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Searching for ideal components

Cryptography
Symmetric crypto.

Cryptographic Boolean functions

Using optimal components

- to reach a high security at lower costs

- to achieve ideal properties assumed in security proofs
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Outline

• Symmetric encryption schemes

• Block cipher (security and construction)

• Di�erential cryptanalysis and APN functions

• Vectorial Boolean function study

• APN state of the art

• Our uni�ed point of view on the known APN functions
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Symmetric encryption

Goal
Ensure con�dentiality under the assumption of a shared secret ¤.

A, ¤ B,¤

E E−1

Constraints
• Secure

• Easily implemented

• Arbitrary-long messages
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Building a symmetric encryption scheme

Ek

m0

c0

Ek

m1

c1

Ek

m2

c2

IV

· · · · · · Ek

mn

cn

· · · · · · Ek

mn

cn

Ingredients
• a key-dependent transformation of n-bit words (e.g. n = 128). Block cipher

• a chaining method to handle arbitrary-long messages Mode of operation
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Block ciphers

Block cipher

A key-dependent transformation of n-bit words.⇝ A family of bijections E :

E =
(
E k : Fn

2

∼−→ Fn
2

)
k∈Fκ

2

.

E

k = ¤

E−1

k



Ideal block cipher

A random family of bijections.
In practice, E should be indistinguishable from a random family of bijections

• to satisfy assumptions of security proofs

• to avoid key recoveries.
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Iterated block ciphers

Block cipher

A family of bijections E =
(
E k : Fn

2

∼−→ Fn
2

)
k∈Fκ

2

.

F

rk0 rk1 rkR

· · ·

F

rk0 rk1 rkR

· · ·

F

rk0 rk1 rkR

· · ·
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Iterated block ciphers

Block cipher

A family of bijections E =
(
E k : Fn

2

∼−→ Fn
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)
k∈Fκ
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S

S

S

...
L

rk0 rk1 rkR

· · ·

S

S

S

...
L

rk0 rk1 rkR

· · ·

S

S

S

...
L

rk0 rk1 rkR

· · ·

Sbox layer

Linear layer
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Di�erential cryptanalysis



Di�erential cryptanalysis

F : Fn
2
→ Fn

2
.

Principle

Studies for each input di�erence ∆in ∈ Fn
2
, the distribution of output di�erences:

∀ ∆out ∈ Fn
2, P

x
$←−Fn

2

[
F (x +∆in) + F (x) = ∆out

]
= ?

x x (1) x (R−1) F (x)

y y (1) y (R−1) F (y)

∆in

F (0)

∆(1)

F (r−1)

∆(r−1)
∆out

F (0) F (r−1)

Average over all bijections

F (x +∆in) + F (x) = ∆out has 1 solution x on average.

Di�erential distinguisher [BihSha91]

∆in ̸= 0,∆out s.t for many k , Ek(x +∆in) + Ek(x) = ∆out has many solutions x .
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Resisting against di�erential attacks

Di�erential distinguisher [BihSha91]

∆in ̸= 0,∆out s.t for many k , Ek(x +∆in) + Ek(x) = ∆out has many solutions x .

Di�erential resistance
For all ∆in ̸= 0,∆out and all keys k , Ek(x +∆in) + Ek(x) = ∆out has few solutions.

How to achieve this
For all∆in ̸= 0,∆out δS(∆

in,∆out) :=
∣∣{x , S(x +∆in) + S(x) = ∆out

}∣∣ as low as possible.

S

S

S

...
L

rk0 rk1 rk2

S

S

S

...
L

rk0 rk1 rk2

On average over all (rk0, rk1, rk2)

P[∆in,∆(1),∆out] ≤
(

max
a ̸=0,b

δS (a,b)

2m

)d(L)
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Di�erentially-optimal functions

How to achieve this
For all∆in ̸= 0,∆out δS(∆

in,∆out) :=
∣∣{x , S(x +∆in) + S(x) = ∆out

}∣∣ as low as possible.

• For all ∆in, there exists ∆out such that δS(∆
in,∆out) > 0

• For all ∆in ̸= 0,∆out, x is a solution i� x +∆in is a solution. δS(∆
in,∆out) is even.

