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Notation
N The set of natural integers.
n ∈ N The number of variables.
m ∈ N The number of coordinates (if n ̸= m).
|Z| The cardinality of a set Z.
⟨x, y, z⟩ The subspace spanned by x, y, z.
{{x, x}} The multiset containing x with multiplicity 2.
F2 “The” finite field with two elements: ({0, 1} ,+, ·).
Fn2 The canonical F2-space of dimension n.
F2n “The” finite field with 2n elements.
xu, Xu The products ∏n−1

i=0 x
ui
i , ∏n−1

i=0 X
ui
i .

x(0), . . . , x(t) A sequence of values x changing in “time”.
x0, . . . , xi The coordinates of a fixed value x.(
x

(t)
i

)ℓ
The ℓ-th power of the i-th coordinate of x(t).

Ji, jK The set of integers ranging from i to j, both included.
1Z Indicator function of a set Z.
1u Indicator function of a singleton: 1u := 1{u}.
Supp(u) The support of u: Supp(u) := {i ∈ J0, n− 1K , ui = 1}.
u ⪯ v The covering relation u ⪯ v ⇐⇒ Supp(u) ⊂ Supp(v).
χu Character associated to u: χu : Fn2 → C, x 7→ (−1)u·x.
f, g, h Some Boolean functions.
F,G,H Some vectorial Boolean functions.
u · v Standard dot product u · v := ∑n−1

i=0 uivi.
Wf ,WF Walsh transform Wf : Fn2 → Z.
L(F ), δF The linearity and differential uniformity of F .
Zdiff
F (∆in,∆out) The set of solutions of a differential equation.

Z lin
F (α, β) The set of solutions of a linear approximation.

Zcomm
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∼lin,∼aff ,∼EA,∼CCZ The linear, (ext.) affine, and CCZ equivalence relations.
∼sim The similarity equivalence relation.
TF ,CF ,DF The transition, correlation, quasi-differential matrices.
Mn×m(F2k) The set of n×m matrices with coefficients in F2k .
GLn(F2k) The set of n× n invertible matrices with coeff. in F2k .
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Introduction to symmetric
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1.1 Overview
The term cryptography refers to the study and practice of the techniques providing
secrecy in the presence of untrusted parties. Such scenarios in particular include
the case where a person stores data that should remain confidential, or where two
(or more) people would like to privately communicate.

The most ancient forms of cryptography date back to at least 1500 BC [Kah96].
However, with the emergence of computers and the World Wide Web, the need for
confidentiality became a daily matter, with a gigantic amount of data stored and
exchanged each day.

In order to achieve such secrecy, any cryptographic technique must rely on
secret data that are usually called the key, known only by (part of) the legitimate
users. This key is used to transform the original data, known as plaintext, into
an unintelligible message called ciphertext. This encryption operation must be
reversible, so that genuine information can be recovered, but only by people having
the knowledge of the key. The inverse transformation is known as decryption.

1
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Figure 1.1: A few milestones of modern cryptography.

When the same key is used for both encryption and decryption, these methods
are described as symmetric, thus emphasizing the common knowledge shared by
the sender and the recipient. These techniques however presuppose the ability
of the protagonists to agree on such a shared secret. Because Internet exchanges
are remote and instantaneous, techniques enabling secure transmissions without
preceding communication are necessary. These methods rely on a private key chosen
by a user A, but also on a public key derived from it. The public key is made
available to anyone and is used to encrypt messages addressed to A. On the other
hand, only the knowledge of the private key enables to decrypt the ciphertext.
Because of the distinct keys playing distinct roles, such methods are known as
asymmetric primitives.

While asymmetric cryptography solves more challenges than symmetric
cryptography, it is also in practice way slower. In most of the use cases, asymmetric
and symmetric techniques are therefore used in a hybrid way: first, an asymmetric
scheme is used to handle the first exchanges, and in particular the key-agreement;
only then is a symmetric scheme used to encrypt the following exchanges in an
effective manner.

1.2 A few milestones of modern cryptography
Kerckhoff’s principle. While the first mathematical treatment of cryptography
by Shannon [Sha49] is arguably the turning point from “historical” to “modern”
cryptography, the most essential principle followed by all academic cryptographers
was stated 60 years before by Kerckhoffs [Ker83], among six requirements for
military cryptography:

«Il faut que [le système] n’exige pas le secret, et qu’il puisse sans
inconvénient tomber entre les mains de l’ennemi.»

Kerckhoffs thus warns that the security of any cryptographic system should rely
on the secret key only. In particular, the secret of the scheme itself should
not be considered while analyzing cryptographic resistance.1 Today, it is a
common practice to assume that any opponent knows the system in detail while
cryptanalyzing a cipher.

1This is in line with Murphy’s law which in this case could be interpreted as “the description
of a secret scheme will eventually leak”.
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Shannon’s mathematical theory of cryptography. In line with Shannon’s
work, such an analysis of a cipher is today done mathematically. From a theoretical
point of view, unconditional security is the ultimate confidentiality level, as it states
that no information about a plaintext can be obtained from the corresponding
ciphertext. However, Shannon proved that for unconditional security to hold, the
key must necessarily be at least as long as the encrypted message. For practical
reasons, such a key length is (almost) never reached. That is why the security of a
cryptographic primitive is instead measured by weighing how much computational
effort, memory storage and input/output data are needed for an attacker to break
a cipher, i.e to gain access to some information about the key or the message.
However, cryptanalysis today is only able to provide insecurity proofs, by mounting
attacks, but not actual security proof. In the case of asymmetric schemes, the
security is therefore studied through reductions proofs which point out that breaking
a specific cipher is at least as hard as breaking some well-studied mathematical
problems that is considered really hard. As highlighted by Chapters 3 to 5, in
the case of symmetric schemes, the assessment of the practical security is done
by a continual analysis of the primitives, or of simplified versions of it. On the
other hand, the security of a mode of operation which provides guidance on how
to properly encrypt long messages, can be proven if we assume that its building
blocks behave ideally.

Birth of asymmetric cryptography. Since Shannon, modern cryptography
really took a decisive turn with the invention of the already-mentioned asymmetric
cryptography by Diffie & Hellman [DH76]. They presented in 1976 the first
key-exchange protocol, which paved the way to the first actual asymmetric
cryptosystems suggested by McEliece [McE78] on the one hand, and by Rivest,
Shamir and Adleman [RSA78] on the other hand. While the latter cipher, which is
known as RSA due to the initial letters of the name of its designers, is without
a doubt one of the asymmetric primitives that is nowadays the most used, the
one suggested by McEliece is among the most likely to resist the threat caused by
quantum computing [Nis22].

Standards over the years. Since the 1970s, the usage of cryptography has then
been driven by standardization. Because of the endless process that is cryptanalysis,
focusing efforts only on some cryptosystems enables the community to gain more
trust in only a few primitives. It also has a practical reason for being: people need
to use the same algorithms in order to communicate. Depending on specific needs
and/or constraints, the usage is therefore guided by national or international legal
regulation. These local de jure standards, often lead to global de facto ones when the
usage of a specific cipher becomes dominant. In symmetric cryptography, the first
major standard is the American Data Encryption Standard [Des], known as DES.
DES was designed by IBM in collaboration with the NSA after a call for proposals
from the American National Bureau of Standards in 1972 and standardized in
1977.
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In 2000, The National Institute of Standards and Technology of the United
States of America (NIST) promoted the successor of the DES: the Advanced En-
cryption Standard [Aes], which is known as AES. Originally named Rijndael [DR02]
by its academic creators, AES was adopted after a 3-year process of design and
analysis which also involved international academics and companies. It is today
the most widely-used symmetric primitive.

More recently, many standardization processes were launched by other
actors, such as the NESSIE [Nes00] project of the European Commission, the
eSTREAM [Ecr04] project of the ECRYPT network, the recommendations of the
Japanese CRYPTREC committee, or the CAESAR [Cae13] international academic
competition. Regarding symmetric primitives, the most recent initiative is the
NIST process for lightweight symmetric cryptography [Nis17], whose goal is to
ensure security of very-constrained devices such as connected objects. It ended in
2023 and selected Ascon [Dob+21] as its future standard [Dob+19]. Ascon was
already chosen in 2019 within the “lightweight applications (resource constrained
environments)” portfolio of the CAESAR competition [Dob+16].

1.3 Symmetric cryptography
This thesis deals with the security analysis of some of the main components used in
symmetric cryptography. Before presenting the main contributions in Section 1.5,
this section is dedicated to an overall description of the targeted security notions, of
the main objects at hand to achieve these notions, and finally of the main analysis
methods to assess the resistance of a scheme.

1.3.1 Security notions

1.3.1.a Confidentiality

When it comes to cryptography, the main challenge is to ensure the confidentiality
of a private communication. In other words, even if a ciphertext is intercepted by an
eavesdropper, it should not leak any information on the corresponding ciphertext,
either without any other assumption in the case of unconditional security, or with
limited resources in the case of computational security.

In order to get a better grasp of this definition, let us introduce the formalism
and some notation that will be used throughout this manuscript. First, because
modern cryptography is concerned with computer usage, it is always assumed that
both the plaintext x, the ciphertext y and the secret key k are finite sequences of
bits. It should a priori be possible to encrypt any sequence of any finite length.
For now, let us consider that the size of the plaintexts and ciphertexts are fixed.
We denote by n ∈ N \ {0} the block size, that is, the length of the plaintext and
the ciphertext, and by κ ∈ N \ {0} the key size, so that x, y, k satisfy:

x ∈ {0, 1}n , y ∈ {0, 1}n , k ∈ {0, 1}κ .

From there, the central object at hand can be defined as follows.
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Definition 1.1 (Block cipher). Let n ≥ 1, k ≥ 1. A block cipher E is a sequence
E = (Ek : {0, 1}n ∼−→ {0, 1}n)k∈{0,1}κ where for any k ∈ {0, 1}κ the function Ek is
bijective. Stated otherwise, a block cipher is a family of 2κ bijections over {0, 1}n.
For a fixed k ∈ {0, 1}κ, the bijection Ek is referred to as an instantiated cipher. ▷

The concept of block cipher is the most natural way to make the definitions of
Section 1.1 concrete. Indeed, encryption associates a plaintext to a ciphertext in a
revertible manner: this is the role of a bijective function. Furthermore, encryption
should depend on the secret, so multiple bijections indexed by the actual chosen
key should be considered. However, we can already note that a block cipher alone
does not address all the problems raised by cryptography, as it only enables the
encryption of fixed-sized messages. Furthermore, the definition is free from any
security consideration, but we can now properly characterize perfect secrecy.

Definition 1.2 (Perfect secrecy). Let E = (Ek : {0, 1}n → {0, 1}n)k∈{0,1}κ be a
block cipher. Let K be a uniform random variable over {0, 1}κ. The block cipher
E is perfectly secure if for any random variable X over {0, 1}n, the random variable
C defined by C = EK(X) is independent of X. Equivalently, E is perfectly secure
if for any x0, x1, y ∈ {0, 1}n it holds that:

P [EK(x0) = c] = P [EK(x1) = c] .

▷

The following example is due to Shannon [Sha49].

Example 1.3 (One Time Pad). Let n ≥ 1. Let us consider the block cipher E
with an n-bit block size and and an n-bit key size that is defined as follows:

∀ k ∈ {0, 1}n , ∀ x ∈ {0, 1}n , Ek(x) = x+ k,

where the addition is a coordinate-wise modulo 2 addition. In other words, if
x = (x0, . . . , xn−1) and if k and y := Ek(x) are decomposed similarly, it holds that:

∀ i ∈ J0, n− 1K , yi := xi + ki.

Let us consider that k is picked uniformly at random. For a fixed bit of plaintext xi,
we observe that xi is encrypted as 0 if and only if ki = xi and as 1 if and only
if ki = xi + 1. In particular, both events hold with probability 1

2 , and this is
independent of the actual value of xi. This is the reason why the block cipher E ,
that is known as the One Time Pad (OTP) or as the Vernam cipher, is perfectly
secure. ▷

While theoretically secure, we observe that the One Time Pad is not optimal
when it comes to implementation. Indeed, its key is as long as the plaintext. When
the key agreement is done online, this presupposes that an n-bit long message
(the key) has already been securely exchanged, so it could as well have been the
plaintext. The whole symmetric encryption becomes in that case meaningless.
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For such reasons, we would like the key to be strictly shorter than the encrypted
messages, or equivalently, we would like the key to be reusable for future encryptions.
This is however not possible for OTP. Indeed, let us assume that an adversary
knows for a fact that an observed ciphertext y corresponds to the encryption of a
known plaintext x. Such a situation is known as a known-plaintext scenario. In
that case, the attacker can compute x+ y and instantly recovers the key k. This
implies that for any future eavesdropped ciphertext y′, the corresponding plaintext
x′ can be recovered by computing x′ = y′ + k. If the key is reused, OTP then
suffers from a strong confidentiality issue.

It is then necessary to find ways of designing block ciphers that can be effectively
implemented and for which security can be assessed. The main design methods
are presented in Section 1.3.2, while cryptanalysis is addressed in Section 1.4.

1.3.1.b Integrity and authenticity

The sole notion of confidentiality is not the only desired security notion. For
instance, one can also expect the authenticity of a received message. This
corresponds to the guarantee of receiving messages from the expected sender
and not a malevolent one. Authenticity cannot be achieved by the use of a block
cipher alone. Indeed, let us consider a known ciphertext setting, that is, a scenario
where a passive adversary only observes exchanged ciphertexts. In that case, as
long as the key used to encrypt the messages does not change, the attacker can
break authenticity by sending again any of the observed ciphertexts because the
recipient has no way of verifying the authenticity of the message. Even when used
in a mode of operation, this is not the primary role of an encryption scheme. One
way to solve this is to consider a message authentication code (or MAC).

Definition 1.4 (Message authentication code (MAC)). Let κ ≥ 1, n ≥ 1. A
message authentication code is a function F : {0, 1}κ × {0, 1}⋆ → {0, 1}n, where
the star ⋆ highlights the fact that the second input is a bit sequence of any
finite length. Equivalently, the MAC F can be seen as a family of functions
Fk : {0, 1}⋆ → {0, 1}n, where Fk = F(k, ·) for any k. ▷

A MAC is designed to produce a finite tag T of length n from the secret key
k ∈ {0, 1}κ and from either the plaintext or the ciphertext x, y ∈ {0, 1}⋆. The
definition is again abstracted from security consideration, but it should be hard in
practice to output a valid tag T for any chosen plaintext x without knowledge of
the actual used key. This is called a forgery.

Message authentication codes are also a way to ensure integrity of a message. In
other words, it enables the recipient to verify whether or not the original message
has been tampered. We can for instance think about OTP where an active attacker
can flip any bit of a ciphertext y during communication. This ultimately leads to a
tampered message x where the corresponding bit is flipped. Such properties reflect
the so-called malleability of the cipher.

The role of encryption schemes and MAC are in practice less compartmentalized
than this introduction might suggest. For instance, authenticated encryption (AE)
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schemes (with associated data, known in that case as AEAD schemes) are today
designed to provide integrity, authenticity and confidentiality in an all-in-one
manner [BN00, Rog02]. This is for instance the case of Ascon that is described
and analyzed in Chapter 3. The close relations between the two kinds of primitive
are also highlighted in Chapter 7, and more precisely in Section 7.1, where two
MACs are designed based on the round function of the AES block cipher.

1.3.2 Standard ways of designing a symmetric cipher

1.3.2.a From theory to practice

Basic attacks and sizing. As presented above, a block cipher is on paper a
simple family of bijections. However in practice, both the block size n and the key
size κ should be large. Indeed, if n is too small, then an attacker can query the
online encryption of the 2n possible plaintexts, or wait and intercept a lot of known
plaintext/ciphertext pair, until he/she builds and stores the full code-book. This
way, as long as the key is not changed, the confidentiality is compromised. Such an
attack can never be excluded. For this reason, the block sizes of most of the recent
block ciphers are usually2 strictly higher than 64 bits, as 264 is considered a very
high order of magnitude in the case of memory storage. Instead, when the key size
κ is too small, then from a known plaintext/ciphertext pair (x, y), an adversary
can encrypt x with all the 2κ possible keys k′, and reduces the key space to only
the ones such that Ek′(x) = y. This is known as the brute force attack. This time,
this is the computational power of the attacker that guides the usual sizing and
we expect that a key space of cardinality 2128, i.e. κ = 128 is sufficient to exclude
such an attack. In the recent years, a key size of κ = 256 is considered sufficient to
resist the threat of quantum computing. These are gigantic numbers which are
impossible for a Human being to perceive. For example, 264 is about a thousandth
of the estimated radius of the Milky Way in centimeters (around 275). The value
2256 is about a thousandth of the estimated number of atoms in the universe.

Computer-oriented constraints. With these points of reference in mind, it is
clear that a random family of bijections cannot be chosen to be a practical block
cipher. Indeed, the table of values of a single 64-bit bijection F : {0, 1}64 → {0, 1}64,
or even an optimized implementation of it, is already hardly impossible to store
on a computer. Furthermore, we have not yet taken into account that encryption
(and possibly decryption) should be very effective. Likewise, security should also
be possible to assess and cryptographers should be able to analyze the properties
of an enormous number of functions at once. Finally, because money is the sinews
of war, encryption should of course be done at the lowest cost possible, where the
measurement of cost is often power or energy consumption. These three criteria,
security, performance, and cost, are the main ones used to compare different

2As the growing interest for memory encryption or cache randomization highlights, this is
not always the case. The tweakable block cipher SCARF [Can+23] has a 10-bit block size but is
designed for a very specific use case.
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cryptographic constructions, which always come with a unique trade-off between
the three.

Lightweight cryptography. These trade-offs have recently opened many
questions, especially when it comes to extremely-constrained devices. Indeed,
the number of devices which work for instance on battery, and whose primary
purpose is not security is exploding. However, in many scenarios, cryptography is
still necessary to ensure the proper functioning of such objects. This is the case for
example of healthcare devices such as pacemakers, of “smart home” gadgets, but
also of the now widespread RFID tags. These new use cases then bring their share
of constraints, which can take many different forms [BP17], and which are hard
to categorize under a sole definition. Yet, lightweight primitive is the umbrella
word that covers this new trend in symmetric cryptography. The block ciphers
Ascon and Midori that are respectively presented and studied in Chapter 3 and
Chapters 4 and 5 belong to this class of designs.

