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Linear self-equivalence : a unifying PoV on the known families of APN functions

Univariate

x2s+1 + ax2(3−i)k+s+2ik

x2s+1 + ax2(4−i)k+s+2ik

ax2k+1 + x2s+1 + x2s+k+2k
+ bx2k+s+1 + b2k x2s+2k

x3 + a−1TrF2n /F2
(a3x9)

x3 + a−1TrF2n /F23 (a3x9 + a6x18)

x3 + a−1TrF2n /F23 (a6x18 + a12x36)

ax2s+1 + a2k x22k+2k+s
+ bx22k+1 + ca2k+1x2s+2k+s

a2x22k+1+1 + b2x2k+1+1 + ax22k+2 + bx2k+2 + dx3

x3 + ax2s+i+2i
+ a2x2k+1+2k

+ x2s+i+k+2i+k

aTrF2n /F2k (bx2i+1) + a2k TrF2n /F2k (cx2s+1)

L(x)2k+1 + bx2k+1

Multivariate

(x, y) 7→
(

x2s+1 + ay(2s+1)2i

xy

)
(x, y) 7→

(
x22s+23s

+ ax22s y2s
+ by2s+1

xy

)
(x, y) 7→

(
x2s+1 + x2s+k/2y2k/2

+ axy2s
+ by2s+1

xy

)
(x, y) 7→

(
x2s+1 + xy2s

+ y2s+1

x22s+1 + x22s y + y22s+1

)
(x, y) 7→

(
x2s+1 + xy2s

+ y2s+1

x23s y + xy23s

)
(x, y) 7→

(
x2s+1 + by2s+1

x2s+k/2y + a
b xy2s+k/2

)
(x, y) 7→

(
x2s+1 + xy2s

+ ay2s+1

x22s+1 + ax22s y + (1 + a)2s xy22s
+ ay22s+1

)
(x, y, z) 7→

 x2s+1 + x2s z + yz2s

x2s z + y2s+1

xy2s
+ y2s z + z2s+1


(x, y, z) 7→

 x2s+1 + xy2s
+ yz2s

xy2s
+ z2s+1

x2s z + y2s+1 + y2s z



Hopefully clearer in 20 min ?
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Outline

• From Differential cryptanalysis to APN functions

• Polynomial representations of vectorial Boolean functions

• APN state of the art

• Our unified point of view on the known APN functions
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Security of block ciphers

Block cipher

A family of bijections E of Fn
2.

E =
(

Ek : Fn
2

∼−→ Fn
2

)
k∈Fκ

2

E

k =�

E−1

k

� ��

Ideal block cipher

A random family of bijections.

In practice, E should be indistinguishable from a random family of bijections
• to satisfy assumptions of security proofs

• to avoid stronger attack (e.g. key recoveries)
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Differential cryptanalysis

F : Fn
2 → Fn

2.

Principle

Studies for each input difference∆in 6= 0, the distribution of output differences:

∀∆out ∈ Fn
2, P

x
$←−Fn

2

[
F(x + ∆in) + F(x) = ∆out] = ?

x x(1) x(R−1) F(x)

y y(1) y(R−1) F(y)

∆in

F(0)

∆(1)

F(r−1)

∆(r−1)
∆out

F(0) F(r−1)

Average over all bijections

For all (∆in 6= 0,∆out), the equation F(x + ∆in) + F(x) = ∆out has 1 solution x on average.

Differential distinguisher [BihSha91]

(∆in,∆out) such that for many k , Ek(x + ∆in) + Ek(x) = ∆out has many solutions x .
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Resisting against differential attacks

Differential distinguisher [BihSha91]

(∆in,∆out) s.t for many k , Ek(x + ∆in) + Ek(x) = ∆out has many solutions x .

Differential resistance

For all (∆in,∆out) and all keys k , Ek(x + ∆in) + Ek(x) = ∆out has few solutions.

How to achieve this

For all (∆in,∆out), S(x + ∆in) + S(x) = ∆out has few solutions.

δS(∆
in,∆out) =

∣∣{x | S(x + ∆in) + S(x) = ∆out}∣∣

S

S

S

...

L

rk0 rk1 rk2

S

S

S

...

L

rk0 rk1 rk2

P[∆in,∆,∆out] ≤
( max

a 6=0,b
δS(a,b)

2m

)d(L)
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Differentially-optimal functions

How to achieve this

For all∆in 6= 0,∆out δS(∆
in,∆out) =

∣∣{x | S(x + ∆in) + S(x) = ∆out}∣∣ should be low.

• For all∆in, there exists∆out such that δS(∆
in,∆out) > 0

• For all∆in 6= 0,∆out, x is a solution iff x + ∆in is a solution. δS(∆
in,∆out) is even.

