Link between self-equivalence and APN-ness
- Cyclotomic mappings outside the known classes? (from non-quadratic APN monomial)

- Projective mappings outside the known classes? (with more coordinates)

A unified PoV APN functi
unified Po t;n unctions 33/33



About the naming

Definition (APN function) [NybKnu92]

A function F is APN if: ¥ AlY £ 0, A%, §e(AR, A0UI) < 2,
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About the naming

Definition (APN function) [NybKnu92]

A function F is APN if: ¥ AlY £ 0, A%, §e(AR, A0UI) < 2,

The linear case

F linear. ) i '
Fix+ A" +F(x) = F()+FA™+F(x) = F(a")
. | 2 if A = F(AM)
in in outy —
A" £ Q. o (A", A™) = { 0  otherwise.
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About the naming

Definition (APN function)
A function Fis APN if: ¥ AI" £ 0, A%, §e(A", AU < 2,

The linear case
F linear. . . .
F(x+ A"+ F(x) = F(x)+F(A")+F(x) = FA™)

. . 21 if AOUt = F(An)
in in outy __

S Op(AS, A%E) = { 0  otherwise.

The APN case

F APN. Then V A #£0, [{A%, §e(A", A1) > 0} = 271,

1/1
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