1.3.2.b Block ciphers

Iterated constructions. Because of the computer-oriented constraints presented
above, designing a block cipher is equivalent to effectively providing 2κ random-
looking bijections. To do so, the problem is often bypassed by using an iterated
construction.

Construction 1.5 (Iterated construction). Let κ ≥ 1, n ≥ 1, R ≥ 1. An R-round
iterated block cipher E = (Ek : {0, 1}n ∼−→ {0, 1}n)k∈{0,1}k is defined using:

• a key schedule which is a function KS: {0, 1}κ → ({0, 1}n)R+1, and

• a round function which is a bijection F : {0, 1}n → {0, 1}n.

Let k ∈ {0, 1}κ. From k, R + 1 rounds keys are derived using the key schedule:
KS(k) := (k(0), . . . , k(R)). Then, the instantiated cipher Ek is defined by:

Ek = Tk(R) ◦ F ◦ Tk(R−1) ◦ F ◦ Tk(R−2) ◦ . . . ◦ F ◦ Tk(0) ,

where for any c ∈ {0, 1}n, the function Tc is the addition of c modulo 2 coordinate
by coordinate: Tc : x 7→ x + c. This construction is also called a key-alternating
cipher.

This generic construction is depicted in Figure 1.2. While being a very particular
case of Definition 1.1, an iterated construction has huge advantages. First, it reduces
the problem of defining 2κ bijections into the definition of only two functions: KS
and F . It is also intended to reach a random-looking behavior after a sufficient
number of iterations of the round function followed by a round-key addition. This
is of course not true in general and should be carefully analyzed. As we will
see throughout this manuscript, this assumption is valid under some hypotheses,
but also fails spectacularly in some cases which inevitably lead to security flaws.
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Figure 1.2: A key-alternating cipher.

Nonetheless, as shown in Section 1.4, the other strong advantage of an iterated
construction is that it can be thoroughly cryptanalyzed.
Remark 1.6 (Cryptographic functions). Construction 1.5 is an iterated construction
of block ciphers. Many other cryptographic objects can be built using a similar
approach. This is the case of cryptographic hash functions which are primitives
mapping an arbitrary-long sequence of bits to a fixed-size one. Among their many
usages, the most iconic one is password hashing: instead of storing the plain
password of a user on a server, it is a good practice to instead store the image of
the password by a one-way function, which can be a hash function, or a password
hashing algorithm. This way, if the server is compromised, the original password is
not. This of course holds if the hash function is “hard to inverse”. This hardness is
measured using the notion of (second) pre-image resistance and collision resistance.
Hash functions are not studied in this thesis, but the notion of universal hash
function introduced and studied in Section 7.1 is related, yet the involved security
notions are different.

Cryptographic permutations are also very useful. They are random-looking
public n-bit bijections which can be iteratively built. In that case, they can be
thought of as an instantiated cipher Ek where k is publicly known. They are
useful for instance to build hash functions, or AEAD encryption schemes, as it is
highlighted in Section 3.2. ▷

Thanks to Construction 1.5, we can now focus on the design of a bijective
round function. We present in the following the two main constructions that are
used in practice.
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Feistel networks. The first construction is the Feistel network. The first famous
usage of this structure appears in the block cipher Lucifer designed by IBM as a
precursor of the DES, which is also based on such a construction. The principle of
a Feistel network is to reduce the problem of building a 2n-bit bijection, to only
building an n-bit function, by using the structure described in Figure 1.3. This
structure has strong advantages. Indeed, as we will see in Chapter 6, it is often
easier to build functions with optimal properties (with respect to some specific
kind of attacks) than to build optimal bijections. Furthermore, it is also strongly
favorable regarding both software and hardware implementations: the only look-up
table or printed circuit board to consider is the one corresponding to the function S
with n input and output bits, which is significantly smaller than the one of the
round function F over 2n bits. Indeed, the wire swap is just a matter of appropriate
physical wirings or of a logical swap of variables. Such constructions are still often
used today. This is for example the case of the cipher Simon [Bea+13] designed by
the NSA or its academic twin Simeck [Yan+15].

S S S

Round 0 Round 1 Round R− 1
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(0)
1

k
(0)
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(1)
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(R−1)
1

k
(R−1)
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Figure 1.3: A Feistel network.

Substitution permutation networks. The approach taken by the so-called
substitution permuation networks (SPN) is slightly different. It reduces the problem
of building an n-bit bijection into the problem of building an m-bit bijection S,
where m is a (small) divisor of n, and an n-bit linear bijection L. As highlighted in
Figure 1.4, the so-called substitution box S, and usually referred to as Sbox, is used
n
m times in parallel, while the linear bijection can a priori shuffle the full n-bit
state. This is again driven by implementation reasons. Indeed, as explained in
more detail in Chapter 2, a block cipher should be non-linear. However, non-linear
functions are in practice costly to implement. With such a construction, the round
function F is non-linear, but the only non-linear component that is involved is of
small size, and therefore has (in comparison) a smaller circuit area or a smaller
table.

Note that both Feistel networks and SPN follow a rule of thumb identified
by Shannon [Sha49]. In its own words, a secure cipher should “frustrate” a
statistical analysis by using both a diffusion method and a confusion one. Diffusion
corresponds to the idea that many input bits and key bits should be involved
in the expression of each output bit, while confusion reflects the fact that these
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Figure 1.4: A Substitution permutation network (SPN).

dependencies should be as intricate as possible. In the previous constructions,
diffusion is operated by global linear layers, while confusion is obtained through
local non-linear operations.

The most renown example of SPN is of course the de facto standard, i.e. AES.
Its round function is briefly described in the following example.

Example 1.7 (Round function of the AES.). The AES is a 128-bit state block
cipher. Its state is usually represented as 4 × 4 matrix of bytes, whose entries
are numbered from top to bottom, and from left to right. This is highlighted in
Figure 1.5. The round function F : {0, 1}128 → {0, 1}128 of AES follows an SPN

3

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

Figure 1.5: The matrix representation and bytes numbering of the state of AES.

construction. It can indeed be decomposed as follows:

F := MC ◦ SR ◦ S,

where MC,SR,S are respectively called the MixColumns, the ShiftRows and the
Sbox layers. These different layers are depicted in Figures 1.6 and 1.7.

Let us describe each of them more precisely.

Sbox layer. The Sbox layer consists in the parallel application of a single 8-bit
bijective Sbox S on each of the byte of the state. The Sbox is explicited later
in Section 2.3.2.c.
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Figure 1.6: The Sbox, MixColumns and constant addition layers of AES.

Figure 1.7: The state of AES before (left) and after (right) the ShiftRows layer.

ShiftRows layer. The ShiftRows operation is a reorganization of the bytes of the
state: for any i ∈ J0, 3K, the i-th row (starting from the top) is cyclically
shifted by i positions to the left.

MixColumns layer. The MixColumns layer is the parallel application of a single
32-bit linear bijection M on each column of the state. More specifically, M
is F28-linear and can then3 be represented as a matrix-vector multiplication.
When the field with 256 elements is represented as F28 := F2[X]/(X8 +X4 +
X3 +X + 1), M has the following matrix representation:

M :=


0x2 0x3 0x1 0x1
0x1 0x2 0x3 0x1
0x1 0x1 0x2 0x3
0x3 0x1 0x1 0x2

 .

Round key addition. The round function F is followed by the addition of a 128-bit
round key derived from a key-schedule algorithm. We refer to the recent work
of Leurent & Pernot [LP20] regarding its original and alternative descriptions.

In order to match with the description made in Figure 1.4, the linear layer L is
then defined by L := MC ◦ SR.

▷

3The necessary notions about finite fields are covered in Chapter 2.



1.3. Symmetric cryptography 13

Modes of operation. Finally, since the beginning of Section 1.3.1, we restricted
ourselves to the encryption of messages of fixed size n. This is of course a strong
constraint. It seems natural in that case to cut a long message into n-bit blocks
and use a block cipher multiple times. This first points out the question of padding
in order to handle the encryption of the tail of the message which can be of length
strictly less than n. But the more important problem is that the naive successive
usages of a block cipher with a fixed key cannot ensure confidentiality. This is
for instance highlighted by the now viral example of the “ECB Penguin” [EU06]:
if each pixel of an image is independently encrypted, the encrypted image is
only a copy of the original one, only with different colors. However, there exist
ways [RBB03, MV04, Dwo07, Dwo04] of properly using a block cipher with a fixed
key to encrypt long messages. Those methods, including the insecure ECB, are
called modes of operation and their provable security is well-studied by assuming
that the block-cipher being used behaves randomly.

1.3.2.c Stream ciphers

From OTP to stream ciphers. There also exists another large class of ciphers
which are not (necessarily) based on a block cipher. These ciphers are known
as stream ciphers and can be considered as a natural adaptation of Example 1.3
that makes it efficient in practice. Indeed, OTP has by design a strong advantage:
its construction works for any arbitrary plaintext length and therefore does not
need any mode of operation. Its main problem that needs to be solved is that the
random key k, which is used as a mask for the plaintext x, needs to be replaced
after a single use. Instead, this random mask could be replaced by a pseudorandom
one. Stated otherwise, one way of adapting OTP into a practical cipher is to
replace the mask generation by a function which takes as input the key k and
which outputs an arbitrary-long pseudorandom mask z. This leads to the following
definition of a stream cipher.

Definition 1.8 (Stream cipher). A stream cipher is a function F : {0, 1}κ ×
{0, 1}s → {0, 1}⋆ which takes as input a κ-bit key and an s-bit initial value and
produces an (arbitrary) long sequence z =

(
z(t)
)
t∈N
∈ {0, 1}⋆. ▷

The initial value, which is usually called IV, is a public value whose purpose is
to be changed very frequently, so that the key can be used for a longer time. With
a stream cipher, the encryption and decryption of the t-th bit x(t) of plaintext
works exactly in the same way as with OTP. More precisely, the corresponding
ciphertext bit y(t) is computed as y(t) = x(t) +z(t) and decrypted using the fact that
x(t) = y(t) + z(t). Contrary to the case of a block cipher, a stream cipher inherently
handles the encryption of arbitrarily long sequences of plaintext. However, as for
block ciphers, the definition does not take into account any security argument, and
no guidance is given on the actual way of deriving the arbitrarily long sequences
from the key and IV.
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Security arguments. The security of such constructions almost always sums
up to weighin the randomness of the sequence z. Indeed, in a known-plaintext
scenario, the knowledge of x(t) and y(t) is sufficient to recover z(t) by computing
z(t) = x(t) + y(t). From there, any statistical argument can be used to distinguish
the sequence z from a random sequence. Among the most common methods,
correlation attacks [Sie84, Sie85] try to detect correlation between multiple bits of
a sequence z generated from a fixed pair (k, IV ), or correlations between bits of
multiples sequences z(0), . . . , z(ℓ−1) output from a fixed key k for different initial
values. When instead, correlation can be detected between output bits and the
key, key recovery attacks can be mounted. One way of mounting such attacks is to
study the algebraic representation of each output bit. This is the approach taken
by the so-called cube attacks [Vie07, DS09] that are studied to a great extent in
Chapter 3, but in the context of block ciphers. Fast correlation attacks [MS89,
CT00] tackle the problem from a coding theory perspective. In that case, the
ciphertext is considered as a noisy plaintext, where the noise is the mask z, and
the goal is then to find a way to decode it into its genuine form x.

Generic constructions. Regarding generic constructions, the most common
way of building a stream cipher is to consider an internal s-bit state (or register),
and three functions of the following form:

I : {0, 1}k × {0, 1}s → {0, 1}r , g : {0, 1}r → {0, 1} ,

F : {0, 1}r × {0, 1}k × {0, 1}s → {0, 1}r .

The initial value of the state is computed as X(0) = I(k, IV ). Then the state is
updated. The value of the register at clock t+ 1 is computed from its current value,
the key and the IV. More precisely X(t+1) is defined by X(t+1) := Fk,IV

(
X(t)

)
.

Finally, at each clock, a bit of mask is output and it is computed as z(t) := g
(
X(t)

)
.

This is depicted in Figure 1.8.

FI g

IVk IVk

X(0) X(t) X(t+1)
z(t)

Figure 1.8: A generic stream cipher.

With such a construction, the same routine is used at each step, which greatly
simplifies the implementation and (sometimes) the cryptanalysis.

Finally, even if Definition 1.8 is defined over the alphabet {0, 1}, it should be
noted that the definition of a stream cipher can be adapted to any group (G,+).
In that case, encryption is still the addition (with respect to a given addition law)
between the plaintext x(t) ∈ G and the mask z(t) ∈ G, while decryption becomes
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the addition with the opposite −z(t) of the mask z(t). While stream ciphers are
not the main topic of this thesis, we still discuss them in more detail in Section 7.2
where the design and initial analysis of a stream cipher over a finite field with an
odd number of elements are presented.

1.4 Analysis of symmetric ciphers
Let us now develop a bit more the analysis of symmetric ciphers, which is our main
concern in Chapters 3 to 5. As already mentioned, apart from implementation
considerations, iterated constructions are also more-easily studied than ad-hoc
constructions. In particular, the properties of the round function can be thoroughly
studied. As a matter of fact, from the point of view of Kolmogorov [Kol98], a
128-bit bijection which can be implemented in practice is strictly the opposite of a
random function. This is where theory and practice collide. This is also the reason
why indistiguishability is a first good measurement of the security of a block cipher.

Definition 1.9 ((Informal) Indistinguishability). Let E = (Ek : {0, 1}n ∼−→
{0, 1}n){0,1}κ be a block cipher. The block cipher E is considered indistinguishable
if the uniform draw Ek

$←− E cannot be distinguished from the uniform draw
F

$←− Bij({0, 1}n) in a complexity less than 2κ. ▷

The fact that a block cipher can be distinguished is not necessarily a security
flaw. However, when a distinguishing property, which is often called a distinguisher,
is discovered, it is likely that confidentiality issues will follow. Furthermore, it
clearly establishes the fact that the hypothesis made to prove the security of
modes of operation is not satisfied in that specific case. With the variety and the
number of existing block ciphers, if a cipher is distinguishable, it should already be
considered broken and not be used anymore.

In order to study the resistance against distinguishing attacks, there exist
today many standard techniques. From a general perspective, these techniques all
leverage some weaknesses of the round function (or of one of its components) and
try to expand it to more rounds. The major shield against such generalizations to
more rounds is the addition of distinct, and ideally, independent round constants.
However, some techniques can somehow “bypass” key additions. This is the case
for instance of differential and linear cryptanalysis.

Differential cryptanalysis. Differential cryptanalysis [BS91b, BS91a] is inter-
ested in measuring how much closely-related plaintexts can lead to closely-related
ciphertexts. Ideally, the encryption of two close messages should be very different.
In the opposite case, this could be a serious confidentiality threat. To do so, the
cryptanalyst starts with pairs (x, x+∆in) of plaintexts, where x is drawn uniformly
at random, and where ∆in is the difference between the two inputs, because we
work with modulo 2 addition. Then, the successive differences taken by the partial
encryption of x and x+ ∆in throughout the block cipher are tracked. In the end, a
distinguisher is found when we can establish the fact that the ciphertexts will differ
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with a difference ∆out with a higher probability (taken over the values x ∈ {0, 1}n)
than for a random function. This is made easier by the fact that after a constant
addition an input pair (x, x+ ∆) becomes (x+ c, x+ ∆ + c), but still differs with
the same difference ∆. Differential cryptanalysis is more precisely introduced in
Section 2.3.3.

Linear cryptanalysis. Linear cryptanalysis [Mat94, TG92] is instead interested
in finding good linear approximations of the cipher. More precisely, to mount
a linear attack, an adversary must be able two find two linear combinations
(a0, . . . , an−1) and (b0, . . . , bn−1) such that ∑n−1

i=0 aixi ≈
∑n−1
i=0 biyi holds for many

pairs (x, y) where xi are the bits of plaintext and yi the bits of ciphertext. If such an
equation holds for many inputs, the adversary is able to distinguish the cipher from
a random bijection. Again, such an approximation is often found by propagating
a linear combination throughout the cipher. This is simplified by the fact that
through a constant addition, we obtain ∑n−1

i=0 ai(xi + ci) = ∑n−1
i=0 aixi +∑n−1

i=0 aici,
so that the same linear combination is applied to the input, to the output and to
the constant. Linear cryptanalysis is presented in Section 2.3.4.

Algebraic attacks. There exist many other ways to distinguish a cipher from
a random bijection. In particular, a lot of attack tackle this problem from an
algebraic perspective. Such attacks use the fact that the algebraic representation
of the round function is not random-looking. They then manage to either recover
equations in the key bits, which then reduce the size of the key space, or point out
that some equations take the value 0 (or 1) more often than it is expected for a
random bijection. Linearization attacks and interpolation attacks are presented in
Sections 2.3.1 and 2.3.2, while the already-mentioned cube attacks and the related
higher-order differential attacks are addressed in detail in Chapter 3.

1.5 Problem statement and contributions

In light of this general context, the objective of this thesis is to question the
following problem:

How can the strengths or weaknesses of symmetric ciphers be captured
by their algebraic properties?

In order to provide some parts of answer to this arguably open question, this
manuscript is composed as follows.

Chapter 2. The second chapter is a general introduction to Boolean (vectorial)
functions and their cryptographic analysis. It allows us to introduce all the
definitions and notation used throughout this manuscript. It also presents in
more detail the framework of differential, linear and algebraic cryptanalysis.
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Chapter 3. The third chapter is the first contribution per se. After describing in
detail the context of higher-order differential cryptanalysis, we apply this
methodology to mount an inner-state recovery against Ascon, when the nonce
is misused.