Almost perfect non-linear (APN) function [NybKnu92]

A function F is APN if: ∀∆in 6= 0,∆out, δF(∆
in,∆out) ≤ 2.
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Almost perfect non-linear (APN) function

Definition (APN function) [NybKnu92]

A function F is APN if: ∀∆in 6= 0,∆out, δF(∆
in,∆out) ≤ 2.

A typical classification problem

- Easy definition

- Hard to find new instances (even for small n)
- Hard to classify the known instances

- Lots of open problems

Big APN problem [BDMW10]

Find F : Fn
2 → Fn

2 which is APN, bijective for an even n.
A single example is known for n = 6.
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Linear self-equivalence : a unifying PoV on the known families of APN functions

Univariate
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ax2k+1 + x2s+1 + x2s+k+2k
+ bx2k+s+1 + b2k x2s+2k

x3 + a−1TrF2n /F2
(a3x9)

x3 + a−1TrF2n /F23 (a3x9 + a6x18)

x3 + a−1TrF2n /F23 (a6x18 + a12x36)

ax2s+1 + a2k x22k+2k+s
+ bx22k+1 + ca2k+1x2s+2k+s
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(x, y) 7→

(
x22s+23s

+ ax22s y2s
+ by2s+1

xy

)
(x, y) 7→

(
x2s+1 + x2s+k/2y2k/2

+ axy2s
+ by2s+1

xy

)
(x, y) 7→

(
x2s+1 + xy2s

+ y2s+1

x22s+1 + x22s y + y22s+1
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(x, y) 7→

(
x2s+1 + xy2s

+ y2s+1

x23s y + xy23s

)
(x, y) 7→
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+ y2s z + z2s+1
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 x2s+1 + xy2s
+ yz2s

xy2s
+ z2s+1
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Hopefully clearer in 12 min ?
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Polynomial representations of Boolean

functions



Polynomial representations (1/2)

F : Fn
2 → Fn

2,

x1
...

xn

 7→
F1(x1, . . . , xn)

...

Fn(x1, . . . , xn)

 .

Theorem (Lagrangemultivariate interpolation)

f : (Fq)
m → Fq admits a polynomial representation in Fq[X1, . . . ,Xm]/(Xq

1 + X1, . . . ,Xq
m + Xm).

Algebraic Normal Form (ANF)

(q = 2,m = n). Each coordinate is a polynomial of F2[X1, . . . ,Xn]/(X2
1 + X1, . . . ,X2

n + Xn)

F : F4
2 → F4

2,


x0
x1
x2
x3

 7→


x0x2 + x0 + x1x2 + x1x3
x0x1 + x0x2 + x2x3 + x3

x0x1 + x0x2 + x0x3 + x1x2 + x1x3 + x2x3 + x2
x1x3 + x1 + x2x3 + x2 + x3
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Polynomial representations (2/2)

Theorem (Lagrangemultivariate interpolation)

f : (Fq)
m → Fq admits a polynomial representation in Fq[X1, . . . ,Xm]/(Xq

1 + X1, . . . ,Xq
m + Xm).

F2-space isomorphisms

Fn
2 ' F2n ' F`

2k , with n = `k.

Univariate representations (q = 2n,m = 1)

F : Fn
2 → Fn

2 can be seen as F̃ : F2n → F2n .

F̃ : F24 → F24

X 7→ α0X12 + α1X6 + α2X3

Multivariate representations (q = 2k ,m = `)

F : Fn
2 → Fn

2 can be seen as F̃ : F`
2k → F`

2k .

F̃ : F2
22 → F2

22(
x0
x1

)
7→

(
α0x3

0 + x2
0x1 + α1x0x2

1 + α2x3
1

α3x3
0 + α4x2

0x1 + α5x0x2
1

)
Up to a choice of bases!
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Polynomial representations and APN functions

δF(∆
in,∆out) =

∣∣{x, F(x + ∆in) + F(x) = ∆out}∣∣

A : (Fn
2,+)→ (U,+U ) andB : (V ,+V )→ (Fn

2,+) linear bijective mappings.
ThenA ◦ F ◦ B : (V ,+V )→ (U,+U )

Proposition

• ∀∆in,∆out, δF(B(∆in),A−1(∆out)) = δAFB(∆
in,∆out)

• F is APN if and only ifA ◦ F ◦ B is APN.