Almost perfect non-linear (APN) function [NybKnu92]

A function F is APN if: ∀ ∆in ̸= 0,∆out, δF (∆
in,∆out) ≤ 2.
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Almost perfect non-linear (APN) function

De�nition (APN function) [NybKnu92]

A function F is APN if: ∀ ∆in ̸= 0,∆out, δF (∆
in,∆out) ≤ 2.

A typical classi�cation problem

- Easy de�nition

- Hard to �nd new instances (even for small n)

- Hard to classify the known instances

- Lots of open problems

Big APN problem [BDMW10]

Find F : Fn
2
→ Fn

2
which is APN, bijective for an even n.

A single example is known for n = 6.

Introduction Symmetric encryption Block ciphers Di�erential cryptanalysis Boolean function study A uni�ed PoV on APN functions 12/33



Almost perfect non-linear (APN) function

De�nition (APN function) [NybKnu92]

A function F is APN if: ∀ ∆in ̸= 0,∆out, δF (∆
in,∆out) ≤ 2.

A typical classi�cation problem

- Easy de�nition

- Hard to �nd new instances (even for small n)

- Hard to classify the known instances

- Lots of open problems

Big APN problem [BDMW10]

Find F : Fn
2
→ Fn

2
which is APN, bijective for an even n.

A single example is known for n = 6.

Introduction Symmetric encryption Block ciphers Di�erential cryptanalysis Boolean function study A uni�ed PoV on APN functions 12/33



Almost perfect non-linear (APN) function

De�nition (APN function) [NybKnu92]

A function F is APN if: ∀ ∆in ̸= 0,∆out, δF (∆
in,∆out) ≤ 2.

A typical classi�cation problem

- Easy de�nition

- Hard to �nd new instances (even for small n)

- Hard to classify the known instances

- Lots of open problems

Big APN problem [BDMW10]

Find F : Fn
2
→ Fn

2
which is APN, bijective for an even n.

A single example is known for n = 6.

Introduction Symmetric encryption Block ciphers Di�erential cryptanalysis Boolean function study A uni�ed PoV on APN functions 12/33



Boolean function study



Representing a vectorial Boolean function

F : Fn
2 → Fn

2,

x1
...
xn

 7→
F1(x1, . . . , xn)

...
Fn(x1, . . . , xn)

 .

Each Fi : Fn
2
→ F2 is a coordinate.

A component of F is a linear combination of coordinate: α · F :=
∑n−1

i=0
αiFi .

Representations we won't look at
• Truth table / graph of F : GF = {(x ,F (x)), x ∈ Fn

2
}

• Walsh transform: Fourier transform of all components α · F : Fn
2
→ F2 ⊂ C
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Polynomial representations (1/2)

Theorem (Lagrange multivariate interpolation)

f : (Fq)
m → Fq admits a unique polynomial representation in Fq[X1, . . . ,Xm]/(X

q
1

+
X1, . . . ,X

q
m + Xm).

Algebraic Normal Form (ANF)

(q = 2,m = n). Each coordinate is a polynomial of F2[X1, . . . ,Xn]/(X
2

1
+ X1, . . . ,X

2
n + Xn)

F : F4

2
→ F4

2
,


x0
x1
x2
x3

 7→


x0x2 + x0 + x1x2 + x1x3
x0x1 + x0x2 + x2x3 + x3

x0x1 + x0x2 + x0x3 + x1x2 + x1x3 + x2x3 + x2
x1x3 + x1 + x2x3 + x2 + x3


Algebraic degree : dega(F ) := max

1≤i≤n
deg(Fi ). Here dega(F ) = 2
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Polynomial representations (2/2)

Theorem (Lagrange multivariate interpolation)

f : (Fq)
m → Fq admits a unique polynomial representation in Fq[X1, . . . ,Xm]/(X

q
1

+
X1, . . . ,X

q
m + Xm).

F2-space isomorphisms

Fn
2 ≃ F2n ≃ Fℓ

2k
, with n = ℓk.

Up to a choice of bases, we get:

Univariate representation

F : Fn
2
→ Fn

2
can be seen as F̃ : F2n → F2n .

(q = 2n,m = 1)

F̃ : F24 → F24

X 7→ α0X
12 + α1X

6 + α2X
3

Multivariate representation(s)

F : Fn
2
→ Fn

2
can be seen as F̃ : Fℓ

2k
→ Fℓ

2k
.