Chapter 4. In the fourth chapter, we start by presenting a lightweight cipher
called Midori, which is heavily-based on the AES. Next, we review the main
invariant attacks against it. This is the starting point of our differential
analysis of Midori involving non-linear change of variables. Finally, we discuss
the relationship between this methodology and the ones of commutative
cryptanalysis and differential cryptanalysis using alternative group laws.

Chapter 5. In the fifth chapter, we continue the study of Midori. More precisely,
we develop the framework of commutative cryptanalysis introduced in the
previous chapter, and investigate its link with previous attacks based on
self-similarities. We also explain how commutative cryptanalysis enables
to study the properties highlighted in Chapter 4, by only focusing on the
original representation of the cipher. As a side effect, we point out astonishing
differential properties of Midori and Scream.

Chapter 6. While the three previous chapters are dedicated to cryptanalysis, the
sixth chapter is focused on the theoretical study of some Boolean functions.
In particular, we look at generalizations of monomials functions, namely
cyclotomic mappings and (q, q′)-biprojective mappings. We highlight the fact
that these notions are very particular cases of linear self-equivalences, and
prove that almost all known infinite APN families fall under one of these
categories. More generally, we study the properties of linearly self-equivalent
mappings, and question the existence of such functions in all CCZ-equivalence
class of APN functions.

Chapter 7. Finally, the last chapter is dedicated to the design of primitives
for emerging usages. The first half presents two highly-efficient MAC
constructions based on the AES. They rely on the extremely fast AES-NI set of
instructions available on modern processors. The second part of this chapter
focuses on the design of a stream cipher over the field with 17 elements.
The objective of this construction is to provide a fast transciphering method
to be used in TFHE, which is a specific framework of fully homomorphic
encryption.

This manuscript is based on the following collaborative works.
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Chapter 2

Algebraic tools for Boolean functions
analysis

The purpose of this chapter is to establish the main mathematical tools needed
throughout the rest of the manuscript. First, the main definitions about finite
fields are given. The book by Lidl & Niederreiter [LN96] is our primary reference
on this subject. Next, Boolean functions and their different representations are
described. In that case, we often refer to the book by Carlet [Car21] which deals
with many subjects related to the theoretical study of these objects. Afterwards,
the cryptographic criteria associated to Boolean functions are presented. This topic
is for instance detailed in the lecture notes by Canteaut [Can16], and we sometimes
rely on them. Finally, the main equivalence relations on vectorial Boolean functions
that preserve the previous criteria are introduced.
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2.1 The finite field F2n

As already mentioned in Section 1.3.1, all the functions that are analyzed in this
work are functions whose domains and codomains are not only finite, but above all
of the form {0, 1}n. Starting from the finite field with two elements, that is, {0, 1}
with addition and multiplication modulo 2, we can equip {0, 1}n with different
laws.

The finite field with two elements is denoted by F2. From there, vectors of
{0, 1}n can naturally be identified with polynomials of F2[X] of degree less than or
equal to n− 1, but also with integers ranging from 0 to 2n − 1:

(a0, . . . , an−1) ≃
n−1∑
i=0

aiX
i ≃

n−1∑
i=0

ai2i. (2.1)

Remark 2.1. We use the standard notation where the first coordinate of a vector is
located at the leftmost position. Contrary to what the left-to-right writing might
suggest, this first coordinate is paired with the least significant bit (LSB) of the
associated integer, and not with the most significant one (MSB). ▷

In particular, the coordinate-wise addition, or equivalently the polynomial
addition or the bitwise one, is a group law for Fn2 . Furthermore, we can consider a
scalar multiplication · : F2 × Fn2 → Fn2 . Because, by definition, it must satisfy for
any x ∈ Fn2 , both 0 · x = 0 and 1 · x = x, only a single scalar multiplication exists
in that case and it satisfies all the necessary axioms making (Fn2 ,+, ·) a F2-vector
space.

Then, by choosing an irreducible polynomial P of degree n, we can further
identify {0, 1}n with F2[X]/(P ). This way, {0, 1}n is associated to a quotient ring,



2.1. The finite field F2n 21

where the addition is computed coordinate-wise (in F2), while the multiplication is
computed modulo P . Because P is chosen to be irreducible, the obtained ring is
actually a field.

Proposition 2.2 (Construction of the finite field with 2n elements). Let n ≥ 1
be an integer. Let P ∈ F2[X] be an irreducible polynomial of degree n. Then
F2[X]/(P ) is a field with 2n elements.

Proof. We only prove the existence of an inverse for any non-zero element. Let
Q ∈ F2[X] be of degree less than or equal to n − 1. Because P is irreducible,
we know that gcd(P,Q) = 1. But F2[X] is an Euclidean domain, so there exists
U, V ∈ F2[X] such that UP +BQ = gcd(P,Q) = 1. By looking at this last equality
modulo P , we obtain BQ ≡ 1 mod P , which implies that B is the inverse of Q
modulo P .

Therefore, {0, 1}n can be equipped with a field structure. From now on, any
field with 2n elements is denoted by F2n . This notation is unambiguous because
any two fields with 2n elements are isomorphic, see for instance [LN96, Theorem
2.5].

For the same reason explained above, any field with 2n elements can naturally
be equipped with the trivial scalar multiplication in F2, making it a F2-vector
space. In the following, by identifying Fn2 ≃ F2n , we always refer to a vector space
isomorphism, that is, to a F2-linear bijection between both vector spaces. This is
naturally equivalent to the choice of a basis of Fn2 and of a basis of F2n , and to the
identification of both.

The canonical basis of Fn2 is the basis made of the unit vectors ξ(i), for any
i ∈ J0, n− 1K which are defined by:

∀i ∈ J0, n− 1K , ξ(i) := (0, . . . , 0, 1
ith coor.

, 0, . . . , 0). (2.2)

In general, for identifications Fn2 ≃ F2n , we prefer the usage of Eq. (2.1) and
Proposition 2.2, together with the choice of P . This corresponds to the identification
of the canonical basis of Fn2 , with the basis (1, α, . . . , αn−1) where α := X̄ is the
class of X in F2[X]/(P ). When the identification is made the other way around,
that is, F2n ≃ Fn2 , it is derived from the choice of an element α ∈ Fn2 such that
(1, α, . . . , αn−1) is an F2-basis of F2n . These preferred identifications are dictated
by implementation, as Proposition 2.2 is the most natural way of implementing a
finite field on a computer.
Remark 2.3. In the light of the previous observations, we then recommend caution
in interpreting the notation F2n . While mathematically unambiguous (see for
instance [LN96, Theorem 2.5]), when implementing a function F : F2n → F2m , an
implementer is free to choose any representation of the fields, or any identifications
F2n ≃ Fn2 and F2m ≃ Fm2 . These non-canonical choices can lead to some non-trivial
errors and should be explicitly identified. ▷



22 Chapter 2. Algebraic tools for Boolean functions analysis

2.2 Boolean functions

Definition 2.4 (Boolean function). Let n,m ≥ 1. An (n,m)-vectorial Boolean
function is a function of the form F : Fn2 → Fm2 . The name Boolean function is
reserved to the case m = 1. If m > 1, the functions F0, . . . , Fm−1 : Fn2 → F2 such
that F (x) = (F0(x), . . . , Fm−1(x)) for any x ∈ Fn2 are called the coordinates of F .
The number of variables n is sometimes called the input size, and the number of
coordinates m, the output size. ▷

Whenever possible, we reserve upper-case letters to vectorial Boolean functions
and lower-case ones to Boolean functions. The coordinate Fi of a vectorial Boolean
function F is an exception to the rule.

As for any function, the most natural way to describe a vectorial Boolean
function is by pairing each element x ∈ Fn2 to its value F (x) ∈ Fm2 . The sequence
(x, F (x))x∈Fn

2
is known as the look-up table (shortened LUT ) of F .

Example 2.5 (Look-up table of the Sbox of Ascon). The AEAD (see Sec-
tion 1.3.1.b) encryption scheme Ascon uses as internal component the 5-bit Sbox
whose look-up table is given in hexadecimal form in Table 2.1. For instance,
the fact that the image of 0x2 is 0x1f can be rewritten using Eq. (2.1) as
S(0, 1, 0, 0, 0) = (1, 1, 1, 1, 1). This equivalently means that Si(0, 1, 0, 0, 0) = 1
for any i ∈ J0, 4K. ▷

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c
x 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

Table 2.1: Look-up table of the Sbox of Ascon in hexadecimal notation.

There however exist other representations of vectorial Boolean functions which
are better suited in many situations.

2.2.1 Polynomial representations of Boolean functions

Because of the finite field structure, any function is a polynomial function, as
detailed in the next proposition.

Proposition 2.6 (Interpolation of a function over finite fields). Let n, d ≥ 1,
q = 2d and f : (Fq)n → Fq. Then there exists a unique polynomial P ∈
Fq[X0, . . . , Xn−1]/(Xq

0 +X0, . . . , X
q
n−1 +Xn−1) which satisfies

f(x0, . . . , xn−1) = P (x0, . . . , xn−1) ∀ x0, . . . , xn−1 ∈ Fq.

Proof. Let i ∈ J0, n− 1K and y ∈ Fq. Let us define the Lagrange interpolant

Pi,y :=
∏

x∈Fq\{y}

Xi + x

y + x
,
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which is of degree |Fq \ {y}| = q−1. We observe that Pi,y(x) = 0 for all x ∈ Fq \{y}
and Pi,y(y) = 1. Thus for any y := (y0, . . . , yn−1) ∈ (Fq)n and any α ∈ Fq, the
evaluations of the polynomial defined by:

Qy,α := α
n−1∏
i=0

Pi,yi

are zero everywhere except when (x0, . . . , xn−1) = (y0, . . . , yn−1), where its value
is α. Thus any function f : (Fq)n → Fq can be interpolated using ∑y∈(Fq)n Qy,f(y),
whose degree in each variable is less than or equal to q − 1. Moreover, there
exist qqn functions from Fnq to Fq and as many polynomials of Fq[X0, . . . , Xn−1]
with the announced bound on the degrees, which proves the uniqueness of such a
representation.

This interpolation result gives two distinct and fruitful representations of
vectorial Boolean functions. The first one is obtained by applying Proposition 2.6
to each coordinate of a vectorial Boolean function.

Definition 2.7 (Algebraic normal form (ANF)). Let n,m ≥ 1. Let F : Fn2 → Fm2 .
The algebraic normal form (ANF) of F is the family of interpolation polynomials
(given by Proposition 2.6 for d = 1) P0, . . . , Pm−1 ∈ F2[X0, . . . , Xn−1]/(X2

0 +
X0, . . . , X

2
n−1 +Xn−1) of the coordinate functions of F . ▷

This representation is multivariate, as any coordinate is expressed as a
polynomial in multiple variables. However, when m is a divisor of n, that is
when F2m ⊂ F2n , F can be seen as a function F : F2n → F2m ⊂ F2n . In that case,
a univariate representation of F can also be considered.

Definition 2.8 (Univariate representation). Let n ≥ 1 and F : F2n → F2n . The
univariate representation of F is the interpolation polynomial P ∈ F2n [X]/(X2n +
X) of F that is given by Proposition 2.6. ▷

It is possible to refer to the univariate representation of a vectorial Boolean
function. This however implies that the same identification F2n ≃ Fn2 is used for
both the domain and codomain, and that it is explicit and clear from context.

Example 2.9 (Multivariate and univariate representations of the Sbox of Ascon).
The Sbox of Ascon, that is presented in Example 2.5, has the following ANF:

S : (F2)5 → (F2)5 (2.3)
x0
x1
x2
x3
x4

 7→


x0x3 + x0 + x1 + x3x4 + x3
x0x4 + x0 + x1x4 + x1 + x2 + x3 + x4

x0x1 + x0 + x2 + x3 + 1
x0 + x1x2 + x1x3 + x1 + x2x3 + x2 + x3 + x4
x0x3 + x1 + x2x3 + x2 + x3x4 + x3 + x4

 .
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Moreover by using F2[Y ]/(P ) ≃ F5
2 where P = Y 5 + Y 2 + 1 and by denoting

a ≡ Y mod P , we obtain the following univariate representation of S:

S = a24X24 + a4X20 + a16X18 + a27X17 + a17X16 + a28X12 + a7X10+
a22X9 + a16X8 + a16X6 + a22X5 + a17X4 +X3 + a12X2 + a15X + a2.

▷

From now on, we no longer make a distinction between a function and the
polynomials associated to it, and always refer to the reduced forms presented in
Definitions 2.7 and 2.8.

Regarding notation, if u = (u0, . . . , un−1) ∈ Fn2 , the monomial ∏n−1
i=0 X

ui
i is

denoted by Xu. If x = (x0, . . . , xn−1) ∈ Fn2 , the same applies for the value ∏n−1
i=0 x

ui
i

which is denoted by xu. For any u, v ∈ Fn2 , we denote by ⪯ the covering relation:

u ⪯ v ⇐⇒ Supp(u) ⊂ Supp(v).

While the construction in the proof of Proposition 2.6 can be used in practice,
it does not explicitly provide the value of the coefficients of the interpolation
polynomial. In the case of the ANF, they can be efficiently exhibited thanks to
the well-known coefficients-values relations.1

Proposition 2.10 (Coefficients-values relations). Let f : Fn2 → F2 be defined by
f(x) = ∑

u∈Fn
2
aux

u, where au ∈ F2 for any u ∈ Fn2 . Then:

∀ u ∈ Fn2 , au =
∑
v⪯u

f(v) and f(u) =
∑
v⪯u

av.

Proof. Adapted from [Can16, Theorem 1.3]. Let u, v ∈ Fn2 . First of all, we observe
that vu = 1 if and only if vui

i = 1 for any i ∈ J0, n− 1K. This can equivalently
be restated as: for any i, if ui = 1, then vi = 1. Equivalently, vu = 1 if and
only if Supp(u) ⊂ Supp(v). Thus, for any v ∈ Fn2 , f(v) = ∑

u∈Fn
2
auv

u = ∑
u⪯v au.

Conversely, for a fixed u ∈ Fn2 , we observe that:∑
v⪯u

f(v) =
∑
v⪯u

∑
w⪯v

aw =
∑
w⪯u

∑
w⪯v⪯u

aw =
∑
w⪯u

2dim(Supp(u))−dim(Supp(w))aw = au,

where the last equality holds because 2dim(Supp(u))−dim(Supp(w)) is even (and therefore
equals 0 mod 2) whenever w ̸= u.

1In the case of a univariate polynomial P ∈ F2n [X], such relations between coefficients and
values of P also exist through Fourier transform, but are not used in this work.
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2.2.2 The Walsh transform

2.2.2.a The case of Boolean functions

For any u ∈ Fn2 , let us denote by 1u : Fn2 → F2 the indicator function of {u} whose
value is 0 everywhere except for x = u where its value is 1. The LUT of a Boolean
function f : Fn2 → F2 actually corresponds to the decomposition of f as a linear
combination of these indicator functions:

f =
∑
u∈Fn

2

f(u)1u.

The indicator functions constitute the standard basis of the complex-valued
Boolean function space: CFn

2 := {f : Fn2 → C}. However this basis is not well-suited
for studying the behavior of a Boolean function with respect to the group structure
of Fn2 : it is more convenient to work with the characters basis. This basis is made
of the group homomorphisms χ : Fn2 → C∗ which, by definition, carry the group
structure of Fn2 into C∗. The change-of-basis operation from the standard basis to
the character basis is the well-known Fourier transform.

Definition 2.11 (Character). For any u ∈ Fn2 , the character associated to u is
the function denoted by χu : Fn2 → C and defined by:

∀x ∈ Fn2 , χu(x) := (−1)u·x,

where the dot · corresponds to the standard dot product that is defined by:

∀ x, y ∈ Fn2 , x · y :=
n−1∑
i=0

xiyi.

▷

Lemma 2.12 (Mean of a character). Let u ∈ Fn2 . Then

∑
v∈Fn

2

χu(v) =
{

2n if u = 0
0 otherwise, (2.4)

or equivalently, ∑v∈Fn
2
χu(v) = 2n10(u).

Proof. If u = 0, the result is clear. Otherwise, there exists w ∈ Fn2 such that
χu(w) = −1. Thus,

−
∑
v∈Fn

2

χu(v) = χu(w)
∑
v∈Fn

2

χu(v) =
∑
v∈Fn

2

χu(v + w) =
∑
v∈Fn

2

χu(v),

so we necessarily get ∑v∈Fn
2
χu(v) = 0.
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Proposition 2.13 (Fourier transform). Let n ≥ 1. The family (χu)u∈Fn
2

is a basis
of CFn

2 . The Fourier transform of f : Fn2 → C is defined by the function f̂ : Fn2 → C
which corresponds to the decomposition of f in the character basis:

f =:
∑
u∈Fn

2

f̂(u)χu. (2.5)

Proof. The cardinality of (χu)u∈Fn
2

is the same as the one of the standard basis. It
is therefore sufficient to show that (χu)u∈Fn

2
is a linearly independent family. Let

f = ∑
u∈Fn

2
auχu = 0. Let v ∈ Fn2 . Then

0 =
∑
u∈Fn

2

f(u)χv(u) =
∑
w∈Fn

2

aw
∑
u∈Fn

2

χv(u)χw(u) =
∑
w∈Fn

2

aw
∑
u∈Fn

2

χv+w(u) = 2nav,

where the last equality comes from the mean of χv+w (see Lemma 2.12). We finally
obtain av = 0 for any v ∈ Fn2 .

By evaluating Eq. (2.5) at each point v ∈ Fn2 , we easily switch from the character
basis to the standard basis. The next proposition enables the change-of-basis the
other way around.

Proposition 2.14 (Fourier inversion). Let f : Fn2 → C. Then f̂ is defined by:

f̂ = 2−n ∑
u∈Fn

2

f(u)χu.

Proof. Let v ∈ Fn2 . By substituting f(u) using Eq. (2.5) and by following the exact
same path as the proof of Proposition 2.13 we observe that:∑
u∈Fn

2

f(u)χu(v) =
∑
w∈Fn

2

f̂(w)
∑
u∈Fn

2

χu(v)χw(u) =
∑
w∈Fn

2

f̂(w)
∑
u∈Fn

2

χv+w(u) = 2nf̂(v).