Definition (Linear equivalence)

F1 ∼lin F2 if ∃A,B , bijective linear s.t. A ◦ F1 ◦ B = F2.
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Proper representatives for easier proofs

4 linearly-equivalent functions

F : F4
2 → F4

2,


x0
x1
x2
x3

 7→


x0x2 + x0 + x1x2 + x1x3
x0x1 + x0x2 + x2x3 + x3

x0x1 + x0x2 + x0x3 + x1x2 + x1x3 + x2x3 + x2
x1x3 + x1 + x2x3 + x2 + x3



F : F2
4 → F2

4,

(
x0
x1

)
7→

(
α0x3

0 + x2
0x1 + α1x0x2

1 + α2x3
1

α3x3
0 + α4x2

0x1 + α5x0x2
1

)

F : F16 → F16,X 7→ α0X12 + α1X6 + α2X3

F : F16 → F16,X 7→ X3

F(X + ∆) + F(X) = ∆out

(X + ∆)3 + X3 = ∆out

∆X2 + ∆2X + ∆3 + ∆out = 0

=⇒ at most 2 solutions =⇒ APN !
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Linear self-equivalence : a unifying PoV on the known families of APN functions

Univariate

x2s+1 + ax2(3−i)k+s+2ik

x2s+1 + ax2(4−i)k+s+2ik

ax2k+1 + x2s+1 + x2s+k+2k
+ bx2k+s+1 + b2k x2s+2k

x3 + a−1TrF2n /F2
(a3x9)

x3 + a−1TrF2n /F23 (a3x9 + a6x18)

x3 + a−1TrF2n /F23 (a6x18 + a12x36)

ax2s+1 + a2k x22k+2k+s
+ bx22k+1 + ca2k+1x2s+2k+s

a2x22k+1+1 + b2x2k+1+1 + ax22k+2 + bx2k+2 + dx3

x3 + ax2s+i+2i
+ a2x2k+1+2k

+ x2s+i+k+2i+k

aTrF2n /F2k (bx2i+1) + a2k TrF2n /F2k (cx2s+1)

L(x)2k+1 + bx2k+1

Multivariate

(x, y) 7→
(

x2s+1 + ay(2s+1)2i

xy

)
(x, y) 7→

(
x22s+23s

+ ax22s y2s
+ by2s+1

xy

)
(x, y) 7→

(
x2s+1 + x2s+k/2y2k/2

+ axy2s
+ by2s+1

xy

)
(x, y) 7→

(
x2s+1 + xy2s

+ y2s+1

x22s+1 + x22s y + y22s+1

)
(x, y) 7→

(
x2s+1 + xy2s

+ y2s+1

x23s y + xy23s

)
(x, y) 7→

(
x2s+1 + by2s+1

x2s+k/2y + a
b xy2s+k/2

)
(x, y) 7→

(
x2s+1 + xy2s

+ ay2s+1

x22s+1 + ax22s y + (1 + a)2s xy22s
+ ay22s+1

)
(x, y, z) 7→

 x2s+1 + x2s z + yz2s

x2s z + y2s+1

xy2s
+ y2s z + z2s+1


(x, y, z) 7→

 x2s+1 + xy2s
+ yz2s

xy2s
+ z2s+1

x2s z + y2s+1 + y2s z



Hopefully clearer in 5 min ?
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A unified point-of-view on the known

APN functions



One of the first non-power functions

An APN binomial [BudCarLea08]

G : F212 → F212 x 7→ x3 + αx528

G(x) = x3(1 + x525) = x3P(x15), where P = 1 + X35 (525 = 35× 15)

F∗
24 ⊂ F∗

212 .

∀ϕ ∈ F∗
24 , G(ϕ) = ϕ3P(ϕ15) = ϕ3P(1).

Proposition

For any γ ∈ F∗
212 , the restriction ofG|γF∗

24
is (up to a constant) the power mapping x 7→ x3.
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The multiplicative point of view

An APN binomial [BudCarLea08]

• G : F212 → F212 x 7→ x3 + αx528

• G|F24 : ϕ 7→ cϕ3

Multivariate point-of-view

G is linearly equivalent to G̃ : (F24)3 → (F24)3 (x1, x2, x3) 7→
(

G̃1(x), G̃2(x), G̃3(x)
)
.

G̃1(x) = ?x2
1x2 + ?x1x2

2 + ?x3
2 + ?x2

1x3 + ?x2
2x3 + ?x1x2

3 + ?x2x2
3 + ?x3

3 .

All coordinates of G̃ are homogeneous of the same degree 3.

An APN bivariate functions [ZhoPot13]

H : F2
64 → F2

64, (x, y) 7→ (xy, x3 + ay3)

• H1 homogeneous of order 2.

• H2 homogeneous of order 3.
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Linear self-equivalence

Powermapping

F(x) = xe

Let λ ∈ F∗
2n . Then for all x , F(λx) = λexe = λeF(x).

ThusA ◦ F ◦ B = F withB(x) := λx , A(x) := λ−ex .