(q = 2k ,m = ℓ)

F̃ : F2

22
→ F2

22(
x0
x1

)
7→

(
α0x

3

0
+ x2

0
x1 + α1x0x

2

1
+ α2x

3

1

α3x
3

0
+ α4x

2

0
x1 + α5x0x

2

1

)
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Polynomial representations and APN functions

δF (∆
in,∆out) =

∣∣{x ,F (x +∆in) + F (x) = ∆out
}∣∣

A : (Fn
2
,+)→ (U,+

U
) and B : (V ,+

V
)→ (Fn

2
,+) linear bijective mappings.

Then A ◦ F ◦ B : (V ,+
V
)→ (U,+

U
)

A ◦ F ◦ B(x +
V
∆in) +

U
A ◦ F ◦ B(x) = ∆out

F ◦ B(x +
V
∆in) + F ◦ B(x) = A−1(∆out)

F (B(x) + B(∆in)) + F ◦ B(x) = A−1(∆out)

Proposition (Linear equivalence)

• ∀∆in,∆out, δF (B(∆
in),A−1(∆out)) = δAFB(∆

in,∆out)

• F is APN if and only if A ◦ F ◦ B is APN.
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Equivalence relations

Linear equivalence

F1 ∼lin F2 if ∃ A,B , bijective linear s.t. A ◦ F1 ◦ B = F2.

A�ne equivalence

F1 ∼a� F2 if ∃ A,B , bijective a�ne s.t. A ◦ F1 ◦ B = F2.

CCZ equivalence [CCZ98]

F1 : Fn
2
→ Fn

2
∼CCZ F2 : Fn

2
→ Fn

2
if: ∃ A : Fn

2
× Fn

2
→ Fn

2
× Fn

2

bijective a�ne s.t.
A (GF1) = GF2 ,

where GF := {(x ,F (x), x ∈ Fn
2
)}.

Proposition

If F1 ∼CCZ F2, then F1 APN ⇐⇒ F2 APN.

A�ne

Linear

CCZ
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Proper representation for easier proofs

4 linearly-equivalent functions

F : F4

2
→ F4

2
,


x0
x1
x2
x3

 7→


x0x2 + x0 + x1x2 + x1x3
x0x1 + x0x2 + x2x3 + x3

x0x1 + x0x2 + x0x3 + x1x2 + x1x3 + x2x3 + x2
x1x3 + x1 + x2x3 + x2 + x3



F : F2

4
→ F2

4
,

(
x0
x1

)
7→

(
α0x

3

0
+ x2

0
x1 + α1x0x

2

1
+ α2x

3

1

α3x
3

0
+ α4x

2

0
x1 + α5x0x

2

1

)
F : F16 → F16,X 7→ α0X

12 + α1X
6 + α2X

3

F : F16 → F16,X 7→ X 3

F (X +∆in) + F (X ) = ∆out

(X +∆)3 + X 3 = ∆out

∆X 2 +∆2X +∆3 +∆out = 0

=⇒ at most 2 solutions =⇒ APN !
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The APN family tree

A common descent [Nyberg93]

The function F : F2n → F2n ,X 7→ X 3 is APN.

• F is a power mapping

• F is quadratic: dega(F ) = wt(3) = 2

1995 2000 2005 2010 2015 2020

[N
yb
Kn
u9
2]

[N
yb
er
g9
3]

[E
KP
06
]

Descendants
• 6 in�nite families of APN power mappings, some are not quadratic .

• About 20 in�nite families of quadratic APN mappings.

A single counter-example [BriLea08,EdePot09]

A single APN function inequivalent to a power mapping or a quadratic mapping is known.
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In�nite families of quadratic APN mappings

Univariate

x2
s+1 + ax2

(3−i)k+s+2
ik

x2
s+1 + ax2

(4−i)k+s+2
ik

ax2
k+1 + x2

s+1 + x2
s+k+2

k
+ bx2

k+s+1 + b2
k
x2

s+2
k

x3 + a−1
TrF2n/F2(a

3x9)

x3 + a−1
TrF2n/F23 (a

3x9 + a6x18)

x3 + a−1
TrF2n/F23 (a

6x18 + a12x36)

ax2
s+1 + a2

k
x2

2k+2
k+s

+ bx2
2k+1 + ca2

k+1x2
s+2

k+s

a2x2
2k+1+1 + b2x2

k+1+1 + ax2
2k+2 + bx2

k+2 + dx3

x3 + ax2
s+i+2

i
+ a2x2

k+1+2
k
+ x2

s+i+k+2
i+k

aTrF2n/F2k (bx
2
i+1) + a2

k
TrF2n/F2k

(cx2
s+1)

