Linear self-equivalence : a unifying point-of-view on the known families of APN functions

Jules Baudrin

based on a joint work with Anne Canteaut & Léo Perrin

UCLouvain

Journées Codage & Cryptographie, April 3rd, 2025

Contact: jules.baudrin@uclouvain.be

Linear self-equivalence : a unifying PoV on the known families of APN functions

	Multivariate
Univariate	$ \begin{array}{c} (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + ay^{(2^{s}+1)2^{i}} \\ xy \end{pmatrix} \\ (x,y) \mapsto \begin{pmatrix} x^{2^{2s}+2^{3s}} + ax^{2^{2s}}y^{2^{s}} + by^{2^{s}+1} \\ xy \end{pmatrix} \\ (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s+k/2}}y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s}+1} \\ xy \end{pmatrix} \\ \end{array} $
$x^{2^{s}+1} + ax^{2^{(3-i)k+s}+2^{ik}}$	$(x, y) \mapsto \left(\begin{array}{c} x^{2^{2s}+2^{3s}} + ax^{2^{2s}}y^{2^s} + by^{2^s+1} \\ xy \end{array}\right)$
$x^{2^{s}+1} + ax^{2^{(4-i)k+s}+2^{ik}}$	$(x,y)\mapsto \left(\begin{array}{c} x^{2^{s+1}}+x^{2^{s+k/2}}y^{2^{k/2}}+axy^{2^s}+by^{2^{s+1}}\\ xy\end{array}\right)$
$\frac{ax^{2^{k}+1}+x^{2^{s}+1}+x^{2^{s+k}+2^{k}}+bx^{2^{k+s}+1}+b^{2^{k}}x^{2^{s}+2^{k}}}{x^{3}+a^{-1}\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2}}(a^{3}x^{9})}$	$(x, y) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + y^{2^{s}+1} \\ x^{2^{2s}+1} + x^{2^{2s}} y + y^{2^{2s}+1} \end{pmatrix}$
$x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{3}}}(a^{3}x^{9} + a^{6}x^{18})$	$(x, y) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + y^{2^{s}+1} \\ x^{2^{3s}}y + xy^{2^{3s}} \end{pmatrix}$
$x^{3} + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{3}}} (a^{6} x^{18} + a^{12} x^{36})$	$(x, y) \mapsto \begin{pmatrix} x^{2^{s}+1} + by^{2^{s}+1} \\ x^{2^{s+k/2}}y + \frac{a}{b}xy^{2^{s+k/2}} \end{pmatrix}$
$\begin{vmatrix} ax^{2^{k}+1} + a^{2^{k}}x^{2^{2k}+2^{k+s}} + bx^{2^{2k}+1} + ca^{2^{k}+1}x^{2^{s}+2^{k+s}} \\ a^{2}x^{2^{2^{k}+1}+1} + b^{2}x^{2^{k+1}+1} + ax^{2^{2^{k}}+2} + bx^{2^{k}+2} + dx^{3} \end{vmatrix}$	$(x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + ay^{2^{s}+1} \\ x^{2^{2^{s}}+1} + ax^{2^{2^{s}}}y + (1+a)^{2^{s}}xy^{2^{2s}} + ay^{2^{2^{s}}+1} \end{pmatrix}$
$x^{3} + ax^{2^{s+i}+2^{i}} + a^{2}x^{2^{k+1}+2^{k}} + x^{2^{s+i+k}+2^{i+k}}$	$\begin{pmatrix} x & - + ax & y + (1 + a) & xy + ay \\ x^{2^{s}+1} + x^{2^{s}}z + yz^{2^{s}} \\ x^{2^{s}+1} + x^{2^{s}}z + yz^{2^{s}} \end{pmatrix}$
$a\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{k}}}(bx^{2^{i}+1}) + a^{2^{k}}\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{k}}}(cx^{2^{s}+1})$	$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s}}z + yz^{2^{s}} \\ x^{2^{s}}z + y^{2^{s}+1} \\ xy^{2^{s}} + y^{2^{s}}z + z^{2^{s}+1} \end{pmatrix}$
$L(x)^{2^{k}+1} + bx^{2^{k}+1}$	$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + yz^{2^{s}} \\ xy^{2^{s}} + z^{2^{s}+1} \\ x^{2^{s}}z + y^{2^{s}+1} + y^{2^{s}}z \end{pmatrix}$

Introduction

.

Linear self-equivalence : a unifying PoV on the known families of APN functions

	Multivariate
Univariate	$ \begin{array}{c} (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + ay^{(2^{s}+1)2^{i}} \\ xy \end{pmatrix} \\ (x,y) \mapsto \begin{pmatrix} x^{2^{2s}+2^{3s}} + ax^{2^{2s}}y^{2^{s}} + by^{2^{s}+1} \\ xy \end{pmatrix} \\ (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s+k/2}}y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s}+1} \end{pmatrix} \end{array} $
$x^{2^{s}+1} + ax^{2^{(3-i)k+s}+2^{ik}}$	$(x,y)\mapsto \left(\begin{array}{c} x^{2^{2s}+2^{3s}}+ax^{2^{2s}}y^{2^{s}}+by^{2^{s}+1}\\ xy\end{array}\right)$
$x^{2^{k}+1} + ax^{2^{(4-i)k+s}+2^{ik}}$	$ (x \ y) \mapsto (x^{2^{s+1}} + x^{2^{s+k/2}} y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s+1}}) $
$\begin{array}{c} xy \\ x^{2^{k}+1} + x^{2^{s}+1} + x^{2^{s}+2^{k}} + bx \\ x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2}}(. \end{array} \qquad $	
$x^3 + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^3 x^6 + a x^7)$	$\frac{1}{ xy^{2^{3}}+y^{2^{3}+1} }$
$\begin{vmatrix} x^3 + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}} (a^6 x^{18} + a^{12} x^{36}) \\ ax^{2^s+1} + a^{2^k} x^{2^{2k}+2^{k+s}} + bx^{2^{2k}+1} + ca^{2^k+1} x^{2^s+2^{k+s}} \end{vmatrix}$	$(x,y)\mapsto egin{pmatrix} x^{2^s+1}+by^{2^s+1}\ x^{2^{s+k/2}}y+rac{a}{b}xy^{2^{s+k/2}} \end{pmatrix}$
$a^{2}x^{2^{2^{k+1}+1}} + b^{2}x^{2^{k+1}+1} + ax^{2^{2^{k}+2}} + bx^{2^{k}+2} + dx^{3}$	$(\mathbf{x}, \mathbf{y}) \mapsto \begin{pmatrix} \mathbf{x}^{2^{s}+1} + \mathbf{x}\mathbf{y}^{2^{s}} + \mathbf{a}\mathbf{y}^{2^{s}+1} \\ \mathbf{x}^{2^{2s}+1} + \mathbf{a}\mathbf{x}^{2^{2s}}\mathbf{y} + (1+\mathbf{a})^{2^{s}}\mathbf{x}\mathbf{y}^{2^{2s}} + \mathbf{a}\mathbf{y}^{2^{2s}+1} \end{pmatrix}$
$x^{3} + ax^{2^{s+i}+2^{i}} + a^{2}x^{2^{k+1}+2^{k}} + x^{2^{s+i+k}+2^{i+k}}$	$(x,y,z)\mapsto egin{pmatrix} x^{2^s+1}+x^{2^s}z+yz^{2^s}\ x^{2^s}z+y^{2^s+1}\ xy^{2^s}+y^{2^s}z+z^{2^s+1} \end{pmatrix}$
$a\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{k}}}(bx^{2^{i}+1}) + a^{2^{k}}\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{k}}}(cx^{2^{s}+1})$	$(xy^{2^{s}} + y^{2^{s}}z + z^{2^{s+1}})$
$L(x)^{2^{k}+1} + bx^{2^{k}+1}$	$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + yz^{2^{s}} \\ xy^{2^{s}} + z^{2^{s}+1} \\ x^{2^{s}}z + y^{2^{s}+1} + y^{2^{s}}z \end{pmatrix}$

Introduction

.