In the character basis, all the linear operators f 7→ f(· + t) are diagonal
operators. Indeed denoting g = f(· + t), we easily verify that ĝ = χtf̂ . This
enables an easier study of the effect of affine shifts on a function. For a Boolean
function f : Fn2 → F2, the study of the closely-related function (−1)f from Fn2 to
{−1, 1} that is defined by x 7→ (−1)f(x), and in particular of its Fourier transform,
is exceptionally fruitful to understand how f behaves with respect to the group
law, that is, the addition in Fn2 .

Definition 2.15 (Walsh transform). Let f : Fn2 → F2. The Walsh transform of f ,
that is denoted by Wf : Fn2 → Z, is (up to a factor 2n) the Fourier transform of
(−1)f . More precisely, it is defined by:

∀u ∈ Fn2 , Wf (u) :=
∑
v∈Fn

2

(−1)f(v)+u·v. (2.6)

▷
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The Walsh transform is indeed a transform because the Fourier transform, the
transform f 7→ (−1)f , and the scaling by 2n are all bijective. From Eq. (2.6), we
observe that the Walsh transform captures the signed distance of a function to all
the linear functions x 7→ u · x.

2.2.2.b The case of vectorial Boolean functions

Regarding a vectorial Boolean function F : Fn2 → Fm2 , the knowledge of the Walsh
transform of each of its coordinates is equivalent to the knowledge of F itself.
However in general, we rather work with the Walsh coefficients of all linear
combinations of coordinates of F . Let β ∈ Fm2 . We denote by β · F the Boolean
function x 7→

∑m−1
i=0 βi · Fi(x). Such a combination is called a component of F .

Furthermore, for any α ∈ Fn2 we denote by WF (α, β) the Walsh coefficient of β · F
associated to α:

WF (α, β) := Wβ·F (α) =
∑
x∈Fn

2

(−1)α·x+β·F (x).

When considering a coefficient WF (α, β), we refer to α as the input mask and
to β as the output mask. The matrix (WF (α, β))α∈Fn

2 ,β∈Fm
2

is known as the linear
approximation table (LAT). It is sometimes more convenient to work with the
coefficients scaled up to 2−n factor. They are denoted by:

∀α ∈ Fn2 ,∀β ∈ Fm2 , W̃F (α, β) := 1
2nWF (α, β), (2.7)

and the matrix CF :=
(
W̃F (α, β)

)
α∈Fn

2 ,β∈Fm
2

is known as the correlation
matrix [DGV95] of F .

Storing information about all components, rather than just all coordinates, is
redundant but the LAT has the advantage of being very convenient to use. Indeed,
let us denote by TF : CFn

2 → CF2m the linear operator called pushforward operator
of F . This operator TF is defined [Bey21, Definition 3.2] with respect to the
standard basis by:

∀ x ∈ Fn2 , TF (1x) := 1F (x).

In the character basis, the matrix of TF becomes CF = 1
2n LAT(F ), see [Bey21,

Definition 3.3]. The LAT therefore inherits useful properties. As an example,
because TG◦F = TG ◦TF , the LAT of a composition of functions is the product of
the LAT of G and F , up to rescaling.
Remark 2.16. In the standard basis, the matrix of TF , that is called transition
matrix, is nothing more than the adjacency matrix of the (directed) graph of F .
Indeed, each column contains only zeros but a single one. The ones are located at
coordinates (x, F (x)) for any x ∈ Fn2 . We therefore observe the redundancy that is
mentioned before: the set of coordinates of non-zero entries, which is sufficient to
build such a matrix, is exactly the graph of F , or equivalently, its look-up table. ▷
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Example 2.17 (LAT of the Sbox of Ascon). The LAT of the Sbox of Ascon is
given in Table 2.2, where the input masks are enumerated vertically, and the output
ones horizontally. For an easier visualization of such a table, we often rely on a
graphical representation instead, as depicted in Figure 2.1.

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
0 32 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · · · · 16 · · 8 8 · · -8 8 · · · 8 8 · · 8 -8 8 · -8 · -8 · -8 ·
2 · · · · · · -16 16 · · 8 8 · · 8 8 · · 8 8 · · -8 -8 · · · · · · · ·
3 · 16 · · · · · · · 8 · 8 · 8 · -8 -16 · · · · · · · 8 · 8 · 8 · -8 ·
4 · · · 8 · -8 · · · · 8 · · 8 -8 -8 · · 8 · -8 · · · · -16 · -8 -8 · 8 -8
5 · · · 8 · 8 · · · -8 · · · · · -8 · · · -8 8 · -8 -8 8 · -8 8 · -16 · -8
6 · · · 8 · -8 · · · · · -8 · 8 · · · · · -8 -8 · -8 -8 · 16 · -8 -8 · -8 8
7 · · · -8 · -8 · · · 8 8 8 · · -8 · · · -8 · -8 · · · -8 · -8 8 · -16 · 8
8 · · · · · · · · · · 8 8 · · -8 -8 · · · · · · · · · 16 -8 8 · 16 8 -8
9 · · · · · · · -16 · -8 · 8 · 8 · 8 · · 8 8 · · -8 8 8 · · 8 -8 · · 8
a · · · · · · · · · · · · · · · · · · 8 8 · · 8 8 · 16 8 -8 · -16 8 -8
b · 16 · · · · · · · -8 8 · · -8 -8 · 16 · · · · · · · 8 · · -8 8 · · 8
c · · -16 8 -16 -8 · · · · · 8 · -8 · · · · -8 · 8 · · · · · 8 · -8 · · ·
d · · · -8 -16 8 · · · 8 -8 -8 · · -8 · · · · 8 -8 · -8 -8 8 · · · · · 8 ·
e · · · -8 16 -8 · · · · -8 · · -8 -8 -8 · · · 8 8 · -8 -8 · · 8 · -8 · · ·
f · · 16 -8 -16 -8 · · · -8 · · · · · -8 · · 8 · 8 · · · -8 · · · · · -8 ·
10 · · · · · · -16 · · 8 · -8 -8 · -8 · · · · · 8 -8 8 8 8 · -8 · -8 · -8 ·
11 · · · · · · · · -16 · -8 8 -8 -8 · · · 16 8 -8 -8 -8 · · · · · · · · · ·
12 · -16 · · · · · · · -8 8 · -8 · · -8 · · -8 8 -8 -8 · · 8 · 8 · 8 · -8 ·
13 · · · · · · -16 -16 · · · · 8 -8 8 -8 · · · · -8 8 8 -8 · · · · · · · ·
14 · · · 8 · 8 · · · 8 8 -8 -8 -8 · -8 · · 8 · · 8 -8 8 -8 · 8 8 · · · 8
15 · · · 8 · -8 · · · · · -8 8 · -8 8 · 16 · 8 · 8 · · · · · 8 8 · -8 -8
16 · · · -8 · -8 · · · 8 · · -8 8 8 · 16 · · -8 · 8 · · 8 · 8 8 · · · -8
17 · · · 8 · -8 · · 16 · -8 · -8 · · · · · 8 · · -8 8 -8 · · · 8 8 · 8 8
18 · · · · · · · -16 · 8 8 · -8 · · 8 · · · · 8 -8 -8 -8 -8 · · -8 8 · · -8
19 · · · · · · · · · · · · 8 -8 -8 8 · -16 8 -8 -8 -8 · · · · 8 8 · · -8 -8
1a · 16 · · · · · · · -8 · -8 -8 · 8 · · · -8 8 -8 -8 · · -8 · · 8 -8 · · -8
1b · · · · · · · · 16 · -8 8 -8 -8 · · · · · · -8 8 -8 8 · · -8 -8 · · -8 -8
1c · · 16 8 · -8 · · · 8 · · 8 -8 8 · · · -8 · · -8 -8 8 8 · · · · · 8 ·
1d · · · -8 · 8 · · 16 · 8 · 8 · · · · 16 · -8 · -8 · · · · 8 · -8 · · ·
1e · · · 8 · 8 · · · 8 -8 8 8 8 · -8 16 · · 8 · -8 · · -8 · · · · · -8 ·
1f · · 16 8 · 8 · · · · · 8 -8 · -8 8 · · -8 · · 8 8 -8 · · 8 · -8 · · ·

Table 2.2: LAT of the Sbox of Ascon. A dot corresponds to a 0 value.
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Figure 2.1: LAT of the Sbox of Ascon using two grayscales for positive and negative
values.

▷
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Equipped with these four representations of vectorial Boolean functions (the
look-up table, the univariate polynomial, the ANF and the Walsh transform), a
cryptographer has at hand a range of tools to measure the strength or weakness of
a function. This methodology is presented in the next section.

2.3 Cryptographic Boolean functions
As already mentioned in Section 1.3.2.b, most of the block ciphers today still heavily
rely on the notions of diffusion and confusion introduced by Shannon [Sha49].
The Sboxes, which are the only nonlinear components of the main block cipher
constructions, are in charge of confusion. Paraphrasing Shannon, the goal of
confusion is to make the relation between the key and the plaintext as intricate as
possible.

The worst level of “intrication” is therefore linearity. Indeed, let k ∈ F2κ , and
Ek : Fn2 → Fn2 be an instantiated linear key-alternating block cipher. Because of
linearity, any plaintext/ciphertext pair (x, y) gives an equation (in Fn2 ) of the form
y = E1(x)+E2(k), where E1 is linear and bijective and where E2(k) is linear in the
rounds keys k(0), . . . , k(R−1). This equation can be rewritten as E2(k) = y +E1(x).
In other words, from a single plaintext/ciphertext pair, the value E2(k) is recovered.
Let y′ be a known ciphertext. Its corresponding plaintext x′ can then be recovered
by the adversary, as E−1

1 (y′ +E2(k)) = x′, because E1 is publicly known and E2(k)
has been previously recovered. The confidentiality of the cipher is then broken by
a single known plaintext/cipher pair, even if the master key has not been recovered.
This is furthermore the case, independently of the number of rounds, and of the
circuit complexity of the implementation.

This simple example highlights how much linearity should be avoided. The main
cryptographic criteria, that are presented below, all try to capture the distance
between a function and the linear functions, using different metrics. In the following,
the main definitions used to benchmark cryptographic vectorial Boolean functions,
and in particular Sboxes, are presented, together with the necessary tools. The
legitimacy of those criteria is illustrated by a (non-exhaustive) selection of known
attacks applicable to ciphers which do not meet these requirements.

2.3.1 Algebraic degree and density

2.3.1.a Algebraic degree

We denote by wt: Fn2 → N the Hamming weight, that is, the function defined by
u 7→ |Supp(u)|. The most natural gauge of linearity is inevitably the so-called
algebraic degree.

Definition 2.18 (Algebraic degree). Let f : Fn2 → F2 be the Boolean function
defined by x 7→∑

u∈Fn
2
aux

u, with au ∈ F2 for any u. The algebraic degree of f is
the degree of its ANF, i.e. dega(f) is defined by:

dega(f) := max({wt(u), u ∈ Fn2 , au ̸= 0}).
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The algebraic degree of a vectorial Boolean function F : Fn2 → Fm2 is the maximum
degree of its coordinates:

dega(F ) := max({dega(Fi), i ∈ J0,m− 1K}).
▷

A function F : Fn2 → Fm2 whose algebraic degree is exactly 0 (resp. 1, 2) is called
a constant (resp. affine, quadratic) function. An affine function satisfying F (0) = 0
is called linear. This definition of course coincides with the usual definition of
F2-linear functions as functions carrying the addition of Fn2 toward Fm2 .

While the algebraic degree is the degree of the ANF, it can still be computed
using the univariate representation.

Proposition 2.19 (Algebraic degree of a univariate polynomial). Let F : F2n →
F2n be defined by x 7→∑2n−1

j=0 ajx
j, where aj ∈ F2n for any j. Then:

dega(F ) = max({wt(j), j ∈ J0, 2n − 1K , aj ̸= 0}).
Proof. Adapted from [Car21, Proposition 6]. For the sake of this proof, let us
introduce for any function F (or polynomial), the quantity M(F ) defined by:

M(F ) := max({wt(j), j ∈ J0, 2n − 1K , aj ̸= 0}).
Let (α0, . . . , αn−1) be an F2-basis of F2n and let x = ∑n−1

i=0 xiαi ∈ F2n where xi ∈ F2
for any i ∈ J0, n− 1K. The binary decomposition of each integer j ∈ J0, 2n − 1K is
given by j = ∑n−1

s=0 js2s, where each js ∈ {0, 1}. Then, F (x) can be decomposed
as:

F (x) =
2n−1∑
j=0

aj

(
n−1∑
i=0

xiαi

)j
=

2n−1∑
j=0

aj

n−1∏
s=0

(
n−1∑
i=0

xiα
2s

i

)js
,

where we use the binary decomposition of each j, the linearity of the Frobenius
automorphism y 7→ y2, and the fact that xi = x2

i for any i because xi ∈ F2. For any
j, it is clear that no product of more than wt(j) variables x0, . . . , xn−1 appears in
aj
∏n−1
s=0

(∑n−1
i=0 xiα

2s

i

)js . Therefore, it holds that: dega(F ) ≤M(F ). This means
that a polynomial P = ∑2n−1

j=0 ajX
j for which M(P ) ≤ d for a given d ∈ J0, nK,

defines a function with algebraic degree less than or equal to d. Therefore, the
mapping φd defined by:
φd :

{
P ∈ F2n [X]/(X2n +X),M(P ) ≤ d

}
→ {F : F2n → F2n , dega(a) ≤ d}

P 7→ x 7→ P (x)
is well defined. The mapping φd is also injective because of Proposition 2.6.
However, there are 2nm elements in its domain where m = ∑d

i=0
(n
i

)
, as there

are m integers j of at most n bits such that wt(j) ≤ d and for each such j, aj
can be freely chosen in F2n . But this is also the cardinality of the codomain: F
satisfies dega(F ) ≤ d if and only if dega(Fi) ≤ d for each of its n coordinates
Fi : Fn2 → F2. Each Fi can be freely built by choosing a coefficient in F2 for each
of the m monomials with d variables among n possible ones, which leads to (22d)n.
We therefore conclude that the equality dega(F ) = M(F ) must hold by following
an inclusion-exclusion principle on all values d ∈ J0, nK.
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2.3.1.b Linearization attack

In general, a cryptographic function should have a high algebraic degree. Indeed, if
an attacker is given a ciphertext y = F (x), for an unknown function F : Fn2 → Fm2
and an unknown x ∈ Fn2 , he/she can always express any output bit yi, as a nonlinear
equation in unknown variables x0, . . . , xn−1 ∈ F2 and unknown coefficients ai,u ∈ F2
for any u ∈ Fn2 , i ∈ J0,m− 1K:

∀i ∈ J0,m− 1K , yi =
∑
u∈Fn

2

ai,ux
u.

But if x ∈ Fn2 is known, then all the monomials xu, u ∈ Fn2 are known, and
the nonlinear equations boil down to linear equations in unknowns ai,u ∈ F2 for
all u and i. Therefore, even if the cryptographic function is nonlinear, Gaussian
elimination can always be applied to recover its ANF. We refer to such techniques as
linearization attacks, see for instance [KS99, BG05, Gil+23]. The time complexity
of mounting a linearization attack is therefore O(Mω), where 2 ≤ ω ≤ 3 is the
matrix multiplication exponent, and where M is the number of unknowns of the
linear system, that is, the number of monomials M . As the number of monomials
of degree less than or equal to d in n variables is ∑d

i=0
(n
i

)
, the value of M grows

exponentially with the degree, and so do the time and data complexities. This is
highlighted by Figure 2.2. Data complexity is however linear in M .
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Figure 2.2: Number of monomials in 64 Boolean variables.

The degree therefore gives an upper bound on the security against such
techniques, but it is the precise number of monomials M that gives the actual
complexity. Stated otherwise, the density or sparsity of the ANF is the good
measurement of security in that case. Having a dense ANF is necessary to avoid
this generic system solving. But it is also desirable to avoid ad hoc solving algorithms
taking advantages of specificity of the system. The more random-looking is the
system, the harder it is to find and leverage a specificity. In practice, the full ANF
of a real-life cipher is that large that it cannot even be stored on a computer.

This idea of analyzing a cipher by making sure that breaking it is “at least as
[hard] as solving a system of simultaneous equations in a large number of unknowns,
of a complex type” is already mentioned in the seminal work of Shannon [Sha49].
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2.3.1.c Degree as a distinguishing property

Distinguishing properties can also be exhibited when the degree is low. First of all,
as suggested by the following proposition, a permutation cannot reach the maximal
algebraic degree.

Proposition 2.20 (Degree of a permutation). Let n > 1 and F : Fn2 → Fn2 be a
permutation. Then dega(F ) ≤ n− 1.

Proof. From Proposition 2.10, we observe that for any coordinate Fj , j ∈ J0, n− 1K,
the highest monomial, that is ∏n−1

i=0 Xi, has as coefficient aj = ∑
u∈Fn

2
Fj(u). But

because F is bijective, each of its coordinates takes the value 0 (and also the value
1) half of the time, that is, 2n−1 times. This implies that aj = 0 for any j, and
thus the degree of F cannot be equal to n.

Furthermore, a random function F : Fn2 → Fn2 is expected to have no term of
degree n − 1 with only probability 2−n2 , as each of the n monomials of degree
n− 1, in each of the n coordinates, has probability 1

2 of being equal to zero. It is
therefore expected that a random bijection has algebraic degree exactly n− 1, and
this holds [Wel69, KP02] even if the probability cannot be computed as easily as
for a random function.

A cryptographic permutation should then mimic this behavior, and reach
this degree. When the degree is lower than expected, a higher-order differential
distinguisher can be exhibited. This is detailed in Chapter 3.

2.3.1.d Estimates on the algebraic degree

In order to ensure a high algebraic degree for functions that are iteratively built,
the most trivial bound comes from the degree of the composition of functions.

Lemma 2.21 (Trivial degree bound). Let F : Fn2 → Fm2 , G : Fm2 → Fℓ2. Then
dega(G ◦ F ) ≤ dega(G) dega(F ).