L(x)2
k+1 + bx2

k+1

Multivariate

(x , y) 7→
(

x2
s+1 + ay (2

s+1)2i

xy

)
(x , y) 7→

(
x2

2s+2
3s
+ ax2

2s
y2

s
+ by2

s+1

xy

)
(x , y) 7→

(
x2

s+1 + x2
s+k/2

y2
k/2

+ axy2
s
+ by2

s+1

xy

)
(x , y) 7→

(
x2

s+1 + xy2
s
+ y2

s+1

x2
2s+1 + x2

2s
y + y2

2s+1
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(x , y) 7→

(
x2

s+1 + xy2
s
+ y2

s+1

x2
3s
y + xy2
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)
(x , y) 7→
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x2
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x2
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bxy
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(x , y) 7→
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x2

s+1 + xy2
s
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s+1

x2
2s+1 + ax2

2s
y + (1+ a)2

s
xy2

2s
+ ay2

2s+1
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 x2
s+1 + x2

s
z + yz2

s

x2
s
z + y2

s+1

xy2
s
+ y2

s
z + z2

s+1
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 x2
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s
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s

xy2
s
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s+1

x2
s
z + y2
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s
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Where to look for a new function ?

Intersection between families ?

How to prove that a new F is actually new ?
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In�nite families of quadratic APN mappings

Univariate

x2
s+1 + ax2

(3−i)k+s+2
ik

x2
s+1 + ax2

(4−i)k+s+2
ik

ax2
k+1 + x2

s+1 + x2
s+k+2

k
+ bx2

k+s+1 + b2
k
x2

s+2
k

x3 + a−1
TrF2n/F2(a

3x9)

x3 + a−1
TrF2n/F23 (a

3x9 + a6x18)

x3 + a−1
TrF2n/F23 (a

6x18 + a12x36)

ax2
s+1 + a2

k
x2

2k+2
k+s

+ bx2
2k+1 + ca2

k+1x2
s+2

k+s

a2x2
2k+1+1 + b2x2

k+1+1 + ax2
2k+2 + bx2

k+2 + dx3

x3 + ax2
s+i+2

i
+ a2x2

k+1+2
k
+ x2

s+i+k+2
i+k

aTrF2n/F2k (bx
2
i+1) + a2

k
TrF2n/F2k

(cx2
s+1)

L(x)2
k+1 + bx2

k+1

Multivariate
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s

x2
s
z + y2

s+1

xy2
s
+ y2

s
z + z2

s+1
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A uni�ed point-of-view on the known APN

functions



One of the �rst non-power functions

An APN binomial [BudCarLea08]

F : F212 → F212 x 7→ x3 + αx528

F (x) = x3(1+ x525) = x3P(x15), where P = 1+ X 35 (525 = 35× 15)

F∗
24
⊂ F∗

212
. F∗

212
=

⊔
γ∈Γ

γF∗
24

for some system of representatives Γ.

∀ φ ∈ F∗
24
, F (φ) = φ3P(φ15) = φ3P(1).

Proposition

The restriction of F to each multiplicative coset γF∗
24

acts as a power mapping .
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The multiplicative point of view

Recap
• F : F212 → F212 x 7→ x3 + αx528

• F |F
24

: φ 7→ cφ3

Multivariate point-of-view

F is linearly equivalent to F̃ : (F24)
3 → (F24)

3 (x1, x2, x3) 7→
(
F̃1(x), F̃2(x), F̃3(x)

)
.

F̃1(x) = ?x21x2 + ?x1x
2

2 + ?x32 + ?x21x3 + ?x22x3 + ?x1x
2

3 + ?x2x
2

3 + ?x33 .

All coordinates of F̃ are homogeneous of the same degree 3.

An APN bivariate functions [ZhoPot13]

F : F2

64 → F2

64, (x , y) 7→ (xy , x3 + ay3)

F1 homogeneous of order 2, F2 homogeneous of order 3
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Linear self-equivalence

F (x) = xe

Let λ ∈ F2n . Then for all x , F (λx) = λexe = λeF (x).