Outline

- From Differential cryptanalysis to APN functions
- Polynomial representations of vectorial Boolean functions
- APN state of the art
- Our unified point of view on the known APN functions

Security of block ciphers

Block cipher

A family of bijections \mathcal{E} of \mathbb{F}_2^n .

$$\mathcal{E} = \left(\mathbf{\textit{E}}_{\mathbf{\textit{k}}} \colon \mathbb{F}_{2}^{\textit{n}} \xrightarrow{\sim} \mathbb{F}_{2}^{\textit{n}} \right)_{\mathbf{\textit{k}} \in \mathbb{F}_{2}^{\textit{k}}}$$

Security of block ciphers

Block cipher

A family of bijections \mathcal{E} of \mathbb{F}_2^n .

$$\mathcal{E} = \left(\mathbf{\textit{E}}_{\mathbf{\textit{k}}} \colon \mathbb{F}_{2}^{\textit{n}} \xrightarrow{\sim} \mathbb{F}_{2}^{\textit{n}} \right)_{\mathbf{\textit{k}} \in \mathbb{F}_{2}^{\kappa}}$$

Ideal block cipher

A *random* family of bijections.

In practice, $\mathcal E$ should be *indistinguishable* from a random family of bijections

- to satisfy assumptions of security proofs
- to avoid stronger attack (e.g. key recoveries)

Differential cryptanalysis

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^n.$

Principle

Studies for each input difference $\Delta^{in} \neq 0$, the *distribution of output differences*:

y

 $F(\mathbf{y})$

Differential cryptanalysis

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^n.$

Principle

Studies for each input difference $\Delta^{in} \neq 0$, the *distribution of output differences*:

$$\forall \Delta^{\text{out}} \in \mathbb{F}_2^n, \quad \mathbb{P}_{x \xleftarrow{\$} \mathbb{F}_2^n} \left[F(x + \Delta^{\text{in}}) + F(x) = \Delta^{\text{out}} \right] = ?$$

Average over all bijections

For all $(\Delta^{\text{in}} \neq 0, \Delta^{\text{out}})$, the equation $F(x + \Delta^{\text{in}}) + F(x) = \Delta^{\text{out}}$ has 1 solution x on average.

Differential cryptanalysis

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^n.$

Principle

Studies for each input difference $\Delta^{in} \neq 0$, the *distribution of output differences*:

$$\forall \Delta^{\text{out}} \in \mathbb{F}_2^n, \quad \mathbb{P}_{x \leftarrow \mathbb{F}_2^n} \left[F(x + \Delta^{\text{in}}) + F(x) = \Delta^{\text{out}} \right] = ?$$

Average over all bijections For all $(\Delta^{in} \neq 0, \Delta^{out})$, the equation $F(x + \Delta^{in}) + F(x) = \Delta^{out}$ has 1 solution x on average.

Differential distinguisher

[BihSha91]

 $(\Delta^{\text{in}}, \Delta^{\text{out}})$ such that for many k, $E_k(x + \Delta^{\text{in}}) + E_k(x) = \Delta^{\text{out}}$ has many solutions x.

Differential distinguisher

 $(\Delta^{\text{in}}, \Delta^{\text{out}})$ s.t for many \mathbf{k} , $\mathbf{E}_{\mathbf{k}}(\mathbf{x} + \Delta^{\text{in}}) + \mathbf{E}_{\mathbf{k}}(\mathbf{x}) = \Delta^{\text{out}}$ has many solutions \mathbf{x} .

[BihSha91]

Differential distinguisher

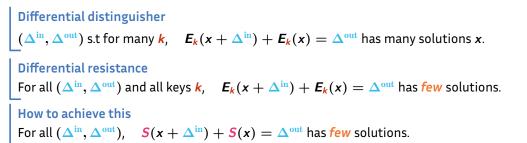
 $(\Delta^{\text{in}}, \Delta^{\text{out}})$ s.t for many \mathbf{k} , $\mathbf{E}_{\mathbf{k}}(\mathbf{x} + \Delta^{\text{in}}) + \mathbf{E}_{\mathbf{k}}(\mathbf{x}) = \Delta^{\text{out}}$ has many solutions \mathbf{x} .

Differential resistance

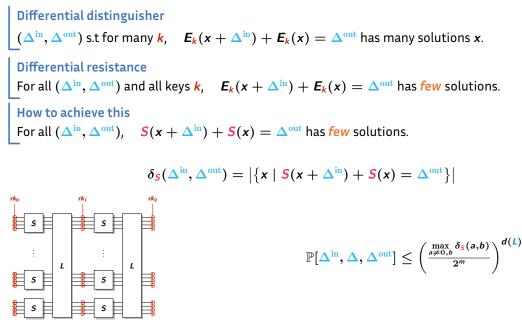
For all $(\Delta^{\text{in}}, \Delta^{\text{out}})$ and all keys k, $E_k(x + \Delta^{\text{in}}) + E_k(x) = \Delta^{\text{out}}$ has few solutions.

[BihSha91]

6/22



[BihSha91]



6/22

[BihSha91]

From differential cryptanalysis to APN functions 00000

How to achieve this For all $\Delta^{\text{in}} \neq 0$, $\Delta^{\text{out}} \quad \delta_{\mathcal{S}}(\Delta^{\text{in}}, \Delta^{\text{out}}) = |\{x \mid \mathcal{S}(x + \Delta^{\text{in}}) + \mathcal{S}(x) = \Delta^{\text{out}}\}|$ should be *low*.

How to achieve this For all $\Delta^{\text{in}} \neq 0$, $\Delta^{\text{out}} \quad \delta_{\mathbf{5}}(\Delta^{\text{in}}, \Delta^{\text{out}}) = |\{x \mid \mathbf{S}(x + \Delta^{\text{in}}) + \mathbf{S}(x) = \Delta^{\text{out}}\}|$ should be *low*.

• For all Δ^{in} , there exists Δ^{out} such that $\delta_{\mathcal{S}}(\Delta^{\mathrm{in}}, \Delta^{\mathrm{out}}) > 0$

How to achieve this For all $\Delta^{\text{in}} \neq 0$, $\Delta^{\text{out}} \quad \delta_{\mathcal{S}}(\Delta^{\text{in}}, \Delta^{\text{out}}) = |\{x \mid \mathcal{S}(x + \Delta^{\text{in}}) + \mathcal{S}(x) = \Delta^{\text{out}}\}|$ should be *low*.

- For all Δ^{in} , there exists Δ^{out} such that $\delta_{\mathsf{S}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}})>0$
- For all $\Delta^{\text{in}} \neq 0$, Δ^{out} , x is a solution iff $x + \Delta^{\text{in}}$ is a solution.

```
\delta_{\mathbf{S}}(\Delta^{\text{in}}, \Delta^{\text{out}}) is even.
```

How to achieve this For all $\Delta^{\text{in}} \neq 0$, $\Delta^{\text{out}} \quad \delta_{\mathcal{S}}(\Delta^{\text{in}}, \Delta^{\text{out}}) = |\{x \mid \mathcal{S}(x + \Delta^{\text{in}}) + \mathcal{S}(x) = \Delta^{\text{out}}\}|$ should be *low*.

- For all Δ^{in} , there exists Δ^{out} such that $\delta_{\mathcal{S}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}})>0$
- For all $\Delta^{in} \neq 0$, Δ^{out} , x is a solution iff $x + \Delta^{in}$ is a solution.

$$\delta_{\mathsf{S}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}})$$
 is even.