This bound being very general, it can only be applied as a rule of thumb,
and a dedicated analysis should be carried when designing or analyzing a cipher.
There exist finer generic bounds on the degree of iterated constructions such
as the one of Canteaut & Videau [CV02], the one of Boura, Canteaut & De
Cannière [BCD11], the one of Boura & Canteaut [BC13], or the one of Cid,
Grassi, Gunsing, Lüftenegger, Rechberger & Schofnegger [Cid+22]. Those bounds
for instance led to a 18-round [BC11] and a 24-round distinguisher [BCD11] on
Keccak-f , based on the study of the degree.

This is actually not the only property that can be leveraged by higher-order
differential distinguishers. Indeed, as presented in Chapter 3, such distinguishers
can also exploit the sparsity of the ANF of a cryptographic function, and especially
the value of some well-chosen coefficients.
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2.3.1.e Algebraic degree and density of an Sbox

The fact that an Sbox must be nonlinear obviously corresponds to the criterion
dega(S) > 1. From there, the design choices are numerous. It seems natural to
look for an Sbox which achieves the highest possible degree with a dense ANF.
With the expected avalanche effect due to diffusion through the linear layer, this
could lead to a very dense ANF for the whole construction in only a few rounds.
This is for instance the choice made for the AES Sbox [DR02].

When implementing an Sbox as a look-up table such choices seem legitimate,
but may not hold anymore when considering constant-time or memory-optimized
implementations. For instance, lightweight cryptography promotes new trade-offs
between security, performances and cost. This pushes designers to build ciphers
which can be implemented very efficiently. As an example, we can observe in
Example 2.9 that the ANF of the Sbox of Ascon is rather sparse and is only
quadratic. The main reason of this choice is to facilitate cheap and fast bit-sliced
implementation, but also threshold implementations and masking [Dob+21]. This
fragile aspect of the Sbox, with respect to algebraic arguments, is compensated by
a suitable number of rounds and a good interaction with the linear layer to provide
diffusion. This at-first-sight simplicity of the Sbox can however be considered a
good property. It indeed enables an easier study and understanding of the algebraic
properties of (round-reduced versions of) the cipher. The attack against Ascon
that we present in Section 3.4 is heavily based on the quadraticity of the round
function and leads to a further understanding of its impact on security, when the
attacker is given powerful abilities or when the cipher is not properly used.

2.3.2 Univariate degree and density

The degree of the univariate representation of a function is of course also a
measurement of linearity, but this time of F2n-linearity.

Definition 2.22 (Univariate degree). Let F : F2n → F2n , x 7→
∑2n−1
i=0 aix

i. The
univariate degree of F is the degree of its univariate polynomial:

degu(F ) := max
i∈J0,2n−1K

(i, ai ̸= 0).

▷

2.3.2.a Linearization, again

In the same way as for the algebraic degree, the degree of a cryptographic function
should be high, and its univariate representation should be dense. The first reason
comes from the already-mentioned linearization attacks. Let P = ∑

i∈I aiX
i, be

an unknown polynomial whose non-zero coefficients are located in a known subset
I ⊂ J0, 2n − 1K. As for the ANF, the knowledge of a plaintext/ciphertext pair
x, y ∈ F2n gives one linear equation in the unknown coefficients, as all the power
of x are known in y = ∑

i∈I aix
i. Therefore denoting M := |I|, we obtain the
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same complexities as the ones presented in Section 2.3.1. Note that the number of
operations that is counted in that case is the number of arithmetic operations in
F2n , and not Boolean operations.

2.3.2.b Interpolation attack

There also exists another class of attacks that recovers an unknown polynomial from
its values, but this time, with a complexity depending on the degree. This technique
is called interpolation attack [JK97] and is based on the Lagrange interpolant, that
was already encountered in the proof of Proposition 2.6. It is indeed known that
given d+ 1 preimage/image pairs ((xi, yi))i∈J0,dK, where xi, yi ∈ F2n , there exists a
unique polynomial P ∈ F2n [X] which satisfies degu(P ) ≤ d and P (xi) = yi for any
i ∈ J0, dK. This polynomial is given by the following formula:

P =
d∑
i=0

yi

d∏
j=0,j ̸=i

X + xj
xi + xj

=
d∑
i=0

yi
Qi

Qi(xi)
, (2.8)

where Q := ∏d
i=0X + xi and Qi := Q

X+xi
for any i. If a bound d on the degree of

an unknown function (for instance an instantiated block cipher Ek) is known, the
previous formula therefore enables the attacker to recover the full description of
the function, using d+ 1 known input/output pairs (that is, plaintext/ciphertext
encrypted with the same key k). The time complexity of interpolation using
Eq. (2.8) is O(d2): first compute Q in O(d2) operations, then, for each of the d
values for i, compute Qi in O(d), evaluate Qi in xi in O(d), and finally compute
the linear combination in O(d).

Interpolation can be further sped up using a divide-and-conquer algorithm.
In that case its cost is O(M(d) log(d)) where M(d) is the complexity of the
multiplication of two polynomials of F2n [X] of degree at most d. When a d-th
primitive root exists in F2n , multiplying polynomials can be done in M(d) =
O(d log(d)) with multiplication based on Fast Fourier Transform (FFT). Otherwise,
using a method inspired by Schönhage–Strassen algorithm, the multiplication can
be computed in M(d) = O(d log(d) log(log(d)) [CK91]. A detailed (yet French)
description of fast interpolation, fast multiplication and their complexities is given
in [Bos+17, Chapters I.2 & I.5].

Interpolation can also be adapted to the multivariate case, and therefore used
to recover an unknown ANF.
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2.3.2.c Univariate degree and density of a round function

Little is known on the actual choice that should be made regarding the univariate
description of a round function. The intuition is again that a dense high-degree
round function leads to a dense and high-degree construction in only a few rounds.
When the Sbox is built as a function Fn2 → Fn2 , the corresponding univariate
representation often matches these criteria. Indeed, a polynomial of F2n [X] with
peculiar and distinctive properties can only mean that it interacts oddly with
the field structure. Such a strong interaction is therefore not expected to happen
when the function is built with the vector space Fn2 in mind. Regarding the
degree, a random bijection is expected to have univariate degree 2n − 2 most of
the time [KP02].

However, there exist designs that do not follow these guidelines and still
achieve good security. The most iconic one is the AES Sbox which is built as
S = A ◦ S′ where S′ : F28 → F28 , x 7→ x254, for a specific identification F8

2 ≃ F28 ,
and A : F8

2 → F8
2 is an F2-affine mapping. It therefore relies on a high-degree

but sparse bijection. This simple description of S′ yields an easier understanding
of its structure (it behaves as x−1 over F∗

28 and maps 0 to 0), but also of its
security [Nyb94]. However the sparsity and algebraic simplicity of S′ seems hard
to leverage. Indeed, it is already partially compensated after its composition with
A: for F28 = F2[X]/(X8 +X4 +X3 +X + 1), S is represented as:

S = aX254 + bX253 + cX251 + dX247 + eX239 +X223 + fX191 + gX127 + h,

where a, b, c, d, e, f, g, h are specific elements of F28 .
More recently, new symmetric primitives are needed to run in abstract settings

such as multi-party computation or zero-knowledge proof systems, see for instance
[Bou23, Chapter 1]. For such usages, primitives are directly implemented using
the arithmetic of large finite fields (Fq where q ∈

{
264, 2128}), and the number of

multiplications in such a field must be minimized. For instance, the block cipher
MiMC [Alb+16] uses x 7→ x3 over Fq as sparse low-degree round function. As
highlighted by the work of Bouvier, Canteaut & Perrin [BCP23], this univariate
simplicity makes a thorough analysis possible and provides precise guarantees on
the growth of the algebraic degree, round after round. However, the density of
the whole construction is also impacted: in somes cases 31

32 of the coefficients are
necessarily 0 [Bou23, Sec. 5.2]. However, this tighter upper bound differs from the
generic one by a constant factor and the use of Gaussian elimination, as presented
above, still remains out of reach. It is an open problem to determine whether this
peculiar structure can be leveraged in an attack.
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2.3.3 Differential uniformity

2.3.3.a Cryptographic context

As already mentioned Section 1.4, differential attacks are among the most popular
attacks against block ciphers. This class of attacks was first introduced by Biham &
Shamir to cryptanalyze reduced versions of DES [BS91b, BS91a], and was quickly
applied to the full DES [BS93]. The basis of such attacks against a cryptographic
function F : Fn2 → Fn2 is the existence of an input difference ∆in ∈ Fm2 \ {0} and an
output difference ∆out ∈ Fm2 such that the following equation has many solutions
x ∈ Fn2 :

F (x+ ∆in) + F (x) = ∆out. (2.9)

This property is a distinguishing property compared to the behavior of a random
function. Indeed for fixed ∆in,∆out, if F and x are picked uniformly at random, we
expect F (x+ ∆in) + F (x) to behave as random, and as such, to be equal to ∆out

only 1 out of 2n times (or out of 2n − 1 for random bijections, as x and x+ ∆in

are distinct so F (x) + F (x+ ∆in) ̸= 0). In other words, Eq. (2.9) is expected to
have on average a single solution.

In the case of a block cipher E = (Ek : Fn2
∼−→ Fn2 )k∈Fκ

2
, the same kind of

distinguisher can be mounted if there exist ∆in,∆out ∈ Fn2 ,∆in ̸= 0 such that for
many keys k ∈ Fκ2 , Eq. (2.10) has many solutions x ∈ Fn2 :

Ek(x+ ∆in) + Ek(x) = ∆out. (2.10)

This property enables us to distinguish the draw of a random bijection among
the block cipher F $←− E from the random draw among all bijections F $←− Bij(Fn2 ).
Indeed, given many chosen plaintexts pairs of the form (x, x + ∆in), and their
corresponding ciphertexts, an attacker can compute Ek(x+ ∆in) +Ek(x) and count
the number of times Eq. (2.10) holds or not. Such a distinguisher can often be
further leveraged to mount key-recovery attacks. This is depicted for instance in
detail in the thesis of Heim [Hei24, Section 2.2].

2.3.3.b Derivatives and differential uniformity

The main objects at hand are the derivatives of vectorial Boolean functions.

Definition 2.23 (Derivative of a function). Let F : Fn2 → Fm2 . Let ∆ ∈ Fn2 . The
derivative of F along ∆ (or with respect to ∆) is the function D∆(F ) : Fn2 → Fm2
that is defined by:

D∆(F ) : x 7→ F (x+ ∆) + F (x).

▷

Remark 2.24. This object corresponds to the Boolean twin of the derivative of a
function of real variables: it studies the variation along a given direction. The
derivatives of a Boolean function f : Fn2 → F2 also have strong interactions with the
derivatives of its ANF P ∈ F2[X0, . . . , Xn−1], that is, derivatives of polynomials.
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For instance, the derivative of f with respect to (1, 0, . . . 0) has as ANF, the
derivative of the ANF of f with respect to x0: D(1,0,...,0)f = ∂P

∂X0
. However the

two objects should not get mixed up. For instance, contrary to derivatives of
polynomials, derivatives of vectorial Boolean functions do not satisfy the classical
chain rule formula [CCP22]. ▷

The set of solutions of Eq. (2.9) is the preimage of
{
∆out} by D∆inF . We

denote it by Zdiff
F (∆in,∆out) and its cardinality by δF (∆in,∆out):

Zdiff
F (∆in,∆out) := (D∆inF )−1

({
∆out

})
=
{
x ∈ Fn2 , F (x+ ∆in) + F (x) = ∆out

}
,

δF (∆in,∆out) :=
∣∣∣Zdiff
F (∆in,∆out)

∣∣∣ .
The values ∆in,∆out for which δF (∆in,∆out) is maximal are therefore the

biggest threats in terms of differential attacks. This maximal value serves as a
security parameter.

Definition 2.25 (Differential uniformity [Nyb94]). Let F : Fn2 → Fm2 . The
differential uniformity is the value denoted by δF that is defined by:

δF := max
∆in∈Fn

2
∗,∆out∈Fm

2

δF (∆in,∆out).

▷

As shown later in Definition 2.37, the table containing the values δF (∆in,∆out)
for all ∆in,∆out is also relevant when it comes to the precise analysis of the different
components of a block cipher.

2.3.3.c Optimal resistance to differential attacks

Ideally, we would like δF to be as low as possible. For any ∆in, as D∆inF is well
defined, there must exist ∆out such that δF (∆in,∆out) > 0. Therefore δF > 0.
Furthermore, let x be a solution to Eq. (2.9) for a non-zero ∆in. Then x+ ∆in ̸= x
(as ∆in ̸= 0), and x+ ∆in is also a solution of Eq. (2.9). Indeed,

F
(
(x+ ∆in) + ∆in

)
+ F (x+ ∆in) = F (x) + F (x+ ∆in) = ∆out. (2.11)

This proves that the solutions of Eq. (2.9) always come by pair, and as such, any
δF (∆in,∆out) is an even number, and so is δF . This implies that the optimal
resistance to differential attacks is obtained when δF = 2. We define those optimal
functions as follows.

Definition 2.26 (Almost Perfect Non-linear function [NK93]). Let F : Fn2 → Fm2 .
F is called almost perfect non-linear (APN) if it satisfies δF = 2. ▷

APN functions are one of the main topic of Chapter 6. For now let us just
clarify the underlying notion of linearity that is mentioned in the naming thanks
to the following lemma.
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Lemma 2.27 (Characterization of affine functions in terms of δF (∆in,∆out)). Let
F : Fn2 → Fm2 . Then F is an affine function if and only if it satisfies:

∀ ∆in ∈ Fn2 ,∀ ∆out ∈ Fm2 , δF (∆in,∆out) =
{

2n if ∆out = F (∆in) + F (0),
0 otherwise.

Proof. A function F is affine if and only if:

∀ x, y ∈ Fn2 , F (x+ y) + F (x) + F (y) + F (0) = 0.

By using ∆in instead of x, this is equivalent to:

∀ ∆in ∈ Fn2 , D∆inF = F (∆in) + F (0).

In other words, a function is affine if and only if all its derivatives are constant.
Equivalently, F is affine if and only if given any ∆in ∈ Fn2 , ∆out ∈ Fm2 , the equation
D∆inF (x) = ∆out holds either for all x or has no solution.

In the light of Lemma 2.27, we observe that an APN function behaves in a
strictly opposite way compared to a linear (or affine) one. For a given ∆in, if F is
linear, the image of D∆inF contains a single value ∆out, which therefore has 2n
preimages. On the contrary, if F is APN, the non-empty preimages of D∆in(F )
must be of size exactly 2, so D∆inF (Fn2 ) is of cardinality exactly 2n−1. Finally, the
adverb “almost” indicates that δF cannot be equal to 1. Indeed, if we extend the
definition of differential uniformity to functions F : G→ H between two Abelian
groups G,H, then for any ∆in ∈ G, it holds that:∑

∆out∈H
δF (∆in,∆out) = |G| .

This implies that for any ∆in ∈ G,∆out ∈ H, δF (∆in,∆out) ≥ G
H and therefore

δF ≥ G
H . For this reason, a function is said to be perfect nonlinear [Nyb91] if it

satisfies δF = |G|
|H| . However, for Boolean functions from Fn2 to Fm2 , perfect nonlinear

functions can only exist if 2m ≤ n [Nyb91].

2.3.3.d Finding differential distinguisher

Unkeyed function. In practice, for a cryptographic function F : Fn2 → Fm2 , it is
impossible to compute δF (∆in,∆out) for any ∆in ∈ Fn2 and ∆out ∈ Fm2 due to the
large size of n. However, we can leverage the iterated constructions, that most of
the symmetric primitives follow, to approximate the number of solutions.

To simplify the presentation, let us consider that the domain and codomain
of each involved function are Fn2 . More precisely, let F : Fn2 → Fn2 be a function
that can be decomposed as F = F (R−1) ◦ · · · ◦ F (0) where F (r) : Fn2 → Fn2 for any
r ∈ J0, R− 1K. Let ∆(0),∆(R) ∈ Fn2 be a pair of input/output differences. For any
x ∈ Fn2 , let us denote the intermediate values by x(0) := x, y(0) := x+ ∆(0), and
for any r ≥ 0, x(r+1) := F (r)(x(r)) and y(r+1) := F (r)(y(r)).
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Remark 2.28. Even if it does not appear in the notation, we insist on the fact that
for any r, the value y(r) depends on both x and ∆(0). ▷

With this notation, and by using the value of the intermediate differences, we
can partition the set of solutions of Eq. (2.9) as:

Zdiff
F (∆in,∆out) =

{
x ∈ Fn2 , F (x) + F (x+ ∆(0)) = ∆(R)

}
=
{
x ∈ Fn2 , x(R) + y(R) = ∆(R)

}
=

⊔
∆(R−1)∈Fn

2

{
x ∈ Fn2 , x(R) + y(R) = ∆(R), x(R−1) + y(R−1) = ∆(R−1)

}
...

=
⊔

∆(1),...,∆(R−1)∈Fn
2

{
x ∈ Fn2 ,∀r ∈ J1, RK , x(r) + y(r) = ∆(r)

}
.

The number of solutions can therefore be computed as:

δF (∆(0),∆(R)) =
∑

∆(1),...,∆(R−1)∈Fn
2

∣∣∣{x ∈ Fn2 , ∀ r ∈ J1, RK x(r) + y(r) = ∆(r)
}∣∣∣ .
(2.12)

In this context, we traditionally use the following vocabulary.

Definition 2.29 (Differential, differential trail, fixed-key differential probability).
A pair of differences (∆(0),∆(R)) ∈ (Fn2 )2 is called a differential and is denoted by
∆(0) −→ ∆(R). Similarly a vector of differences (∆(0),∆(1), . . . ,∆(R)) ∈ (Fn2 )R+1 is
called a differential trail (or differential characteristic) and is denoted by ∆(0) −→
∆(1) −→ · · · −→ ∆(R).

By differential probability of the differential ∆(0) −→ ∆(R) over F , we mean the
value P

[
∆(0) F−→ ∆(R)

]
that is defined by:

P
[
∆(0) F−→ ∆(R)

]
:= δF (∆(0),∆(R))

2n .