Power mapping

Let λ ∈ F∗
2n , B(x) := λx , A(x) := λ−ex . Then: A ◦ F ◦ B = F .

F (x) = xeP
(
x2

k−1

)
, n = ℓk

Let φ ∈ F2k . Then for all x , F (φx) = φexeP
(
x2

k−1

)
= φeF (x).

Cyclotomic mapping w.r.t a sub�eld [Wang07]

Let φ ∈ F2k , B(x) := φx , A(x) := φ−ex . Then: A ◦ F ◦ B = F .

ℓ-projective mapping [BCP24,Gölo§lu22]

F : Fℓ
2k
→ Fℓ

2k
(x1, . . . , xℓ) 7→ (F1(x), . . . ,Fℓ(x)),

∀ i , Fi is homogeneous of order ei .
A ◦ F ◦ B = F with B(x) = (φx1, . . . , φxℓ), A(x) = (φ−e1x1, . . . , φ

−eℓxℓ)
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Our main result (1/2)

Among the 22 known in�nite APN families, 19 consist entirely of
cyclotomic or ℓ-projective mappings, up to linear equivalence.

Univariate

Observations

x2
s+1 + ax2

(3−i)k+s+2
ik

cyclotomic

x2
s+1 + ax2

(4−i)k+s+2
ik

cyclotomic

ax2
k+1 + x2

s+1 + x2
s+k+2

k
+ bx2

k+s+1 + b2
k
x2

s+2
k

∼lin biprojective

x3 + a−1
TrF2n/F2(a

3x9)

cyclotomic/(∼lin) frob.

x3 + a−1
TrF2n/F23 (a

3x9 + a6x18)

cyclotomic/(∼lin) frob.

x3 + a−1
TrF2n/F23 (a

6x18 + a12x36)

cyclotomic/(∼lin) frob.

ax2
s+1 + a2

k
x2

2k+2
k+s

+ bx2
2k+1 + ca2

k+1x2
s+2

k+s

cyclotomic

a2x2
2k+1+1 + b2x2

k+1+1 + ax2
2k+2 + bx2

k+2 + dx3

cyclotomic

x3 + ax2
s+i+2

i
+ a2x2

k+1+2
k
+ x2

s+i+k+2
i+k

∼lin biprojective

aTrF2n/F2k (bx
2
i+1) + a2

k
TrF2n/F2k

(cx2
s+1)

∼lin biprojective

L(x)2
k+1 + bx2

k+1

?
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Our main result (2/2)

Among the 22 known in�nite APN families, 19 consist entirely of
cyclotomic or ℓ-projective mappings, up to linear equivalence.

Multivariate Observations

(x , y) 7→
(

x2
s+1 + ay (2

s+1)2i

xy

)
∼lin biprojective

(x , y) 7→
(

x2
2s+2

3s
+ ax2

2s
y2

s
+ by2

s+1

xy

)
∼lin biprojective

(x , y) 7→
(

x2
s+1 + x2

s+k/2
y2

k/2
+ axy2

s
+ by2

s+1

xy

)
∼lin 4-projective

(x , y) 7→
(

x2
s+1 + xy2

s
+ y2

s+1

x2
2s+1 + x2

2s
y + y2

2s+1

)
biprojective

(x , y) 7→
(

x2
s+1 + xy2

s
+ y2

s+1

x2
3s
y + xy2

3s

)
biprojective

(x , y) 7→
(

x2
s+1 + by2

s+1

x2
s+k/2

y + a
bxy

2
s+k/2

)
biprojective

(x , y) 7→
(

x2
s+1 + xy2

s
+ ay2

s+1

x2
2s+1 + ax2

2s
y + (1+ a)2

s
xy2

2s
+ ay2

2s+1

)
biprojective

(x , y , z) 7→

 x2
s+1 + x2

s
z + yz2

s

x2
s
z + y2

s+1

xy2
s
+ y2

s
z + z2

s+1

 3-projective
∼lin cyclotomic

(x , y , z) 7→

 x2
s+1 + xy2

s
+ yz2

s

xy2
s
+ z2

s+1

x2
s
z + y2

s+1 + y2
s
z

 3-projective
∼lin cyclotomic
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Sketch of proof

Linear self-equivalence & conjugacy

Let F be linearly self-equivalent: F = A ◦ F ◦ B .
Let G be linearly equivalent to F : G = P ◦ F ◦ Q.