[NybKnu92]

Almost perfect non-linear (APN) function A function **F** is APN if: $\forall \Delta^{in} \neq 0, \Delta^{out}, \quad \delta_F(\Delta^{in}, \Delta^{out}) \leq 2.$

Almost perfect non-linear (APN) function

Definition (APN function)

[NybKnu92]

A function **F** is APN if: $\forall \Delta^{\text{in}} \neq 0, \Delta^{\text{out}}, \quad \delta_F(\Delta^{\text{in}}, \Delta^{\text{out}}) \leq 2.$

Almost perfect non-linear (APN) function

Definition (APN function)

[NybKnu92]

A function **F** is APN if: $\forall \Delta^{\text{in}} \neq 0, \Delta^{\text{out}}, \quad \delta_{F}(\Delta^{\text{in}}, \Delta^{\text{out}}) \leq 2.$

A typical classification problem

- Easy definition
- Hard to find new instances (even for small *n*)
- Hard to classify the known instances
- Lots of open problems

Almost perfect non-linear (APN) function

Definition (APN function)[NybKnu92]A function F is APN if: $\forall \Delta^{in} \neq 0, \Delta^{out}, \delta_F(\Delta^{in}, \Delta^{out}) \leq 2.$ A typical classification problem- Easy definition- Easy definition- Hard to find new instances (even for small n)- Hard to classify the known instances- Lots of open problemsBig APN problem

Find $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ which is APN, *bijective* for an *even n*.

A single example is known for n = 6.

Linear self-equivalence : a unifying PoV on the known families of APN functions

	Multivariate
Univariate	$ \begin{array}{c} (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + ay^{(2^{s}+1)2^{i}} \\ xy \end{pmatrix} \\ (x,y) \mapsto \begin{pmatrix} x^{2^{2s}+2^{3s}} + ax^{2^{2s}}y^{2^{s}} + by^{2^{s}+1} \\ xy \end{pmatrix} \\ (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s+k/2}}y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s}+1} \\ xy \end{pmatrix} \\ \end{array} $
$x^{2^{s}+1} + ax^{2^{(3-i)k+s}+2^{ik}}$	$(x, y) \mapsto \left(\begin{array}{c} x^{2^{2s}+2^{3s}} + ax^{2^{2s}}y^{2^s} + by^{2^s+1} \\ xy \end{array}\right)$
$x^{2^{s}+1} + ax^{2^{(4-i)k+s}+2^{ik}}$	$(x,y)\mapsto \left(\begin{array}{c} x^{2^{s+1}}+x^{2^{s+k/2}}y^{2^{k/2}}+axy^{2^s}+by^{2^{s+1}}\\ xy\end{array}\right)$
$\frac{ax^{2^{k}+1}+x^{2^{s}+1}+x^{2^{s+k}+2^{k}}+bx^{2^{k+s}+1}+b^{2^{k}}x^{2^{s}+2^{k}}}{x^{3}+a^{-1}\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2}}(a^{3}x^{9})}$	$(x, y) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + y^{2^{s}+1} \\ x^{2^{2s}+1} + x^{2^{2s}} y + y^{2^{2s}+1} \end{pmatrix}$
$x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{3}}}(a^{3}x^{9} + a^{6}x^{18})$	$(x, y) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + y^{2^{s}+1} \\ x^{2^{3s}}y + xy^{2^{3s}} \end{pmatrix}$
$x^{3} + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{3}}} (a^{6} x^{18} + a^{12} x^{36})$	$(x, y) \mapsto \begin{pmatrix} x^{2^{s}+1} + by^{2^{s}+1} \\ x^{2^{s+k/2}}y + \frac{a}{b}xy^{2^{s+k/2}} \end{pmatrix}$
$\begin{vmatrix} ax^{2^{k}+1} + a^{2^{k}}x^{2^{2k}+2^{k+s}} + bx^{2^{2k}+1} + ca^{2^{k}+1}x^{2^{s}+2^{k+s}} \\ a^{2}x^{2^{2^{k}+1}+1} + b^{2}x^{2^{k+1}+1} + ax^{2^{2^{k}}+2} + bx^{2^{k}+2} + dx^{3} \end{vmatrix}$	$(x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + ay^{2^{s}+1} \\ x^{2^{2^{s}}+1} + ax^{2^{2^{s}}}y + (1+a)^{2^{s}}xy^{2^{2s}} + ay^{2^{2^{s}}+1} \end{pmatrix}$
$x^{3} + ax^{2^{s+i}+2^{i}} + a^{2}x^{2^{k+1}+2^{k}} + x^{2^{s+i+k}+2^{i+k}}$	$\begin{pmatrix} x & - + ax & y + (1 + a) & xy + ay \\ x^{2^{s}+1} + x^{2^{s}}z + yz^{2^{s}} \\ x^{2^{s}+1} + x^{2^{s}}z + yz^{2^{s}} \end{pmatrix}$
$a\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{k}}}(bx^{2^{i}+1}) + a^{2^{k}}\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{k}}}(cx^{2^{s}+1})$	$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s}}z + yz^{2^{s}} \\ x^{2^{s}}z + y^{2^{s}+1} \\ xy^{2^{s}} + y^{2^{s}}z + z^{2^{s}+1} \end{pmatrix}$
$L(x)^{2^{k}+1} + bx^{2^{k}+1}$	$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + yz^{2^{s}} \\ xy^{2^{s}} + z^{2^{s}+1} \\ x^{2^{s}}z + y^{2^{s}+1} + y^{2^{s}}z \end{pmatrix}$

Introduct 00

Linear self-equivalence : a unifying PoV on the known families of APN functions

	Multivariate
Univariate	$ \begin{array}{c} (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + ay^{(2^{s}+1)2^{i}} \\ xy \end{pmatrix} \\ (x,y) \mapsto \begin{pmatrix} x^{2^{2s}+2^{3s}} + ax^{2^{2s}}y^{2^{s}} + by^{2^{s}+1} \\ xy \end{pmatrix} \\ (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s+k/2}}y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s}+1} \end{pmatrix} \end{array} $
$x^{2^{s}+1} + ax^{2^{(3-i)k+s}+2^{ik}}$	$(x,y)\mapsto \left(\begin{array}{c} x^{2^{2s}+2^{3s}}+ax^{2^{2s}}y^{2^{s}}+by^{2^{s}+1}\\ xy\end{array}\right)$
$x^{2^{s}+1} + ax^{2^{(4-i)k+s}+2^{ik}}$	$ (x \ y) \mapsto (x^{2^{s+1}} + x^{2^{s+k/2}} y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s+1}}) $
$\begin{array}{c} xx^{2^{k}+1} + x^{2^{s}+1} + x^{2^{s}+k} + 2^{k} + bx \\ x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2}}(z) \\ x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2}}(a^{3}x^{9} + a^{2^{n}}) \\ \end{array}$	
	$(x^2 y + xy^2)$
$\frac{x^3 + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^6 x^{18} + a^{12} x^{36})}{a x^{2^s+1} + a^{2^k} x^{2^{2k}+2^{k+s}} + b x^{2^{2k}+1} + c a^{2^k+1} x^{2^s+2^{k+s}}}$	$(x,y)\mapsto egin{pmatrix} x^{2^s+1}+by^{2^s+1}\ x^{2^{s+k/2}}y+rac{a}{b}xy^{2^{s+k/2}} \end{pmatrix}$
$a^{2}x^{2^{2^{k+1}+1}} + b^{2}x^{2^{k+1}+1} + ax^{2^{2^{k}+2}} + bx^{2^{k}+2} + dx^{3}$	$\left \begin{array}{c} (x,y) \mapsto \left(\begin{array}{c} x^{2^{2s}+1} + xy^{2^{s}} + ay^{2^{s}+1} \\ x^{2^{2s}+1} + ax^{2^{2s}}y + (1+a)^{2^{s}}xy^{2^{2s}} + ay^{2^{2s}+1} \end{array} \right) \right $
$x^{3} + ax^{2^{s+i}+2^{i}} + a^{2}x^{2^{k+1}+2^{k}} + x^{2^{s+i+k}+2^{i+k}}$	$(x,y,z)\mapsto egin{pmatrix} x^{2^s+1}+x^{2^s}z+yz^{2^s}\ x^{2^s}z+y^{2^s+1}\ xy^{2^s}+y^{2^s}z+z^{2^s+1} \end{pmatrix}$
$\frac{a\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{k}}}(bx^{2^{i}+1})+a^{2^{k}}\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{k}}}(cx^{2^{s}+1})}{L(x)^{2^{k}+1}+bx^{2^{k}+1}}$	$\left(xy^{2^{s}} + y^{2^{s}}z + z^{2^{s}+1} \right)$
$L(x)^{-1} + bx^{-1}$	$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + yz^{2^{s}} \\ xy^{2^{s}} + z^{2^{s}+1} \\ x^{2^{s}}z + y^{2^{s}+1} + y^{2^{s}}z \end{pmatrix}$