In the same way, the differential probability of the trail ∆(0) −→ ∆(1) −→ · · · −→ ∆(R)

over F (with respect to the decomposition F = F (R−1) ◦ · · · ◦ F (0)) is defined by:

P
[
∆(0) F (0)

−−→ ∆(1) −→ · · · F
(R−1)
−−−−→ ∆(R)

]
:=

∣∣∣{x ∈ Fn2 , ∀ r ∈ J1, RK x(r) + y(r) = ∆(r)
}∣∣∣

2n

▷

With this new notation in mind, Eq. (2.12) can be formulated as:

P
[
∆(0) F−→ ∆(R)

]
=

∑
∆(1),...,∆(R−1)∈Fn

2

P
[
∆(0) F (0)

−−→ ∆(1) −→ · · · F
(R−1)
−−−−→ ∆(R)

]
.

(2.13)
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As each of the term in this sum is positive, the differential probability of ∆(0) −→ ∆(R)

can be lower bounded by the sum over any number of differential probabilities of
trails ∆(0) −→ ∆(1) −→ · · · −→ ∆(R). Indeed, for any D ⊂ (Fn2 )R−1 it holds that:

P
[
∆(0) F−→ ∆(R)

]
≥

∑
(∆(1),...,∆(R−1))∈D

P
[
∆(0) F (0)

−−→ ∆(1) −→ · · · F
(R−1)
−−−−→ ∆(R)

]
.

Block ciphers. When considering a block cipher E = (Ek : Fn2
∼−→ Fn2 )k∈Fκ

2
,

we are instead interested in understanding the differential probability of each
Ek. We therefore would like to understand the distribution of the sequence(
P
[
∆(0) Ek−−→ ∆(R)

])
k∈Fκ

2

. In the usual case where κ = 128, this gigantic sequence

might be hard to grasp. As often, the average value might help better understanding
it.

Definition 2.30 (Expected differential probability [LMM91]). Let E be a block
cipher: E = (Ek : Fn2

∼−→ Fn2 )k∈Fκ
2
. Let R ≥ 1. Let us suppose that, for any

k ∈ Fκ2 , Ek can be decomposed as Ek = F
(R−1)
k ◦ · · · ◦ F (0)

k and denote by F (r) the
family of the r-th round functions: F (r) := (F (r)

k )k∈Fκ
2
. Let ∆(0), . . . ,∆(R) ∈ Fn2 .

The expected differential probability of the differential ∆(0) → ∆(R) over E is the
averaged differential probability of ∆(0) → ∆(R) over all keys. It is denoted by
E
[
∆(0) E−→ ∆(R)

]
and defined by:

E
[
∆(0) E−→ ∆(R)

]
:= 1

2κ
∑
k∈Fκ

2

P
[
∆(0) Ek−−→ ∆(R)

]
.

Similarly, the expected differential probability of the trail ∆(0) −→ ∆(1) −→ · · · −→
∆(R) is defined by:

E
[
∆(0) F(0)

−−−→ ∆(1) −→ · · · F(R−1)
−−−−→ ∆(R)

]
:= 1

2κ
∑
k∈Fκ

2

P
[
∆(0) F

(0)
k−−→ ∆(1) −→ · · ·

F
(R−1)
k−−−−→ ∆(R)

]
.

▷

Again, the expected differential probability of ∆(0) −→ ∆(R) can be expressed
as the sum of expected differential probabilities of the associated trails, and lower
bounded by partial sums:

E
[
∆(0) E−→ ∆(R)

]
=

∑
∆(1),...,∆(R−1)∈Fn

2

E
[
∆(0) F(0)

−−−→ ∆(1) −→ · · · F(R−1)
−−−−→ ∆(R)

]
, and

E
[
∆(0) E−→ ∆(R)

]
≥

∑
∆(1),...,∆(R−1)∈D

E
[
∆(0) F(0)

−−−→ ∆(1) −→ · · · F(R−1)
−−−−→ ∆(R)

]
.

(2.14)
The advantage with the expected differential probability of a trail is that it can

be easily computed in the case of a key-alternating block cipher with independent
round keys.
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Proposition 2.31 (Expected differential probability for key-alternating block
cipher [LMM91]). Let R ≥ 1, F (0), . . . , F (R−1) : Fn2 → Fn2 , and let E be a
block cipher such that E = (Ek : Fn2

∼−→ Fn2 )k∈(Fn
2 )R−1 and such that for any

k =
(
k(1), . . . , k(R−1)

)
∈ (Fn2 )R−1, Ek can be decomposed as follows:

Ek = F (R−1) ◦ Tk(R−1) ◦ · · · ◦ F (1) ◦ Tk(1) ◦ F (0).

Let F (0) := (F (0))k∈(Fn
2 )R−1, and let F (r) := (F (r) ◦ Tk(r))k∈(Fn

2 )R−1 for any r ≥ 1.
Then, for any trail ∆(0) −→ ∆(1) −→ · · · −→ ∆(R), it holds that:

E
[
∆(0) F(0)

−−−→ ∆(1) −→ · · · F(R−1)
−−−−→ ∆(R)

]
=

R−1∏
r=0

P
[
∆(r) F (r)

−−−→ ∆(r+1)
]
.

Remark 2.32. Before going further, we observe that for any x, c,∆in,∆out ∈ Fn2 ,
and any function F : Fn2 → Fn2 , x satisfies Tc ◦ F (x + ∆in) + Tc ◦ F (x) = ∆out if
and only if x satisfies:

F (x+ ∆in) + c+ F (x) + c = ∆out ⇐⇒ F (x+ ∆in) + F (x) = ∆out.

In other words, an outer constant (or key) addition never impacts a differential
property. This is the reason why the cipher considered in Proposition 2.31 does
not finish with a key addition. Stated otherwise, the scope of Proposition 2.31 can
be extended to ciphers with an outer key addition. ▷

Proof of Proposition 2.31. Let us prove it by induction on the number of rounds R.

The case R = 1. If R = 1, then the considered “cipher” is a family made of
(2n)R−1 = 1 bijection, which is F0. A differential trail of length 1 is nothing more
than a differential and the associated expected differential degenerates into:

E
[
∆(0) F(0)

−−−→ ∆(1)
]

= P
[
∆(0) F0−→ ∆(1)

]
,

as the average over a sequence of size 1 is nothing more than the single value itself.

The general case. For any R ≥ 1, let us define the set YR as the set containing all
vectors

(
x, k(1), · · · , k(R−1)

)
∈ (Fn2 )R that satisfy the following system of equations:

F (0)
(
x(0)

)
+ F (0)

(
x(0) + ∆(0)

)
= ∆(1)

F (1)
(
x(1) + ∆(1) + k(1)

)
+ F (1)

(
x(1) + k(1)

)
= ∆(2)

...
F (R−1)

(
x(R−1) + ∆(R−1) + k(R−1)

)
+ F (R−1)

(
x(R−1) + k(R−1)

)
= ∆(R),

where x(0) := x and x(r+1) := F (r)
(
x(r)

)
for any r. By construction, the cardinality

of YR satisfies:

2nR · E
[
∆(0) F(0)

−−−→ ∆(1) −→ · · · F(R−1)
−−−−→ ∆(R)

]
= |YR| .
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It is therefore equivalent to prove that:

|YR| =
R−1∏
r=0

∣∣∣Zdiff
F (r)

(
∆(r),∆(r+1)

)∣∣∣ . (2.15)

Let R ≥ 1 and let us suppose that Eq. (2.15) is satisfied by R. We observe that
|YR+1| can be expressed as:

|YR+1| =
∑
y∈YR

|Zy| ,

where for any y =
(
x, k(0), . . . , k(R−1)

)
, the set Zy is defined by:

Zy =
{
k(R) ∈ Fn2 , F (R)

(
x(R) + ∆(R) + k(R)

)
+ F (R)

(
x(R) + k(R)

)
= ∆(R+1)

}
.

Note that while y does not explicitly appear in the definition of Zy, the value
x(R) does appear and does depend on y. Let y =

(
x, k(0), . . . , k(R−1)

)
be fixed,

so that x(R) is also fixed. By using z ← x(R) + k(R) as a change of variables, we
obtain:

Zy =
{
z ∈ Fn2 , F (R)

(
z + ∆(R)

)
+ F (R) (z) = ∆(R+1)

}
= Zdiff

F (R)

(
∆(R),∆(R+1)

)
,

and Zy is therefore independent of y. We finally obtain:

|YR+1| =
∑
y∈YR

|Zy|

=
∣∣∣Zdiff
F (R)

(
∆(R),∆(R+1)

)∣∣∣ ∑
y∈YR

1

=
∣∣∣Zdiff
F (R)

(
∆(R),∆(R+1)

)∣∣∣× |YR|
= Zdiff

F (R)

(
∆(R),∆(R+1)

)(R−1∏
r=0

∣∣∣Zdiff
F (r)

(
∆(r),∆(r+1)

)∣∣∣)

=
R∏
r=0

∣∣∣Zdiff
F (r)

(
∆(r),∆(r+1)

)∣∣∣ ,
where we use the induction hypothesis to obtain the fourth equality.

Thanks to Proposition 2.31, the computation of the expected differential
probability of a trail comes back to computing the probability of some unkeyed
subfunctions. Contrary to the intricate general case that was presented above, the
unkeyed round functions used in a block cipher are usually very simple and their
differential probabilities can easily be computed.

Proposition 2.33 (Differential probabilities of round functions). Let n = m× s.
Let S(0), . . . , S(s−1) : Fm2 → Fm2 . Let S : (Fm2 )s → (Fm2 )s be the function defined by

S : (x0, . . . , xs−1)→ (S(0)(x0), . . . S(s−1)(xs−1)).
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Let L : Fn2 → Fn2 be linear. Let ∆in,∆out ∈ Fn2 be such that ∆in =: (∆in
0 , . . . ,∆in

s−1)
and ∆out =: (∆out

0 , . . . ,∆out
s−1) where ∆in

i ,∆out
i ∈ Fm2 for any i. Then:

P
[
∆in S−→ ∆out

]
=

s−1∏
i=0

P
[
∆in
i

S(i)
−−→ ∆out

i

]
,

and P
[
∆in L−→ ∆out

]
=
{

1 if ∆out = L(∆in)
0 otherwise.

Proof. The formula for L was already proven in Lemma 2.27. For the Sbox layer
S, we observe that for any x = (x0, . . . , xs−1) ∈ Fn2 , we have

S(x)+S(x+∆in) = ∆out ⇐⇒ ∀ i ∈ J0, s− 1K , S(i)(xi)+S(i)(xi+∆in
i ) = ∆out

i .

We immediately deduce that δS(∆in,∆out) = ∏s−1
i=0 δS(i)(∆in

i ,∆out
i ), which implies

the announced equality.

2.3.3.e Main assumptions

We briefly sum up the common method used to assess the security of a key-
alternating block cipher or a cryptographic primitive with respect to differential
cryptanalysis. This is done by emphasizing the assumptions made at each step.

Let E = (Ek : Fn2 → Fn2 )k∈Fκ
2

be an r-round key-alternating block cipher and
KS: Fκ2 → (Fn2 )r be its key schedule algorithm. The expected differential probability
of a trail over E can be approximated (using Proposition 2.31) by making the
following assumption.

Assumption 2.34. The expected differential probability of ∆(0) −→ ∆(1) −→ · · · −→
∆(R) over E is close to the expected differential probability of ∆(0) −→ ∆(1) −→ · · · −→
∆(R) over Ẽ = (Ẽk : Fn2 → Fn2 )k∈(Fn

2 )R where Ẽ is derived from E by ignoring KS
and allowing each round key to take all possible values.

From there, an attacker searches for one or some trails with the same input and
output differences ∆(0),∆(R), and for which E

[
∆(0) F (0)

−−→ ∆(1) −→ · · · F
(R−1)
−−−−→ ∆(R)

]
is high. However, with a blackbox access to the keyed cipher, no information from
the intermediate differences can be leveraged. This is the reason why Eq. (2.14)
is usually used to estimate E

[
∆(0) E−→ ∆(R)

]
. The more trails are considered, the

tighter is the lower bound. However for E
[
∆(0) E−→ ∆(R)

]
to be representative of the

sequence
(
P
[
∆(0) Ek−−→ ∆(R)

])
k∈Fκ

2

, the so-called stochastic equivalence hypothesis

must be assumed.

Assumption 2.35 (Stochastic equivalence hypothesis [LMM91]). For any (or
most) k ∈ Fκ2 , P

[
∆(0) Ek−−→ ∆(R)

]
is close to the expected differential probability

E
[
∆(0) E−→ ∆(R)

]
.
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Both assumptions are impactful and should be used with caution. They were
presented by Lai, Massey & Murphy [LMM91] more than 30 years ago, together
with a slightly more general2 statement than Proposition 2.31. Subsequently,
examples where it greatly fails were quickly exhibited [Knu93]. This inaccurate
methodology is however still at use, as new tools to cope with the study of 2κ
functions at once are lacking. Examples of either, mean deviation or, lack of
independence still abound today [Can+17, AK19, PT22, BR22].

Hash functions. A probably more astonishing fact is that the same methodology
is used to approximate the differential probability of a differential over a single
unkeyed cryptographic function such as a hash function. Non-exhaustive examples
are for instance the cryptanalysis of MD4 [Dob98], or the more recent one of
Keccak [DDS14]. Indeed, by assuming that fictive3 independent round keys can be
added between each round of the hash function, the average behaviour over all keys
can be studied. In that case, the hash function corresponds to the function where
all round keys are zero. Then again, under Assumption 2.35, its actual differential
probability is likely to match with the average behaviour.

Fixed-key cryptanalysis. The interest for analyzing primitives in the fixed-
key model has recently been freshened by the work of Beyne & Rijmen [BR22]
where the authors study the function F × F := (x, y) 7→ (F (x), F (y)). This
function encapsulates all information about differences, but above all, it keeps
track of the values of each input/output pair. By partially applying a Fourier
transform on the transition matrix (see Section 2.2.2.b) of F × F , the authors
obtain the quasidifferential matrix DF , which, as the LAT, inherits of the already-
mentioned composition property. By looking at the coefficients of the product of
matrices DF (r−1) · · ·DF (0) , the authors obtain a closed formula for the differential
probability P

[
∆(0) F (0)

−−→ ∆(1) −→ · · · F
(r−1)
−−−−→ ∆(R)

]
. This exact formula is based on

more intricate trails. Because DF ∈M22n(F2) (compared to the LAT which lies in
M2n(F2)), the practical applicability of this technique on a large scale remains an
open problem.

2The formula given in Proposition 2.31 can be extended to the case of Markov ciphers, which,
in practice, often comes back to the situation described in Proposition 2.31.

3As already noted in Remark 1.6, a cryptographic hash function is a public function which
therefore does not depend on any key.
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The designer point-of-view. Finally, a designer who wishes to build a strong
primitive faces (almost) the same challenges as an attacker. In particular,
the famous wide-trail strategy [DR01] leverages the differential uniformity of
the Sbox and the branch number of the linear layer to bound from above
E
[
∆(0) F(0)

−−−→ ∆(1) −→ · · · F(R−1)
−−−−→ ∆(R)

]
for any trail ∆(0) −→ ∆(1) −→ · · · −→

∆(R). In the particular case where the linear layer has a maximal branch
number, it also provides an upper bound for the expected differential probability
E
[
∆in F(1)◦F(0)
−−−−−−→ ∆out

]
of any differential over two rounds constructions with a

key addition in the middle [DR02, Section B.2]. However, in more general contexts,
it is hard to provide such guarantees. In particular, it can happen (for some keys)
that many trails with a small yet non-zero probability sum up in a differential
which reaches a high probability. This is called a clustering effect. As a side effect
of the work presented in Chapter 5, such a clustering phenomenon is exposed
for modified versions of Midori. Another recent and good example is the work of
Leurent, Pernot & Schrottenloher [LPS21]. This points out another challenged
assumption that is due to the lack of available security arguments, and that is
commonly made when designing a primitive.

Assumption 2.36. Bounding from above the expected differential probability for
all trails ∆(0) −→ ∆(1) −→ · · · −→ ∆(R) is sufficient to guarantee a low differential
probability for any differential ∆(0) −→ ∆(R).

2.3.3.f The differential distribution table

As highlighted by Proposition 2.33, the only non-deterministic differential transition
that occurs in a cipher comes from the Sbox layer. As already hinted, by choosing an
Sbox S such that δS is low-enough, we can ensure that the value P

[
∆(0) S−→ ∆(R)

]
for any differential ∆(0) −→ ∆(R) is not too high. The computation of δS is possible
in that case due to the small domain and codomain of S. However, because
of Proposition 2.31, the value E

[
∆(0) F(0)

−−−→ ∆(1) −→ · · · F(r−1)
−−−−→ ∆(R)

]
can reach a

not-so-low value, because the probabilities P
[
∆(r) F (t)

−−→ ∆(r+1)
]

that are multiplied
are all medium values. This is the reason why not only δF matters, but also the
specific values ∆in,∆out for which δF (∆in,∆out) is quite high, and more generally,
all values δF (∆in,∆out). Those values are stored in the difference distribution table
of S.

Definition 2.37 (Difference Distribution Table4 (DDT) [BS91b]). Let F : Fn2 →
Fm2 . The difference distribution table (DDT) of F is the 2n × 2m integer matrix
that stores the number of solutions of each differential equation:

DDTF :=
(
δF (∆in,∆out)

)
∆in∈Fn

2 ,∆out∈Fm
2
.

4The DDT is originally called XOR distribution table in the seminal work of Biham &
Shamir [BS91b].
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▷

While the definition is generic, this object can only be manipulated for small
values of n and m.

Example 2.38 (DDT of the Sbox of Ascon). As for the LAT, the DDT of the Sbox
of Ascon can be graphically represented using a grayscale, as shown in Figure 2.3.
In particular, we observe that for any ∆in,∆out ∈ F5

2, δS(∆in,∆out) ∈ {0, 2, 4, 8},
and that δS = 8.
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Figure 2.3: DDT of the Sbox of Ascon.