Then G is linearly self-equivalent:

G = (P ◦ A ◦ P)−1 ◦ G ◦ (Q−1 ◦ B ◦ Q)

Furthermore, A and P ◦ A ◦ P−1 are similar and thus share the same elementary divisors.

G = P ◦ F ◦ Q = P ◦ A ◦ F ◦ B ◦ Q = P ◦ A ◦ P−1 ◦ G ◦ Q−1 ◦ B ◦ Q

Theorem (Alternative formulation)

Most of the known in�nite APN families are made of linearly self-equivalent mappings with
very speci�c mappings A,B . This can be detected independently of the representation.
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Example: Cyclotomic mappings

Recap

F (x) = xeP
(
x2

k−1

)
, n = ℓk

Univariate: A ◦ F ◦ B = F with B(x) = λx , A(x) = λ−ex for any λ ∈ F∗
2k

Multivariate: Ã ◦ F̃ ◦ B̃ = F̃ with B̃(v) = (λv1, . . . , λvℓ), Ã(v) = (λ−ev1, . . . , λ
−evℓ)

Proposition (Up to linear equivalence)

F : Fn
2
→ Fn

2
. F is linearly equivalent to a cyclotomic mapping w.r.t a sub�eld F2k i�:

∃ A,B such that A ◦ F ◦ B = F and:

• min(A),min(B) are irreducible polynomials

• ord(B) = 2k − 1 and ord(A) | ord(B)

Introduction Symmetric encryption Block ciphers Di�erential cryptanalysis Boolean function study A uni�ed PoV on APN functions 29/33



Example: Cyclotomic mappings

Recap

F (x) = xeP
(
x2

k−1

)
, n = ℓk

Univariate: A ◦ F ◦ B = F with B(x) = λx , A(x) = λ−ex for any λ ∈ F∗
2k
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Linear self-equivalence and APN functions

Sum up
• Pen-and-paper functions: linearly self-equivalent with very speci�c A,B

• From computer searches: most are linearly self-equivalent with less structured A,B .

The only solution to the big APN problem

A single bijective APN mapping is known when n is even. It is CCZ-equivalent to the �Kim
mapping�:

κ : F26 → F26 ,X 7→ X 3 + X 10 + uX 24,

for some speci�c u ∈ F26 .

κ(X ) = X 3(1+ X 7 + uX 21) = X 3P(X 2
3−1) cyclotomic w.r.t F23 .
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A (re)open problem

Question

For an APN function F , does there always exist a CCZ-equivalent function G which is linear
self-equivalent (A ◦ G ◦ B = G ) ?

Element of answers
• A data base of the known functions (sporadic / in�nite families) for small n.

• Some of the properties of A,B are still preserved by a�ne and CCZ equivalences.
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More self-equivalent APN functions ?

Previous works
Linearly self-equivalence to speed up searches [BeiBriLea21,BeiLea22].

Toward new APN functions ?
• Non-quadratic linearly self-equivalent functions for n = 6 ?

• Cyclotomic mappings F (x) = xeP
(
x2

k−1

)
with non-quadratic e ?

• ℓ-projective mappings with ℓ > 4 ?
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Take away

Theorem
Among the 22 known in�nite APN families, 19 consist entirely of
cyclotomic or ℓ-projective mappings, up to linear equivalence.

Sum up

- Characterization of very speci�c self-equivalences

- Unify most of the approaches

- Linearly self-equivalent APN functions from computer searches are generally less struc-
tured . [BeiBriLea21,BeiLea22]

Open questions

- Link between self-equivalence and APN-ness [BeiBriLea21, Conjecture 1]

- Cyclotomic mappings outside the known classes? (from non-quadratic APN monomial)

- Projective mappings outside the known classes? (with more coordinates)
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About the naming

De�nition (APN function) [NybKnu92]

A function F is APN if: ∀ ∆in ̸= 0,∆out, δF (∆
in,∆out) ≤ 2.

The linear case
F linear.

F (x +∆in) + F (x) = F (x) + F (∆in) + F (x) = F (∆in)

∆in ̸= 0. δF (∆
in,∆out) =

{
2n if ∆out = F (∆in)
0 otherwise.

The APN case
F APN. Then ∀ ∆in ̸= 0,

∣∣{∆out, δF (∆
in,∆out) > 0

}∣∣ = 2n−1.
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