Polynomial representations of Boolean functions

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} F_1(x_1, \ldots, x_n) \\ \vdots \\ F_n(x_1, \ldots, x_n) \end{pmatrix}$$

٠

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} F_1(x_1, \ldots, x_n) \\ \vdots \\ F_n(x_1, \ldots, x_n) \end{pmatrix}$$

Theorem (Lagrange multivariate interpolation)

 $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q + X_1, \ldots, X_m^q + X_m)$.

٠

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} F_1(x_1, \ldots, x_n) \\ \vdots \\ F_n(x_1, \ldots, x_n) \end{pmatrix}$$

Theorem (Lagrange multivariate interpolation)

 $f : (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q + X_1, \ldots, X_m^q + X_m)$.

Algebraic Normal Form (ANF)

(q=2,m=n). Each coordinate is a polynomial of $\mathbb{F}_2[X_1,\ldots,X_n]/(X_1^2+X_1,\ldots,X_n^2+X_n)$

$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} F_1(x_1, \ldots, x_n) \\ \vdots \\ F_n(x_1, \ldots, x_n) \end{pmatrix}$$

Theorem (Lagrange multivariate interpolation)

 $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q + X_1, \ldots, X_m^q + X_m)$.

Algebraic Normal Form (ANF)

(q=2,m=n). Each coordinate is a polynomial of $\mathbb{F}_2[X_1,\ldots,X_n]/(X_1^2+X_1,\ldots,X_n^2+X_n)$

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

Introduction

From differential cryptanalysis to APN functions

Polynomial representations of Boolean functions

11/22

Theorem (Lagrange multivariate interpolation)

 $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q + X_1, \ldots, X_m^q + X_m)$.

Theorem (Lagrange multivariate interpolation)

 $f : (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q + X_1, \ldots, X_m^q + X_m)$.

 \mathbb{F}_2 -space isomorphisms

$$\mathbb{F}_2^n \ \simeq \ \mathbb{F}_{2^n} \ \simeq \ \mathbb{F}_{2^k}^\ell,$$
 with $n = \ell k$

Theorem (Lagrange multivariate interpolation)

 $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q + X_1, \ldots, X_m^q + X_m)$.

 \mathbb{F}_2 -space isomorphisms

$$\mathbb{F}_2^n \simeq \mathbb{F}_{2^n} \simeq \mathbb{F}_{2^k}^\ell$$
, with $n = \ell k$

Univariate representations ($q = 2^n, m = 1$) $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ can be seen as $\tilde{F} \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$. $\tilde{F} \colon \mathbb{F}_{2^4} \to \mathbb{F}_{2^4}$ $X \mapsto \alpha_0 X^{12} + \alpha_1 X^6 + \alpha_2 X^3$

Theorem (Lagrange multivariate interpolation)

 $f: (\mathbb{F}_q)^m \to \mathbb{F}_q$ admits a polynomial representation in $\mathbb{F}_q[X_1, \ldots, X_m]/(X_1^q + X_1, \ldots, X_m^q + X_m)$. \mathbb{F}_2 -space isomorphisms

$$\mathbb{F}_2^n \simeq \mathbb{F}_{2^n} \simeq \mathbb{F}_{2^k}^\ell$$
, with $n = \ell k$

Univariate representations ($q = 2^n, m = 1$) $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ can be seen as $\widetilde{F} \colon \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$.

$$: \mathbb{F}_{2^4} \to \mathbb{F}_{2^4}$$
$$X \mapsto \alpha_0 X^{12} + \alpha_1 X^6 + \alpha_2 X^3$$

Multivariate representations ($q = 2^k, m = \ell$) $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ can be seen as $\widetilde{F} \colon \mathbb{F}_{2^k}^\ell \to \mathbb{F}_{2^k}^\ell$.

$$\widetilde{F} \colon \mathbb{F}_{2^2}^2 \to \mathbb{F}_{2^2}^2$$
$$\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 x_0^3 + x_0^2 x_1 + \alpha_1 x_0 x_1^2 + \alpha_2 x_1^3 \\ \alpha_3 x_0^3 + \alpha_4 x_0^2 x_1 + \alpha_5 x_0 x_1^2 \end{pmatrix}$$

Up to a choice of bases!

Ĩ

Polynomial representations and APN functions

$$\delta_{\boldsymbol{F}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}}) = \left| \left\{ \boldsymbol{x}, \boldsymbol{F}(\boldsymbol{x}+\Delta^{\mathrm{in}}) + \boldsymbol{F}(\boldsymbol{x}) = \Delta^{\mathrm{out}} \right\} \right|$$

13/22

Polynomial representations and APN functions

$$\delta_{\mathcal{F}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}}) = \left| \left\{ x, \mathcal{F}(x + \Delta^{\mathrm{in}}) + \mathcal{F}(x) = \Delta^{\mathrm{out}} \right\} \right|$$

 $\begin{array}{l} \textbf{A} \colon (\mathbb{F}_{2}^{n},+) \to (\textbf{\textit{U}},+_{v}) \text{ and } \textbf{\textit{B}} \colon (\textbf{\textit{V}},+_{v}) \to (\mathbb{F}_{2}^{n},+) \text{ linear bijective mappings.} \\ \text{Then } \textbf{\textit{A}} \circ \textbf{\textit{F}} \circ \textbf{\textit{B}} \colon (\textbf{\textit{V}},+_{v}) \to (\textbf{\textit{U}},+_{v}) \end{array}$

Polynomial representations and APN functions

$$\delta_{\mathcal{F}}(\Delta^{\mathrm{in}},\Delta^{\mathrm{out}}) = \left| \left\{ x, \mathcal{F}(x + \Delta^{\mathrm{in}}) + \mathcal{F}(x) = \Delta^{\mathrm{out}} \right\} \right|$$

 $\begin{array}{l} \textbf{A} \colon (\mathbb{F}_{2}^{n},+) \to (\textbf{\textit{U}},+_{v}) \text{ and } \textbf{\textit{B}} \colon (\textbf{\textit{V}},+_{v}) \to (\mathbb{F}_{2}^{n},+) \text{ linear bijective mappings.} \\ \text{Then } \textbf{\textit{A}} \circ \textbf{\textit{F}} \circ \textbf{\textit{B}} \colon (\textbf{\textit{V}},+_{v}) \to (\textbf{\textit{U}},+_{v}) \end{array}$

Proposition

- $\forall \Delta^{\text{in}}, \Delta^{\text{out}}, \quad \delta_{\mathsf{F}}(\mathsf{B}(\Delta^{\text{in}}), \mathsf{A}^{-1}(\Delta^{\text{out}})) = \delta_{\mathsf{AFB}}(\Delta^{\text{in}}, \Delta^{\text{out}})$
- **F** is APN if and only if **A** \circ **F** \circ **B** is APN.