▷

It is therefore considered a good practice to design an Sbox whose DDT has
as few coefficients equal to its differential uniformity as possibles. Many open
problems related to the existence or design of good Sbox exist. As an example, we
do not know if there exists an APN bijective Sbox S : Fn2 → Fn2 for an even n > 6.
This problem is further discussed in Chapter 6.

2.3.4 Linearity

2.3.4.a Cryptographic context

Linear cryptanalysis is one of the two most important kinds of statistical attacks
against block ciphers. This technique is credited to Matsui [Mat94], but its infancy
dates back to 1991 with a work of Tardy-Corfdir & Gilbert [TG92]. It consists
in finding highly-probable affine relations between the input and the output of a
cryptographic function F : Fn2 → Fm2 , that is, equations of the following form with
many solutions x ∈ Fn2 :
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α · x = β · F (x) + ε ⇐⇒
n−1∑
i=0

αixi =
m−1∑
i=0

βiFi(x) + ε, (2.16)

where α ∈ Fn2 , β ∈ Fm2 , ε ∈ F2. Such relations enable us to distinguish F from a
random function. Indeed, if F is drawn uniformly at random among all functions,
then for any α, β, ε, Eq. (2.16) is expected to hold for half of the values x ∈ Fn2 ,
that is, with probability 1

2 . Note that it is sufficient to consider ε = 0. In that case,
we are instead interested in linear equations in input and output bits that hold
either for a lot or very few x ∈ Fn2 . The more the number of solutions deviates
from 2n

2 , the easier it is for an attacker to distinguish F from a random function.
For a block cipher E = (Ek : Fn2

∼−→ Fn2 )k∈Fκ
2
, as in the differential case, such

a distinguisher is built if there exist α, β ∈ Fn2 , ε ∈ F2 such that for many keys
k ∈ Fκ2 , Eq. (2.17) has many solutions x ∈ Fn2 :

α · x = β · Ek(x) + ε ⇐⇒
n−1∑
i=0

αixi =
n−1∑
i=0

βiEk,i(x) + ε. (2.17)

It again distinguishes the draw of a random bijection among the block cipher
F

$←− E from the random draw among all bijections F $←− Bij(Fn2 ). However, contrary
to the differential case, this is a known plaintext/ciphertext scenario and not a
chosen-plaintext one.

2.3.4.b Linear approximations and linearity

As already mentioned, we are interested in the Boolean linear functions f : Fn2 → F2.
By definition, such a function can be uniquely described by:

f : (x0, . . . , xn−1) 7→
n−1∑
i=0

αixi,

for some coefficients αi ∈ F2 for any i. We refer to α := (α0, . . . , αn−1) as the
mask associated to the linear function. In the context of Eqs. (2.16) and (2.17),
we refer to α as the input mask and to β as the output mask. This naming is the
same as the one introduced in Section 2.2.2.b for a reason. Indeed, let us denote
by Z lin

F (α, β) the set of solutions of α · x = β · F (x), and zlin
F (α, β) its cardinality.

We have in that case:

WF (α, β) =
∑
x∈Fn

2

(−1)α·x+β·F (x) = −
∣∣∣Fn2 \ Z lin

F (α, β)
∣∣∣+∣∣∣Z lin

F (α, β)
∣∣∣ = 2zlin

F (α, β)−2n,

which proves that the (α, β) Walsh coefficient is, up to an affine transformation,
the number of solutions of α · x = β · F (x). The LAT is therefore the right object
to study resistance to linear attacks. In order to ensure that any component of
F cannot be well approximated by a linear or affine function, the coefficients of
the LAT of F need to be of low absolute value. The multiset of all their absolute
values, as well as the maximum over them thus serves as indicators.
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Definition 2.39 (Extended Walsh spectrum). Let F : Fn2 → Fm2 . The extended
Walsh spectrum of F is the multiset that is denoted by W(F ) and defined by:

W(F ) := {{|WF (α, β)| , α ∈ Fn2 , β ∈ Fm2 }}.

▷

Remark 2.40. Despite its widespread naming, it should be noted that the extended
Walsh spectrum of a function contains strictly less information than its Walsh
transform, as the sign of each coefficient is omitted. ▷

Definition 2.41 (Linearity [Nyb95]). Let F : Fn2 → Fm2 . The linearity of F is the
value denoted by L(F ) and defined by:

L(F ) := max
α∈Fn

2 ,β∈Fm
2 ,β ̸=0

|WF (α, β)| = max
β∈Fn

2
L(Fβ).

▷

Example 2.42 (Linearity of the Sbox of Ascon). As shown in Table 2.2, the
absolute value of the Walsh coefficients of the Sbox of Ascon are all upper bounded
by 16 (when the output mask is non-zero). This value is for instance reached by
WS(0x3, 0x1) = 16. Therefore, L(S) = 16. ▷

A lower bound on linearity can easily be formulated.

Proposition 2.43 (Lower bound on linearity). Let f : Fn2 → F2. Then L(f) ≥ 2 n
2 .

Proof. Adapted from [Can16, Proposition 1.17]. First let us prove Parseval’s
relation, that is, ∑α∈Fn

2
Wf (α)2 = 22n.

∑
α∈Fn

2

Wf (α)2 =
∑
α∈Fn

2

∑
x∈Fn

2

(−1)f(x)+α·x ∑
y∈Fn

2

(−1)f(y)+α·y

=
∑
x∈Fn

2

∑
y∈Fn

2

(−1)f(x)+f(y) ∑
α∈Fn

2

(−1)α·(x+y)

=
∑
x∈Fn

2

(−1)f(x)+f(x) · 2n

= 22n,

where the third equality comes from the mean of α 7→ (x+ y) · α, see Lemma 2.12.
Let us now assume that there exists f such that L(f) < 2 n

2 . Then f satisfies:

22n =
∑
α∈Fn

2

Wf (α)2 ≤
∑
α∈Fn

2

L(f)2 < 22n,

which is a contradiction.
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α 0 1 2 3 4 5 6 7 8 9 a b c d e f
Wf (α) 4 4 4 -4 4 4 4 -4 4 4 4 -4 -4 -4 -4 4

Table 2.3: Walsh transform of f : F4
2 → F2, (x0, x1, x2, x3) 7→ x0x1 + x2x3.

This lower bound is tight as shown for instance by the function f defined by
f(x0, x1, x2, x3) = x0x1 + x2x3, whose Walsh transform is given in Table 2.3.

An optimal function with respect to linear cryptanalysis is therefore a function
that matches this bound.

Definition 2.44 (Bent function). A Boolean function f : Fn2 → F2 is bent is a
function such that L(f) = 2 n

2 . A vectorial Boolean function F : Fn2 → Fm2 is bent
if all its non-zero components are bent. ▷

An immediate necessary condition for a function f : Fn2 → F2 to be bent is
for n

2 to be an integer, that is, for n to be even. We can also give a spectral
characterization of bentness.

Lemma 2.45 (Walsh spectrum of bent functions). A function f : Fn2 → F2 is bent
if and only if it satisfies: ∀α ∈ Fn2 , Wf (α)2 = 2n.

Proof. The sufficiency is immediate. Regarding the necessary condition, if f is
bent, for any α ∈ Fn2 , we have Wf (α)2 ≤ 2n. But we get by Parseval’s relation
that ∑α∈Fn

2
(2n −Wf (α)2) = 0. So for this sum of positive numbers to be 0, all

must be 0.

In particular, we observe that a bent function satisfies

0 ̸= ±2
n
2 = Wf (0) =

∑
x∈Fn

2

(−1)f(x),

which proves that a bent function is not balanced. This in particularly means that
a vectorial bent function cannot be bijective. Indeed, for the function to take all
values in Fn2 , its coordinates must take the values 0 and 1 half of the time. Actually,
we later prove in Corollary 2.55 and Proposition 2.56 that vectorial bent functions
F : Fn2 → Fm2 exist if and only if n is even and 2m ≤ n. Because they cannot be
bijective, vectorial bent functions are not targeted when designing an Sbox used in
a SPN. Nevertheless, the absolute values in the LAT must be minimized as much
as possible to ensure a low linearity for the whole construction. This principle is
supported by the following section.
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2.3.4.c Practical linear cryptanalysis

As in the differential case, finding a highly-probable affine correlation for an
intricate function F : Fn2 → Fn2 is impossible in practice. However, the iterated
structure of symmetric primitives can also be leveraged in that case. We indeed
already mentioned in Section 2.2.2.b that CF (1)◦F (0) = CF (1)CF (0) , where CF is
the correlation matrix of F . This enables to express each Walsh coefficient of
F (1) ◦ F (0) in terms of those of F (1) and F (0) by expressing each coordinate of a
product of matrices.

Proposition 2.46 (Walsh coefficient for iterated constructions [DGV95]). Let
R ≥ 1. Let F = F (R−1) ◦ . . . ◦ F (0), where F, F (R−1), . . . , F (0) : Fn2 → Fn2 . Let
α(0), α(R) ∈ Fn2 . Then:

W̃F (α(0), α(R)) =
∑

α(1),...,α(R−1)∈Fn
2

R−1∏
r=0

W̃F (r)(α(r), α(r+1)),

where W̃ (α, β) is defined (in Eq. (2.7)) by W̃F (α, β) := 2−nWF (α, β) for any
α, β ∈ Fn2 .

Let us now consider the key-alternating block cipher E = (Ek : Fn2 → Fn2 )k∈Fκ
2

such that, for any k ∈ Fκ2 , Ek can be decomposed as follows:

Ek = F (R−1) ◦ Tk(R−1) ◦ · · · ◦ F (1) ◦ Tk(1) ◦ F (0),

where each k(t) is derived from k through a key schedule. Then for any k ∈ Fκ2 :

W̃Ek

(
α(0), α(R)

)
=

∑
α(1),...,α(R−1)∈Fn

2

(−1)
∑R−1

r=1 α(r)·k(r)
R−1∏
r=0

W̃F (r)(α(r), α(r+1)).

(2.18)

Proof. This all comes from the matrix multiplication formula applied to ∏R−1
r=0 CF (r) .

The last formula is derived from the latter one by observing (thanks to Lemma 2.12)
that for any v ∈ Fn2 ,

W̃Tv (α, β) =
{

(−1)β·v if α = β
0 otherwise.

This enables an analysis based on linear trails. Each term of the sum in Eq. (2.18)
is called the correlation of the associated linear trail. For a given trail, the absolute
value of the correlation does not depend on the key and therefore can be obtained
by studying the simple unkeyed round functions. This is made possible by the fact
that the Walsh coefficients of a linear layer or of the parallel application of small
Sboxes can easily be computed, in a similar way to Proposition 2.33. Furthermore,
the overall correlation W̃Ek

(α(0), α(R)) is often approximated by only summing
over one or a few dominant trails. However, contrary to the differential case,
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each term in Eq. (2.18) can be either positive or negative, and the contribution
of dominant trails can be canceled out by the ignored trails. This makes the
behavior of such a distinguisher hard to predict. If the key schedule is replaced by
uniformly random round keys, the average over all keys for W̃Ek

(α(0), α(R))2 can be
expressed as the sum of squared correlations of the trails [Nyb95, Theorem 1], but
its usage again implies non-trivial assumptions, in the vein of Assumptions 2.34
and 2.35, that should be manipulated with caution. We refer to the thesis of Flórez
Gutiérrez [FG22] regarding key-recovery attacks based on linear distinguishers and
to the one of Beyne [Bey23] for a point of view which widens linear cryptanalysis
to a broad class of attacks.

2.3.4.d Linearity of functions F : F2n → F2n

Finally, when working with a function F : F2n → F2n , it is more convenient to
directly work with the linear functions f : F2n → F2 to define linearity than to
work with Boolean linear functions defined over (F2)n. Those functions can easily
be described thanks to the absolute trace.

Definition 2.47 (Trace). Let n ∈ N such that n = ℓ×k. Let L = F2n and F = F2k

so that F ⊂ L. The trace function defined over L and relative to F is the function
TrL/F : L→ F defined by:

TrL/F : x 7→
ℓ∑
i=0

x2ik
.

When, the domain of the trace is clear from context, we often refer to TrL/F as
the trace relative to F. Furthermore, the trace relative to F2 is called the absolute
trace (of L). ▷

The fact that the codomain of TrL/F is indeed F is for instance proven in the
comments following [LN96, Definition 2.22]. The following proposition gathers
some of the well-known properties of these functions.

Proposition 2.48 (Trace properties). Let K ⊂ F ⊂ L be a tower of extensions of
finite fields of characteristic 2. Then:

1. (L-additivity) ∀x, y ∈ L, TrL/F(x+ y) = TrL/F(x) + TrL/F(y).

2. (F-scalar multiplication) ∀x ∈ L, ∀φ ∈ F, TrL/F(φx) = φTrL/F(x).

3. (F-linearity) TrL/F is F-linear.

4. (surjectivity) TrL/F is onto.

5. (transitivity) TrL/K = TrF/K ◦ TrL/F.

Proof. We refer to [LN96, Theorems 2.23 & 2.26] for the proof of those results.
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Proposition 2.49 (Trace and linear functions). Let n = ℓk and F : F2n → F2k be
a linear function. Then, there exists a unique α ∈ F2n such that F can be described
as F : x 7→ TrF2n/F2k

(αx).

Proof. Adapted from [LN96, Theorem 2.24]. Because multiplication by a constant
and the trace are linear, their composition x 7→ TrF2n/F2k

(αx) is F2k -linear, for any
α ∈ F2n . Let α, β ∈ F2n , α ̸= β. By surjectivity of TrF2n/F2k

, there exists y ∈ L
such that TrF2n/F2k

(y) ̸= 0. Let us denote by z the value z := y(α + β)−1, we
therefore observe that

0 ̸= TrF2n/F2k
((α+ β)z) = TrF2n/F2k

(αz) + TrF2n/F2k
(βz) ,

where we used L-additivity. This proves that x 7→ TrF2n/F2k
(αx) and x 7→

TrF2n/F2k
(βx) are distinct. There are therefore 2n such functions among the

(2k)ℓ = 2n linear functions from L to F2 (2k choices for each of the ℓ elements of
an F2k -basis of F2n), which proves the announced statement.

Therefore, for F : F2n → F2n , we rather look at equations of the form:

TrF2n/F2(αx) = TrF2n/F2(βF (x)) + ε, (2.19)
where α, β, x ∈ F2n . It is therefore convenient to overload the notation of Walsh
coefficients, so that for any α, β ∈ F2n , WF (α, β) is defined by:

WF (α, β) :=
∑
x∈F2n

(−1)TrF2n /F2 (αx)+TrF2n /F2 (βF (x)).

This way, L(F ) can still be computed as the maximum over all Walsh
coefficients:

L(F ) = max
α,β∈F2n ,β ̸=0

|WF (α, β)| .

2.3.5 Link between linear and differential cryptanalysis

While the approaches of linear and differential cryptanalysis are rather different,
both techniques remain very close [CV95, BN13]. In this section, we explain in the
case of a function F : Fn2 → Fn2 how to compute any coefficient of its DDT from the
squared coefficients of its LAT, and vice versa. We also point out that for Boolean
functions, the notion of bentness and perfect nonlinearity coincide.

2.3.5.a Squared Walsh transform and difference distribution table

Proposition 2.50 (Link between LAT and DDT [CV95]). Let F : Fn2 → Fn2 . Then:

∀α, β ∈ Fn2 , WF (α, β)2 =
∑

∆in∈Fn
2

∑
∆out∈Fn

2

(−1)α·∆in+β·∆out
δF (∆in,∆out).

Conversely, it holds that:

∀∆in,∆out ∈ Fn2 , δF (∆in,∆out) = 2−2n ∑
α∈Fn

2

∑
β∈Fn

2

(−1)α·∆in+β·∆out
WF (α, β)2.
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Proof. Adapted from [Can16]. We start by proving the second statement. Let
∆in,∆out ∈ Fn2 . It holds that:

δF (∆in,∆out) =
∣∣∣{x ∈ Fn2 , F (x+ ∆in) + F (x) = ∆out

}∣∣∣
=
∣∣∣{(x, y) ∈ (Fn2 )2, y = x+ ∆in, F (x) + F (y) = ∆out

}∣∣∣
=
∑
x∈Fn

2

∑
y∈Fn

2

10
(
x+ y + ∆in

)
10
(
F (x) + F (y) + ∆out

)
.

But for any x, y ∈ Fn2 , because of Lemma 2.12, we have:

10
(
x+ y + ∆in

)
= 2−n ∑

α∈Fn
2

(−1)α·(x+y+∆in)

10
(
F (x) + F (y) + ∆out

)
= 2−n ∑

β∈Fn
2

(−1)β·(F (x)+F (y)+∆out).

We then obtain:

δF (∆in,∆out) = 2−2n ∑
x∈Fn

2

∑
y∈Fn

2

∑
α∈Fn

2

(−1)α·(x+y+∆in) ∑
β∈Fn

2

(−1)β·(F (x)+F (y)+∆out)

= 2−2n ∑
α∈Fn

2

∑
β∈Fn

2

(−1)α·∆in+β·∆out ∑
x∈Fn

2

(−1)α·x+β·F (x) ∑
y∈Fn

2

(−1)α·y+β·F (y)

= 2−2n ∑
α∈Fn

2

∑
β∈Fn

2

(−1)α·∆in+β·∆out
WF (α, β)2.

In other words, we proved that the functions G,H : (Fn2 )2 → N defined by:

G : (α, β) 7→WF (α, β)2, H : (∆in,∆out) 7→ δF (∆in,∆out)

actually satisfy H = Ĝ, where ·̂ is defined as in Proposition 2.13, but for functions
with 2n variables. According to Proposition 2.14, it therefore holds that 2−2nG = Ĥ,
which proves the first statement.

In other words, the DDT of a function F : Fn2 → Fn2 contains as much information
as the squared Walsh coefficients of F . In particular, the DDT contains strictly
less information than the LAT because the sign of each Walsh coefficient cannot
be recovered from the DDT. Contrary to the case of the Walsh transform, two
distinct functions can then have an identical DDT.