Cyclotomicmapping w.r.t a subfield [Wang07]

G(x) = xeP
(

x2k−1
)
, n = `k

Letϕ ∈ F2k . Then for all x ,G(ϕx) = ϕexeP
(

x2k−1
)
= ϕeG(x).

ThusA ◦ G ◦ B = G withB(x) := ϕx , A(x) := ϕ−ex .

`-projectivemapping [BCP24,Göloğlu22]

H : F`
2k → F`

2k (x1, . . . , x`) 7→ (H1(x), . . . ,H`(x)),

∀ i ,Hi is homogeneous of order ei .
ThusA ◦ H ◦ B = H with B(x) = (ϕx1, . . . , ϕx`),

A(x) = (ϕ−e1x1, . . . , ϕ−e`x`)
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Our main result (1/2)

Among the 22 known infinite APN families, 19 consist entirely of cyclotomic or `-projectivemappings,
up to linear equivalence.

Univariate

Observations

x2s+1 + ax2(3−i)k+s+2ik

cyclotomic

x2s+1 + ax2(4−i)k+s+2ik

cyclotomic

ax2k+1 + x2s+1 + x2s+k+2k
+ bx2k+s+1 + b2k x2s+2k

∼lin biprojective

x3 + a−1TrF2n /F2
(a3x9)

cyclotomic/(∼lin) frob.

x3 + a−1TrF2n /F23 (a3x9 + a6x18)

cyclotomic/(∼lin) frob.

x3 + a−1TrF2n /F23 (a6x18 + a12x36)

cyclotomic/(∼lin) frob.

ax2s+1 + a2k x22k+2k+s
+ bx22k+1 + ca2k+1x2s+2k+s

cyclotomic

a2x22k+1+1 + b2x2k+1+1 + ax22k+2 + bx2k+2 + dx3

cyclotomic

x3 + ax2s+i+2i
+ a2x2k+1+2k

+ x2s+i+k+2i+k

∼lin biprojective

aTrF2n /F2k (bx2i+1) + a2k TrF2n /F2k (cx2s+1)

∼lin biprojective

L(x)2k+1 + bx2k+1

?
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Our main result (2/2)

Among the 22 known infinite APN families, 19 consist entirely of

cyclotomic or `-projectivemappings, up to linear equivalence.
Multivariate Observations

(x, y) 7→
(

x2s+1 + ay(2s+1)2i

xy

)
∼lin biprojective

(x, y) 7→
(

x22s+23s
+ ax22s y2s

+ by2s+1

xy

)
∼lin biprojective

(x, y) 7→
(

x2s+1 + x2s+k/2y2k/2

+ axy2s
+ by2s+1

xy

)
∼lin 4-projective

(x, y) 7→
(

x2s+1 + xy2s
+ y2s+1

x22s+1 + x22s y + y22s+1

)
biprojective

(x, y) 7→
(

x2s+1 + xy2s
+ y2s+1

x23s y + xy23s

)
biprojective

(x, y) 7→
(

x2s+1 + by2s+1

x2s+k/2y + a
b xy2s+k/2

)
biprojective

(x, y) 7→
(

x2s+1 + xy2s
+ ay2s+1

x22s+1 + ax22s y + (1 + a)2s xy22s
+ ay22s+1

)
biprojective

(x, y, z) 7→

 x2s+1 + x2s z + yz2s

x2s z + y2s+1

xy2s
+ y2s z + z2s+1

 3-projective

∼lin cyclotomic

(x, y, z) 7→

 x2s+1 + xy2s
+ yz2s

xy2s
+ z2s+1

x2s z + y2s+1 + y2s z

 3-projective

∼lin cyclotomic
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Take away

Theorem

Among the 22 known infinite APN families, 19 consist entirely of

cyclotomic or `-projectivemappings, up to linear equivalence.

Sum up

- Characterization of very specific self-equivalences

- Unify most of the approaches

- Partial answer to the detection of such structures up to equivalence

Open questions

- Link between self-equivalence and APN-ness [BeiBriLea21, Conjecture 1]

- Cyclotomic mappings outside the known classes? (from non-quadratic APNmonomial)

- Projective mappings outside the known classes? (withmore coordinates)
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About the naming

Definition (APN function) [NybKnu92]

A function F is APN if: ∀∆in 6= 0,∆out, δF(∆
in,∆out) ≤ 2.

The linear case

F linear.

F(x + ∆in) + F(x) = F(x) + F(∆in) + F(x) = F(∆in)

∆in 6= 0. δF(∆
in,∆out) =

{
2n if∆out = F(∆in)
0 otherwise.

The APN case

F APN. Then ∀∆in 6= 0,
∣∣{∆out, δF(∆

in,∆out) > 0
}∣∣ = 2n−1.
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