Definition (Linear equivalence)

 $F_1 \sim_{\text{lin}} F_2$ if $\exists A, B$, bijective linear s.t. $A \circ F_1 \circ B = F_2$.

Proper representatives for easier proofs

4 linearly-equivalent functions

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

$$\boldsymbol{F} \colon \mathbb{F}_4^2 \to \mathbb{F}_4^2, \begin{pmatrix} \boldsymbol{x}_0 \\ \boldsymbol{x}_1 \end{pmatrix} \mapsto \begin{pmatrix} \boldsymbol{\alpha}_0 \boldsymbol{x}_0^3 + \boldsymbol{x}_0^2 \boldsymbol{x}_1 + \boldsymbol{\alpha}_1 \boldsymbol{x}_0 \boldsymbol{x}_1^2 + \boldsymbol{\alpha}_2 \boldsymbol{x}_1^3 \\ \boldsymbol{\alpha}_3 \boldsymbol{x}_0^3 + \boldsymbol{\alpha}_4 \boldsymbol{x}_0^2 \boldsymbol{x}_1 + \boldsymbol{\alpha}_5 \boldsymbol{x}_0 \boldsymbol{x}_1^2 \end{pmatrix}$$

$$F \colon \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_0 X^{12} + \alpha_1 X^6 + \alpha_2 X^3$$

Introduction

Proper representatives for easier proofs

4 linearly-equivalent functions

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{2}x_{3} + x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

$$F: \mathbb{F}_4^2 \to \mathbb{F}_4^2, \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 x_0^3 + x_0^2 x_1 + \alpha_1 x_0 x_1^2 + \alpha_2 x_1^3 \\ \alpha_3 x_0^3 + \alpha_4 x_0^2 x_1 + \alpha_5 x_0 x_1^2 \end{pmatrix}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_0 X^{12} + \alpha_1 X^6 + \alpha_2 X^3$$

 $\mathit{F}\colon \mathbb{F}_{16} o \mathbb{F}_{16}, \mathit{X}\mapsto \mathit{X}^3$

4 linearly-equivalent functions

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

$$F: \mathbb{F}_4^2 \to \mathbb{F}_4^2, \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 x_0^3 + x_0^2 x_1 + \alpha_1 x_0 x_1^2 + \alpha_2 x_1^3 \\ \alpha_3 x_0^3 + \alpha_4 x_0^2 x_1 + \alpha_5 x_0 x_1^2 \end{pmatrix}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_0 X^{12} + \alpha_1 X^6 + \alpha_2 X^3$$

$$F \colon \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto X^3$$

 $F(X + \Delta) + F(X) = \Delta^{\text{out}}$

Introduction

4 linearly-equivalent functions

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{2}x_{3} + x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

$$F: \mathbb{F}_4^2 \to \mathbb{F}_4^2, \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 x_0^3 + x_0^2 x_1 + \alpha_1 x_0 x_1^2 + \alpha_2 x_1^3 \\ \alpha_3 x_0^3 + \alpha_4 x_0^2 x_1 + \alpha_5 x_0 x_1^2 \end{pmatrix}$$

$$F \colon \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_0 X^{12} + \alpha_1 X^6 + \alpha_2 X^3$$

$$F\colon \mathbb{F}_{16} o \mathbb{F}_{16}, X\mapsto X^3$$

 $F(X + \Delta) + F(X) = \Delta^{\text{out}}$ $(X + \Delta)^3 + X^3 = \Delta^{\text{out}}$

Introduction

4 linearly-equivalent functions

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{2}x_{3} + x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

$$F: \mathbb{F}_4^2 \to \mathbb{F}_4^2, \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 x_0^3 + x_0^2 x_1 + \alpha_1 x_0 x_1^2 + \alpha_2 x_1^3 \\ \alpha_3 x_0^3 + \alpha_4 x_0^2 x_1 + \alpha_5 x_0 x_1^2 \end{pmatrix}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_0 X^{12} + \alpha_1 X^6 + \alpha_2 X^3$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto X^{3}$$

$$F(X + \Delta) + F(X) = \Delta^{\text{out}}$$

$$(X + \Delta)^{3} + X^{3} = \Delta^{\text{out}}$$

$$\Delta X^{2} + \Delta^{2} X + \Delta^{3} + \Delta^{\text{out}} = 0$$

Introduction

From differential cryptanalysis to APN functions

Polynomial representations of Boolean functions

A unified PoV on the known APN function

14/22

4 linearly-equivalent functions

$$F: \mathbb{F}_{2}^{4} \to \mathbb{F}_{2}^{4}, \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} x_{0}x_{2} + x_{0} + x_{1}x_{2} + x_{1}x_{3} \\ x_{0}x_{1} + x_{0}x_{2} + x_{0}x_{3} + x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} + x_{2} \\ x_{1}x_{3} + x_{1} + x_{2}x_{3} + x_{2} + x_{3} \end{pmatrix}$$

$$F: \mathbb{F}_4^2 \to \mathbb{F}_4^2, \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 x_0^3 + x_0^2 x_1 + \alpha_1 x_0 x_1^2 + \alpha_2 x_1^3 \\ \alpha_3 x_0^3 + \alpha_4 x_0^2 x_1 + \alpha_5 x_0 x_1^2 \end{pmatrix}$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto \alpha_0 X^{12} + \alpha_1 X^6 + \alpha_2 X^3$$

$$F: \mathbb{F}_{16} \to \mathbb{F}_{16}, X \mapsto X^{3}$$
$$F(X + \Delta) + F(X) = \Delta^{\text{out}}$$
$$(X + \Delta)^{3} + X^{3} = \Delta^{\text{out}}$$
$$\Delta X^{2} + \Delta^{2} X + \Delta^{3} + \Delta^{\text{out}} = 0$$

 \implies at most 2 solutions \implies APN !

Introduction

Linear self-equivalence : a unifying PoV on the known families of APN functions

	Multivariate	
Univariate	$ \begin{array}{c} (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + ay^{(2^{s}+1)2^{i}} \\ xy \end{pmatrix} \\ (x,y) \mapsto \begin{pmatrix} x^{2^{2s}+2^{3s}} + ax^{2^{2s}}y^{2^{s}} + by^{2^{s}+1} \\ xy \end{pmatrix} \\ (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s+k/2}}y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s}+1} \\ xy \end{pmatrix} \end{array} $	
$x^{2^{s}+1} + ax^{2^{(3-i)k+s}+2^{ik}}$	$(x, y) \mapsto \left(\begin{array}{c} x^{2^{2s}+2^{3s}} + ax^{2^{2s}}y^{2^s} + by^{2^s+1} \\ xy \end{array}\right)$	
$x^{2^{s}+1} + ax^{2^{(4-i)k+s}+2^{ik}}$	$(x, y) \mapsto \left(\begin{array}{c} x^{2^{s+1}} + x^{2^{s+k/2}} y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s+1}} \\ xy \end{array}\right)$	
$\frac{ax^{2^{k}+1}+x^{2^{s}+1}+x^{2^{s+k}+2^{k}}+bx^{2^{k+s}+1}+b^{2^{k}}x^{2^{s}+2^{k}}}{x^{3}+a^{-1}\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2}}(a^{3}x^{9})}$	$(x, y) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + y^{2^{s}+1} \\ x^{2^{2s}+1} + x^{2^{2s}} y + y^{2^{2s}+1} \end{pmatrix}$	
$x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{3}}}(a^{3}x^{9} + a^{6}x^{18})$	$(x, y) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + y^{2^{s}+1} \\ x^{2^{3s}}y + xy^{2^{3s}} \end{pmatrix}$	
$x^{3} + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{3}}} (a^{6} x^{18} + a^{12} x^{36})$	$(x, y) \mapsto \begin{pmatrix} x^{2^s+1} + by^{2^s+1} \\ x^{2^{s+k/2}}y + \frac{a}{k}xy^{2^{s+k/2}} \end{pmatrix}$	
$\begin{vmatrix} ax^{2^{k}+1} + a^{2^{k}}x^{2^{2k}+2^{k+s}} + bx^{2^{2k}+1} + ca^{2^{k}+1}x^{2^{s}+2^{k+s}} \\ a^{2}x^{2^{2^{k}+1}+1} + b^{2}x^{2^{k+1}+1} + ax^{2^{2^{k}}+2} + bx^{2^{k}+2} + dx^{3} \end{vmatrix}$	$(x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + ay^{2^{s}+1} \\ x^{2^{2^{s}}+1} + ax^{2^{2^{s}}}y + (1+a)^{2^{s}}xy^{2^{2s}} + ay^{2^{2^{s}}+1} \end{pmatrix}$	
$x^{3} + ax^{2^{s+i}+2^{i}} + a^{2}x^{2^{k+1}+2^{k}} + x^{2^{s+i+k}+2^{i+k}}$	$\begin{pmatrix} x & - + ax & y + (1 + a) & xy + ay \\ x^{2^{s}+1} + x^{2^{s}}z + yz^{2^{s}} \\ x^{2^{s}+1} + x^{2^{s}}z + yz^{2^{s}} \end{pmatrix}$	
$a\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{k}}}(bx^{2^{i}+1}) + a^{2^{k}}\mathrm{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{k}}}(cx^{2^{s}+1})$	$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s}}z + yz^{2^{s}} \\ x^{2^{s}}z + y^{2^{s}+1} \\ xy^{2^{s}} + y^{2^{s}}z + z^{2^{s}+1} \end{pmatrix}$	
$L(x)^{2^{k}+1} + bx^{2^{k}+1}$	$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + yz^{2^{s}} \\ xy^{2^{s}} + z^{2^{s}+1} \\ x^{2^{s}}z + y^{2^{s}+1} + y^{2^{s}}z \end{pmatrix}$	

Linear self-equivalence : a unifying PoV on the known families of APN functions

	Multivariate	
Univariate	$ \begin{vmatrix} (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + ay^{(2^{s}+1)2^{i}} \\ xy \\ (x,y) \mapsto \begin{pmatrix} x^{2^{2s}+2^{3s}} + ax^{2^{2s}}y^{2^{s}} + by^{2^{s}+1} \\ xy \\ (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s+k/2}}y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s}+1} \\ xy \\ (x,y) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s+k/2}}y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s}+1} \\ xy \\ y \end{pmatrix} $	
$x^{2^{s}+1} + ax^{2^{(3-i)k+s}+2^{ik}}$	$(x,y)\mapsto \left(\begin{array}{c} x^{2^{2s}+2^{3s}}+ax^{2^{2s}}y^{2^{s}}+by^{2^{s}+1}\\ xy\end{array}\right)$	
$x^{2^{k}+1} + ax^{2^{(4-i)k+s}+2^{ik}}$	$ (x \ y) \mapsto (x^{2^{s}+1} + x^{2^{s+k/2}} y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s}+1}) $	
$\begin{array}{c} x^{2^{k}+1} + x^{2^{s}+1} + x^{2^{s}+2^{k}} + bx^{2} \\ x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{3}}}(a^{3}x^{9} + ax^{2}) \\ x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{n}}}(a^{3}x^{9} + ax^{2}) \\ x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{n}}}(a^{3}x^{9} + ax^{2}) \\ x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}/\mathbb{F}_{2^{n}}}(a^{2}x^{9} + ax^{2}) \\ x^{3} + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^{n}}}(a^{2}x^{9} + ax^{2}) \\ $		
$x^3 + a^{-1} \operatorname{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^3 x^9 + a^{-1})$	$\frac{1}{ x_{1}^{(2)}, y_{1}^{(2)}, y_{2}^{(2)}, y_{3}^{(2)}, y_{3}^{(2)$	
$\frac{x^3 + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^6 x^{18} + a^{12} x^{36})}{a x^{2^s+1} + a^{2^k} x^{2^{2k}+2^{k+s}} + b x^{2^{2k}+1} + c a^{2^k+1} x^{2^s+2^{k+s}}}$	$(x,y)\mapsto egin{pmatrix} x^{2^s+1}+by^{2^s+1}\ x^{2^{s+k/2}}y+rac{a}{b}xy^{2^{s+k/2}} \end{pmatrix}$	
$a^{2}x^{2^{2^{k+1}+1}} + b^{2}x^{2^{k+1}+1} + ax^{2^{2^{k}+2}} + bx^{2^{k}+2} + dx^{3}$	$\left \begin{array}{c} (x,y) \mapsto \left(\begin{array}{c} x^{2^{2s}+1} + xy^{2^s} + ay^{2^s+1} \\ x^{2^{2s}+1} + ax^{2^{2s}}y + (1+a)^{2^s}xy^{2^{2s}} + ay^{2^{2s}+1} \end{array} \right) \right $	
$x^{3} + ax^{2^{s+i}+2^{i}} + a^{2}x^{2^{k+1}+2^{k}} + x^{2^{s+i+k}+2^{i+k}}$	$(x, y, z) \mapsto \left(egin{array}{c} x^{2^s+1}+x^{2^s}z+yz^{2^s}\ x^{2^s}z+y^{2^s+1}\ xy^{2^s}+y^{2^s}z+z^{2^s+1} \end{array} ight)$	
$a\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^k}}(bx^{2^i+1}) + a^{2^k}\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^k}}(cx^{2^s+1})$	$(xy^{2^{5}}+y^{2^{5}}z+z^{2^{5}+1})$	
$L(x)^{2^{k}+1} + bx^{2^{k}+1}$	$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + yz^{2^{s}} \\ xy^{2^{s}} + z^{2^{s}+1} \\ x^{2^{s}}z + y^{2^{s}+1} + y^{2^{s}}z \end{pmatrix}$	

A unified point-of-view on the known APN functions

An APN binomial

[BudCarLea08]

$$G: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{5^{25}}$$

$$G(x) = x^3(1 + x^{5^{25}}) = x^3 P(x^{15}), \text{ where } P = 1 + X^{35} \quad (525 = 35 \times 15)$$

•

F 0.0

An APN binomial

[BudCarLea08]

$$G: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{528}$$

 $G(x) = x^3(1 + x^{525}) = x^3 P(x^{15})$, where $P = 1 + X^{35}$ (525 = 35 × 15)

 $\mathbb{F}_{2^4}^* \subset \mathbb{F}_{2^{12}}^*.$

An APN binomial

[BudCarLea08]

$$G: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{528}$$
$$G(x) = x^3(1 + x^{525}) = x^3 P(x^{15}), \text{ where } P = 1 + X^{35} \qquad (525 = 35 \times 15)$$

 $\mathbb{F}_{2^4}^* \subset \mathbb{F}_{2^{12}}^*.$

$$\forall \, \varphi \in \mathbb{F}_{2^4}^*, \quad \pmb{G}(\varphi) = \varphi^3 \pmb{P}(\varphi^{15}) = \varphi^3 \pmb{P}(1).$$

An APN binomial [BudCarLea08] $G: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{528}$ (525 = 35 × 15) $G(x) = x^3(1 + x^{525}) = x^3 P(x^{15})$, where $P = 1 + X^{35}$ (525 = 35 × 15) $\mathbb{F}_{2^4}^* \subset \mathbb{F}_{2^{12}}^*$.

$$\forall \varphi \in \mathbb{F}^*_{2^4}, \quad \mathbf{G}(\varphi) = \varphi^3 \mathbf{P}(\varphi^{15}) = \varphi^3 \mathbf{P}(1).$$

Proposition

For any $\gamma \in \mathbb{F}^*_{2^{12}}$, the restriction of $G|_{\gamma \mathbb{F}^*_{2^4}}$ is (up to a constant) the power mapping $x \mapsto x^3$.

The multiplicative point of view

An APN binomial

[BudCarLea08]

- $G: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}}$ $x \mapsto x^3 + \alpha x^{528}$
- $G|_{\mathbb{F}_{2^4}}: \varphi \mapsto c \varphi^3$

Introduction

The multiplicative point of view

An APN binomial

[BudCarLea08]

- $G: \mathbb{F}_{2^{12}} \rightarrow \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{528}$
- $G|_{\mathbb{F}_{2^4}}: \varphi \mapsto c \varphi^3$

Multivariate point-of-view

G is linearly equivalent to \widetilde{G} : $(\mathbb{F}_{2^4})^3 \to (\mathbb{F}_{2^4})^3$ $(x_1, x_2, x_3) \mapsto \left(\widetilde{G_1}(x), \widetilde{G_2}(x), \widetilde{G_3}(x)\right)$.

$$\widetilde{\boldsymbol{G}}_{1}(\boldsymbol{x}) = ?x_{1}^{2}x_{2} + ?x_{1}x_{2}^{2} + ?x_{2}^{3} + ?x_{1}^{2}x_{3} + ?x_{2}^{2}x_{3} + ?x_{1}x_{3}^{2} + ?x_{2}x_{3}^{2} + ?x_{3}^{3}$$

All coordinates of $\widetilde{\boldsymbol{G}}$ are homogeneous of the same degree 3.

The multiplicative point of view

An APN binomial

[BudCarLea08]

- $G: \mathbb{F}_{2^{12}} \to \mathbb{F}_{2^{12}} \quad x \mapsto x^3 + \alpha x^{528}$
- $G|_{\mathbb{F}_{2^4}}: \varphi \mapsto c \varphi^3$

Multivariate point-of-view

G is linearly equivalent to \widetilde{G} : $(\mathbb{F}_{2^4})^3 \to (\mathbb{F}_{2^4})^3$ $(x_1, x_2, x_3) \mapsto \left(\widetilde{G_1}(x), \widetilde{G_2}(x), \widetilde{G_3}(x)\right)$.

$$\widetilde{\boldsymbol{G}}_{1}(\boldsymbol{x}) = ?x_{1}^{2}x_{2} + ?x_{1}x_{2}^{2} + ?x_{2}^{3} + ?x_{1}^{2}x_{3} + ?x_{2}^{2}x_{3} + ?x_{1}x_{3}^{2} + ?x_{2}x_{3}^{2} + ?x_{3}^{3}$$

All coordinates of $\widetilde{\boldsymbol{G}}$ are homogeneous of the same degree 3.

An APN bivariate functions

[ZhoPot13]

$$H\colon \mathbb{F}^2_{64} \to \mathbb{F}^2_{64}, (x, y) \mapsto (xy, x^3 + ay^3)$$

- **H**₁ homogeneous of order 2.
- **H**₂ homogeneous of order 3.

Linear self-equivalence

Power mapping

 $F(x) = x^e$ Let $\lambda \in \mathbb{F}_{2^n}^*$. Then for all $x, F(\lambda x) = \lambda^e x^e = \lambda^e F(x)$. Thus $A \circ F \circ B = F$

with $B(x) := \lambda x$, $A(x) := \lambda^{-e} x$.

Introduction

19/22

Linear self-equivalence

Power mapping

 $F(x) = x^e$ Let $\lambda \in \mathbb{F}_{2^n}^*$. Then for all $x, F(\lambda x) = \lambda^e x^e = \lambda^e F(x)$. Thus $A \circ F \circ B = F$

with
$$B(x) := \lambda x$$
, $A(x) := \lambda^{-e} x$.

[Wang07]

Cyclotomic mapping w.r.t a subfield

$$G(x) = x^e P\left(x^{2^k-1}\right), n = \ell k$$

Let $\varphi \in \mathbb{F}_{2^k}$. Then for all $x, G(\varphi x) = \varphi^e x^e P\left(x^{2^k-1}\right) = \varphi^e G(x)$. Thus $A \circ G \circ B = G$ with $B(x) := \varphi x, A(x) := \varphi^{-e} x$.

Linear self-equivalence

 $F(x) = x^e$

Power mapping

Let $\lambda \in \mathbb{F}_{2^n}^*$. Then for all x, $F(\lambda x) = \lambda^e x^e = \lambda^e F(x)$. Thus $A \circ F \circ B = F$

with
$$B(x) := \lambda x$$
, $A(x) := \lambda^{-e} x$.

Cyclotomic mapping w.r.t a subfield

$$G(x) = x^e P\left(x^{2^k-1}\right), n = \ell k$$

Let $\varphi \in \mathbb{F}_{2^k}$. Then for all $x, G(\varphi x) = \varphi^e x^e P\left(x^{2^k-1}\right) = \varphi^e G(x)$. Thus $A \circ G \circ B = G$ with $B(x) := \varphi x, A(x) := \varphi^{-e} x$.

ℓ -projective mapping

[BCP24,Göloğlu22]

[Wang07]

$$H\colon \mathbb{F}_{2^{k}}^{\ell} \to \mathbb{F}_{2^{k}}^{\ell} (x_{1}, \ldots, x_{\ell}) \mapsto (H_{1}(x), \ldots, H_{\ell}(x)),$$

 $\forall i, H_i \text{ is homogeneous of order } e_i.$ Thus $A \circ H \circ B = H$

with
$$B(x) = (\varphi x_1, \dots, \varphi x_\ell),$$

 $A(x) = (\varphi^{-e_1} x_1, \dots, \varphi^{-e_\ell} x_\ell)$

Our main result (1/2)

Among the 22 known infinite APN families, 19 consist entirely of *cyclotomic* or *l-projective* mappings, *up to linear equivalence*.

Univariate	
$x^{2^{s}+1} + ax^{2^{(3-i)k+s}+2^{ik}}$	
$x^{2^{s}+1} + ax^{2^{(4-i)k+s}+2^{ik}}$	
$ax^{2^{k}+1} + x^{2^{s}+1} + x^{2^{s+k}+2^{k}} + bx^{2^{k+s}+1} + b^{2^{k}}x^{2^{s}+2^{k}}$	
$\mathbf{x}^3 + \mathbf{a}^{-1} \mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_2}(\mathbf{a}^3 \mathbf{x}^9)$	
$x^3 + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^3 x^9 + a^6 x^{18})$	
$x^3 + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^6 x^{18} + a^{12} x^{36})$	
$ax^{2^{s}+1} + a^{2^{k}}x^{2^{2k}+2^{k+s}} + bx^{2^{2k}+1} + ca^{2^{k}+1}x^{2^{s}+2^{k+s}}$	
$a^{2}x^{2^{2^{k+1}}+1} + b^{2}x^{2^{k+1}+1} + ax^{2^{2^{k}}+2} + bx^{2^{k}+2} + dx^{3}$	
$x^3 + ax^{2^{s+i}+2^i} + a^2x^{2^{k+1}+2^k} + x^{2^{s+i+k}+2^{i+k}}$	
$a\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^k}}(bx^{2^i+1})+a^{2^k}\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^k}}(cx^{2^s+1})$	
$L(x)^{2^k+1} + bx^{2^k+1}$	

From differential cryptanalysis to APN functions

20/22

Our main result (1/2)

Among the 22 known infinite APN families, 19 consist entirely of *cyclotomic* or *l-projective* mappings, *up to linear equivalence*.

Univariate	Observations
$x^{2^s+1} + ax^{2^{(3-i)k+s}+2^{ik}}$	cyclotomic
$x^{2^{s}+1} + ax^{2^{(4-i)k+s}+2^{ik}}$	cyclotomic
$ax^{2^{k}+1} + x^{2^{s}+1} + x^{2^{s+k}+2^{k}} + bx^{2^{k+s}+1} + b^{2^{k}}x^{2^{s}+2^{k}}$	$\sim_{ m lin}$ biprojective
$\mathbf{x^3} + \mathbf{a^{-1}}\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_2}(\mathbf{a^3x^9})$	cyclotomic/($\sim_{ m lin}$) frob.
$x^3 + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^3 x^9 + a^6 x^{18})$	cyclotomic/($\sim_{ m lin}$) frob.
$x^3 + a^{-1} \mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^3}}(a^6 x^{18} + a^{12} x^{36})$	cyclotomic/($\sim_{ m lin}$) frob.
$ax^{2^{s}+1} + a^{2^{k}}x^{2^{2^{k}}+2^{k+s}} + bx^{2^{2^{k}}+1} + ca^{2^{k}+1}x^{2^{s}+2^{k+s}}$	cyclotomic
$a^{2}x^{2^{2^{k+1}}+1} + b^{2}x^{2^{k+1}+1} + ax^{2^{2^{k}}+2} + bx^{2^{k}+2} + dx^{3}$	cyclotomic
$x^3 + ax^{2^{s+i}+2^i} + a^2x^{2^{k+1}+2^k} + x^{2^{s+i+k}+2^{i+k}}$	$\sim_{ m lin}$ biprojective
$a\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^k}}(bx^{2^i+1}) + a^{2^k}\mathrm{Tr}_{\mathbb{F}_{2^n}/\mathbb{F}_{2^k}}(cx^{2^s+1})$	$\sim_{ m lin}$ biprojective
$L(x)^{2^k+1} + bx^{2^k+1}$?

Our main result (2/2)

Among the 22 known infinite APN families, 19 consist entirely of cyclotomic or ℓ -projective mappings, up to linear equivalence.

Multivariate	Observations
$(x, y) \mapsto \begin{pmatrix} x^{2^{s}+1} + ay^{(2^{s}+1)2^{t}} \\ xy \end{pmatrix}$ $(x, y) \mapsto \begin{pmatrix} x^{2^{2s}+2^{3s}} + ax^{2^{2s}}y^{2^{s}} + by^{2^{s}+1} \\ xy \end{pmatrix}$ $(x, y) \mapsto \begin{pmatrix} x^{2^{s}+1} + x^{2^{s+k/2}}y^{2^{k/2}} + axy^{2^{s}} + by^{2^{s}+1} \\ xy \end{pmatrix}$	$\sim_{ m lin}$ biprojective
$(x,y)\mapsto \left(\begin{array}{c} x^{2^{2s}+2^{3s}}+ax^{2^{2s}}y^{2^{s}}+by^{2^{s}+1}\\ xy\end{array}\right)$	$\sim_{ m lin}$ biprojective
$(x,y)\mapsto \left(\begin{array}{c} x^{2^{s}+1}+x^{2^{s+k/2}}y^{2^{k/2}}+axy^{2^{s}}+by^{2^{s}+1}\\xy\end{array}\right)$	$\sim_{ m lin}$ 4-projective
$(x, y) \mapsto \begin{pmatrix} x^{2^{s+1}} + xy^{2} + y^{2^{s+1}} \\ x^{2^{2s}+1} + x^{2^{2s}}y + y^{2^{2s}+1} \end{pmatrix}$	biprojective
$(x,y)\mapsto \left(\begin{array}{c} x^{2^s+1}+xy^{2^s}+y^{2^s+1}\\ x^{2^{3s}}y+xy^{2^{3s}} \end{array}\right)$	biprojective
$(x,y)\mapsto egin{pmatrix} x^{2^s+1}+by^{2^s+1}\ x^{2^{s+k/2}}y+rac{a}{b}xy^{2^{s+k/2}} \end{pmatrix}$	biprojective
$(\mathbf{x}, \mathbf{y}) \mapsto \left(\begin{array}{c} \mathbf{x}^{2^{s+1}} + \mathbf{x}\mathbf{y}^{2^{s}} + a\mathbf{y}^{2^{s+1}} \\ \mathbf{x}^{2^{s+1}} + a\mathbf{x}^{2^{s}}\mathbf{y} + (1+a)^{2^{s}}\mathbf{x}\mathbf{y}^{2^{s}} + a\mathbf{y}^{2^{s+1}} \end{array} \right)$	biprojective
$(x, y, z) \mapsto egin{pmatrix} x^{2^s+1}+x^{2^s}z+yz^{2^s}\ x^{2^s}z+y^{2^{s+1}}\ xy^{2^s}+y^{2^s}z+z^{2^{s+1}} \end{pmatrix}$	3-projective $\sim_{ m lin}$ cyclotomic
$(x, y, z) \mapsto \begin{pmatrix} x^{2^{s}+1} + xy^{2^{s}} + yz^{2^{s}} \\ xy^{2^{s}} + z^{2^{s}+1} \\ x^{2^{s}}z + y^{2^{s}+1} + y^{2^{s}}z \end{pmatrix}$	3-projective $\sim_{ m lin}$ cyclotomic

Take away

Theorem

Among the 22 known infinite APN families, 19 consist entirely of *cyclotomic* or ℓ -*projective* mappings, *up to linear equivalence*.

Sum up

- Characterization of very specific self-equivalences
- Unify most of the approaches
- Partial answer to the *detection* of such structures up to equivalence

Take away

Theorem

Among the 22 known infinite APN families, 19 consist entirely of *cyclotomic* or ℓ -*projective* mappings, *up to linear equivalence*.

Sum up

- Characterization of very specific self-equivalences
- Unify most of the approaches
- Partial answer to the *detection* of such structures up to equivalence

Open questions

- Link between self-equivalence and APN-ness

[BeiBriLea21, Conjecture 1]

- Cyclotomic mappings outside the known classes? (from non-quadratic APN monomial)
- Projective mappings outside the known classes? (with more coordinates)

About the naming

Definition (APN function)

[NybKnu92]

A function **F** is APN if: $\forall \Delta^{\text{in}} \neq 0, \Delta^{\text{out}}, \quad \delta_F(\Delta^{\text{in}}, \Delta^{\text{out}}) \leq 2.$

About the naming

Definition (APN function)[NybKnu92]A function F is APN if: $\forall \Delta^{in} \neq 0, \Delta^{out}, \quad \delta_F(\Delta^{in}, \Delta^{out}) \leq 2.$ The linear caseF linear. $F(x + \Delta^{in}) + F(x) = F(x) + F(\Delta^{in}) + F(x) = F(\Delta^{in})$ $\Delta^{in} \neq 0.$ $\delta_F(\Delta^{in}, \Delta^{out}) = \begin{cases} 2^n & \text{if } \Delta^{out} = F(\Delta^{in}) \\ 0 & \text{otherwise.} \end{cases}$

About the naming

Definition (APN function)[NybKnu92]A function F is APN if: $\forall \Delta^{in} \neq 0, \Delta^{out}, \quad \delta_F(\Delta^{in}, \Delta^{out}) \leq 2.$ The linear caseF linear. $F(x + \Delta^{in}) + F(x) = F(x) + F(\Delta^{in}) + F(x) = F(\Delta^{in})$ $\Delta^{in} \neq 0.$ $\delta_F(\Delta^{in}, \Delta^{out}) = \begin{cases} 2^n & \text{if } \Delta^{out} = F(\Delta^{in}) \\ 0 & \text{otherwise.} \end{cases}$

The APN case

 $igstar{F}$ APN. Then $orall \Delta^{\mathrm{in}}
eq 0, \quad ig| igl\{ \Delta^{\mathrm{out}}, \ \delta_{\mathcal{F}}(\Delta^{\mathrm{in}}, \Delta^{\mathrm{out}}) > 0 igr\} ig| = 2^{n-1}.$