2.3.5.b Vectorial bentness and perfect nonlinearity

This close relationship between linear and differential cryptanalysis can also be
highlighted by the fact perfect nonlinearity and bentness, which are respectively
defined at the end of Section 2.3.3.c and in Definition 2.44, actually coincide in the
case of Boolean functions.

First, we give a differential characterization of bentness.
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Lemma 2.51 (Derivatives of bent functions). Let n be even, and f : Fn2 → F2.
Then f is a bent function if and only if, for any ∆ ∈ Fn2 \ {0}, D∆f is balanced.

Proof. This comes from a similar reasoning than in the proof of Proposition 2.50.
Indeed, for any α ∈ Fn2 :

Wf (α)2 =
∑
x∈Fn

2

(−1)α·x+f(x) ∑
y∈Fn

2

(−1)α·y+f(y)

=
∑
x∈Fn

2

(−1)α·x ∑
∆∈Fn

2

(−1)α·(∆+x)+f(x+∆)+f(x)

=
∑

∆∈Fn
2

(−1)α·∆WD∆f (0), (2.20)

where, for any fixed x, we use ∆← y+x as change of variables to obtain the second
equality. In particular, if all D∆f are balanced for ∆ ̸= 0, then WD∆f (0) = 0 for
all ∆ ̸= 0 and therefore for any α ∈ Fn2 , we have:

Wf (α)2 = (−1)α·0WD0f (0) = 2n,

so that f is bent. Conversely, by Fourier inversion, it holds that:

∀ ∆ ∈ Fn2 , WD∆f (0) = 2−n ∑
α∈Fn

2

(−1)α·∆Wf (α)2.

Therefore if Wf (α)2 = 2n for any α, then we have:

∀ ∆ ∈ Fn2 , WD∆f (0) =
∑
α∈Fn

2

(−1)α·∆ = 2n10(∆),

and D∆f is balanced for any ∆ ̸= 0.

The following definition and lemma are needed to link bentness and perfect
nonlinearity.

Definition 2.52 (Balanced vectorial function). Let F : Fn2 → Fm2 . The function F
is balanced if for any y ∈ Fm2 , the preimage F−1({y}) has cardinality 2n−m. ▷

Lemma 2.53. Let F : Fn2 → Fm2 . The function F is balanced if and only if all its
non-zero components α · F , with α ̸= 0 are balanced.

Proof. Adapted from [Car21, Proposition 35]. Because of Lemma 2.12, we observe
that for x ∈ Fn2 , y ∈ Fm2 , it holds that:∑

v∈Fm
2

(−1)v·(F (x)+y) = 2m1y(F (x)).
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Therefore, we observe that, for any y ∈ Fm2 , it holds that:∣∣∣F−1({y})
∣∣∣ =

∑
x∈Fn

2

1y(F (x))

= 2−m ∑
x∈Fn

2

∑
v∈Fm

2

(−1)v·(F (x)+y)

= 2−m ∑
v∈Fm

2

(−1)v·y ∑
x∈Fn

2

(−1)v·F (x).

= 2−m ∑
v∈Fm

2

(−1)v·yWF (0, v).

Therefore, if for any v ̸= 0, v · F is balanced then WF (0, v) = 0 for any v ̸= 0 and
therefore:

∀ y ∈ Fn2 ,
∣∣∣F−1({y})

∣∣∣ = 2−m(−1)0·yWF (0, 0) = 2n−m.

Conversely, it holds by Fourier transform that:

∀v ∈ Fm2 , WF (0, v) =
∑
y∈Fm

2

(−1)y·v
∣∣∣F−1({y})

∣∣∣ .
If all

∣∣F−1({y})
∣∣ are equal to 2n−m, then:

∀v ∈ Fm2 , WF (0, v) = 2n−m ∑
y∈Fm

2

(−1)y·v = 2n−m2m10(v) = 2n10(v).

Corollary 2.54 (Bentness and perfect nonlinearity [Nyb91]). Let F : Fn2 → Fm2 .
Then F is bent if and only if F is perfect nonlinear.

Proof. Adapted from [Car21, Section 6.4]. We first state equivalent definitions for
both perfect nonlinearity and bentness, and then prove the equivalence between
these two new formulations.

Recall that F is perfect nonlinear if and only if δF = 2n−m. This implies
that for any ∆in ∈ Fn2 \ {0} ,∆out ∈ Fm2 , 2n−m ≤ δF (∆in,∆out) ≤ 2n−m, i.e.
δF (∆in,∆out) = 2n−m. In other words, F is perfect non-linear if for any ∆ ̸= 0,
D∆F is balanced.

Furthermore, because of Lemma 2.51, a vectorial function F is bent if and only
for any ∆ ̸= 0, v ̸= 0, D∆(v · F ) = v ·D∆F is balanced.

By applying Lemma 2.53 to all derivatives D∆F with ∆ ̸= 0, we conclude that
the definitions of bentness and perfect nonlinearity coincide.

Corollary 2.55 (Necessary condition for the existence of perfect nonlinear
functions [Nyb91]). Let F : Fn2 → Fm2 . If F is perfect nonlinear then n is even and
2m ≤ n.
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Proof. Adapted from [CV95, Theorem 3]. We prove it using the bentness of F .
The fact that n is even is mentioned just after Definition 2.44. Recall from the
proof of Lemma 2.53 that for any function F : Fn2 → Fm2 and any y ∈ Fm2 , it holds
that: ∣∣∣F−1({y})

∣∣∣ = 2−m ∑
v∈Fm

2

(−1)v·yWF (0, v).

Here F is bent so we further obtain:

∣∣∣F−1({y})
∣∣∣ = 2n−m + 2

n
2 −m ∑

v∈Fm
2 \{0}

(−1)v·y+εv = 2
n
2 −m

2
n
2 +

∑
v∈Fm

2 \{0}
(−1)v·y+εv

 ,
where εv ∈ F2 is given by the sign of the Walsh coefficient WF (0, v). The term
σ := ∑

v∈Fm
2 \{0}(−1)v·y+εv is a sum with an odd number of terms which are all odd,

so σ is odd itself. Therefore 2n
2 + σ is an odd integer and in particular it is not

0. If we suppose that n
2 −m < 0, then 2n

2 −m < 1, so the cardinality
∣∣F−1({y})

∣∣
cannot be an integer itself. This implies that n,m must satisfy n

2 ≥ m.

As shown in the following proposition, this necessary condition on the values of
n and m for the existence of perfect nonlinear functions is actually a sufficient one.

Proposition 2.56 (Maiorana-McFarland construction [McF73]). Let H : F2n →
F2n and let G : F2n → F2n be a bijection. Let F : (F2n)2 → F2n be defined by:

F : (x, y) 7→ xG(y) +H(y).

Then F is a bent function.

Proof. Let α = (α0, α1) ∈ (F2n)2. Let β ∈ F2n \ {0}. Then it holds that:

WF (α, β) =
∑
x∈F2n

∑
y∈F2n

(−1)TrF2n /F2 (α0x+α1y+β(xG(y)+H(y)))

=
∑
y∈F2n

(−1)TrF2n /F2 (α1y+βH(y)) ∑
x∈F2n

(−1)TrF2n /F2 (x(α0+βG(y)))

= 2n
∑
y∈F2n

(−1)TrF2n /F2 (α1y+βH(y))10(α0 + βG(y)).

But as G is bijective and β ̸= 0, we observe that α0 + βG(y) = 0 is equivalent
to y = G−1(α0β

−1). Therefore the previous sum contains a single non-zero term
which is the one corresponding to y = G−1(α0β

−1). In other words, it holds that:

WF (α, β) = 2n(−1)TrF2n /F2(α1G−1(α0β−1)+βH(G−1(α0β−1))).

In particular we observe that |WF (α, β)| = 2n, and therefore F is a bent function.
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Example 2.57. Let n ≥ 1. Then the function F : (F2n)2 → F2n defined by:

F : (x, y) 7→ xy

is a bent function. ▷

Proposition 2.56 proves the existence of bent functions for the case n = 2m.
The existence in the case where m < n

2 can for instance be deduced by only keeping
m coordinates of a Maiorana-McFarland function F : (Fn2 )2 → Fn2 .

2.4 Equivalence relations
With those cryptographic criteria in mind, finding functions that satisfy optimal
resistance, for instance, to linear and differential attacks is one of the biggest
challenges. In order to effectively tackle this problem, it is necessary to study
functions up to equivalence. This not only enables us to classify vectorial Boolean
functions, but it also helps building effective algorithms to search for optimal
objects. This section therefore presents the main equivalence relations used for
studying vectorial Boolean functions. These equivalence relations hold for functions
F : Fn2 → Fm2 where n and m can be distinct, but for the sake of uniformity with the
remaining of this manuscript, we restrict this presentation to the case n = m. The
more general definitions and statements can easily be adapted from this specific
case.

Definition 2.58 (Affine equivalence). Let F,G : Fn2 → Fn2 . Then, F and G are said
to be affine equivalent if there exist two affine bijective mappings A,B : Fn2 → Fn2
such that:

G = A ◦ F ◦B.

It is denoted by F ∼aff G. If there exist such A and B that are instead linear, F
and G are said to be linearly equivalent, which is denoted by F ∼lin G. ▷

Definition 2.59 (Extended affine equivalence (EA)). Let F,G : Fn2 → Fn2 . Then,
F and G are said to be extended affine equivalent if there exist two affine bijective
mappings A,B : Fn2 → Fn2 and an affine or constant mapping C : Fn2 → Fn2 such
that:

G = A ◦ F ◦B + C. (2.21)

It is denoted by by F ∼EA G. ▷

Definition 2.60 (Carlet-Charpin-Zinoviev equivalence (CCZ) [CCZ98, BCP06]).
Let F,G : Fn2 → Fn2 . Then, F and G are said to be CCZ equivalent if there exists
an affine bijective mapping A : (Fn2 )2 → (Fn2 )2 such that:

GG = A(GF ),

where GF is the graph of F : GF := {(x, F (x)), x ∈ Fn2}. It is denoted by F ∼CCZ
G. ▷
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More generally, as defined and characterized in the following definition and
lemma, the admissible mappings for F are the affine mappings that lead to a
CCZ-equivalence relation.

Definition 2.61 (Admissible mapping [CP19, Definition 4]). Let F : Fn2 → Fn2 . Let
A be an affine mapping over F2n

2 . The mapping A is admissible for F if A(GF ) is
the graph of a function, i.e. if there exists G : Fn2 → Fn2 such that A(GF ) = GG. ▷

Lemma 2.62 (Characterization of an admissible mapping [CP19, Definition 4]).
Let F : Fn2 → Fn2 . Let A be an affine mapping over F2n

2 that we decompose as:

A(x, y) = (A1(x, y),A2(x, y)),

where A1,A2 : Fn2 × Fn2 → Fn2 . Then A is admissible for F if and only if x 7→
A1(x, F (x)) is bijective.

Proof. It is clear that A(GF ) = {(A1(x, F (x)),A2(x, F (x))), x ∈ Fn2}. For this
set to be the graph of a function over Fn2 , it is necessary that the first
coordinate takes once, and only once, each possible value, or in other words that
{A1(x, F (x)), x ∈ Fn2} = Fn2 . This is equivalent to stating that x 7→ A1(x, F (x)) is
bijective. Conversely, if the first coordinate of A(GF ) takes all values a single time,
then the function G : x 7→ y where y is the only value such that (x, y) ∈ A(GF ) is
well-defined. By construction G satisfies A(GF ) = GG.

Naturally, we can sort those equivalence relations from the most restrictive to
the most general one.

Proposition 2.63 (Partitions of equivalence classes into smaller classes). Let
F,G : Fn2 → Fn2 .

• If F ∼lin G, then F ∼aff G.

• If F ∼aff G, then F ∼EA G.

• If F ∼EA G, then F ∼CCZ G.

Before proving the previous proposition, we introduce matrix-like notation for
affine mappings. If A0, . . . , A3 : Fn2 → Fn2 are affine mappings, the affine mapping(
A0 A1
A2 A3

)
: (Fn2 )2 → (Fn2 )2 is defined by :

(
A0 A1
A2 A3

)
:
(
x
y

)
→
(
A0(x) +A1(y)
A2(x) +A3(y)

)
=
(
L0 L1
L2 L3

)(
x
y

)
+
(
a0 + a1
a2 + a3

)
,

where for any i, Li : Fn2 → Fn2 is the linear part of Ai, i.e. Li := Ai + Ai(0),
and ai := Ai(0) its constant term. By analogy with matrices, we also omit the
composition symbol ◦ when composing two affine mappings together.
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Proof. The first two statements are immediate corollaries of the definitions, so we
only focus on the last one. Given mappings F,G,A,B satisfying Eq. (2.21), we
observe that for any x ∈ Fn2 :

(
B−1 0
CB−1 A

)(
x

F (x)

)
=
(

B−1(x)
G ◦B−1(x)

)
,

because G = A ◦ F ◦ B + C ⇐⇒ A ◦ F = G ◦ B−1 + CB−1. But B−1 being
bijective, this implies that:

(
B−1 0
CB−1 A

)
GF = GG.

In particular, EA equivalence corresponds to CCZ equivalence with lower-
triangular mappings, while affine equivalence corresponds to CCZ equivalence
with diagonal mappings. Finally, let us mention the cryptographic properties that
remain invariant within an equivalence class.

Proposition 2.64 (Invariants of equivalence classes). Let F,G : Fn2 → Fn2 .

• If dega(F ) > 1 and F ∼EA G, then dega(F ) = dega(G).

• If F ∼CCZ G then the number of solutions of differential (resp. linear)
equations of F and G are in one-to-one correspondence. More precisely, let
GG = A(GF ) where A = L + c, with L : (Fn2 )2 → (Fn2 )2, and c ∈ Fn2 . Then,
for any α, β,∆in,∆out ∈ Fn2 :

δG(∆in,∆out) = δF
(
L−1(∆in,∆out)

)
and (2.22)

WG(α, β) = (−1)c·(α,β)WF

(
L⊤(α, β)

)
. (2.23)

Proof. First, we observe that pre- and post-composition with an affine mapping
keep the degree unchanged. This is also the case of addition with an affine or
constant mapping unless the function is itself affine or constant. Indeed, any affine
or constant function F is equivalent to the zero function because F + F = 0, and
the class of the zero function is therefore made of all functions of degree 0 and 1.

Regarding the second statement, let us decompose L as L =
(
A B
C D

)
and c

as c = (a, b). Because GG = A(GF ), enumerating all pairs (y,G(y)) comes back to
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enumerating all pairs L(x, F (x)). Therefore, we obtain:

WG(α, β) =
∑
y∈Fn

2

(−1)α·y+β·G(y)

=
∑
x∈Fn

2

(−1)α·(Ax+BF (x)+a)+β·(Cx+DF (x)+b)

= (−1)α·a+β·b ∑
x∈Fn

2

(−1)(A⊤α+C⊤β)·x+(B⊤α+D⊤β)·F (x)

= (−1)c·(α,β)WF (L⊤(α, β)),

where the last equality comes from the fact that:

L⊤ =
(
A B
C D

)⊤

=
(
A⊤ C⊤

B⊤ D⊤

)
.

In the same way, we observe that:

δG(∆in,∆out) =
∣∣∣{y ∈ Fn2 , G(y) +G(y + ∆in) = ∆out

}∣∣∣
=
∣∣∣{(y, z) ∈ (Fn2 )2, y + z = ∆in, G(y) +G(z) = ∆out

}∣∣∣
=
∣∣∣∣∣
{

(x,w) ∈ (Fn2 )2,
A(x+ z) +B(F (x) + F (z)) = ∆in,
C(x+ z) +D(F (x) + F (z)) = ∆out

}∣∣∣∣∣
=
∣∣∣∣∣
{

(x,w) ∈ (Fn2 )2,L
(

x+ z
F (x) + F (z)

)
=
(

∆in

∆out

)}∣∣∣∣∣
=
∣∣∣∣∣
{

(x,w) ∈ (Fn2 )2,

(
x+ z

F (x) + F (z)

)
= L−1

(
∆in

∆out

)}∣∣∣∣∣
= δF

(
L−1(∆in,∆out)

)
,

where the last equality comes from the same reasoning that leads to the first two
equalities, but the other way around.

Corollary 2.65 (CCZ equivalence, linearity, differential uniformity). Let
F,G : Fn2 → Fn2 be such that F ∼CCZ G. Then F and G share the same extended
Walsh spectrum and differential spectrum. In other words, the following equalities
between multisets holds:

W(F ) =W(G), and

{{δF (∆in,∆out),∆in,∆out ∈ Fn2}} = {{δG(∆in,∆out),∆in,∆out ∈ Fn2}}.

In particular, F and G share the same differential uniformity and linearity:

δF = δG and L(F ) = L(G),

where the extended Walsh spectrum W is defined in Definition 2.39.
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CCZ equivalence is (so far) the least restrictive equivalence relation that
preserves linearity and differential uniformity. This is also the case for EA
equivalence with respect to algebraic degree. The following counter-example proves
that inversion is a particular case of CCZ equivalence, and that CCZ equivalence
does not preserve the algebraic degree.

Example 2.66 (CCZ equivalence and algebraic degree). Let F : Fn2 → Fn2 be a
bijective mapping. We easily observe that the graphs of F and F−1 satisfy the
equation : (

0 In
In 0

)
GF = GF−1 .

So a function and its inverse lie in the same CCZ equivalence class. However
in general, F−1 does not have the same algebraic degree as F . For instance,
F : F25 → F25 , x 7→ x3 is bijective because gcd(3, 25 − 1) = 1. Its inverse function
is F−1 : x 7→ x21 since 3× 21 ≡ 63 ≡ 1 mod 31. But wt(3) = 2 ̸= 3 = wt(21). So
in general, F and F−1 do not lie in the same EA class. ▷

Remark 2.67. The particular case of CCZ equivalence that corresponds to functional
inversion was generalized by Canteaut & Perrin [CP19] into the so-called function
twisting. It is proven in [CP19, Theorem 3] that CCZ equivalence can be fully
described thanks to extended-affine and twist equivalences. ▷

Finally, the following example highlights the relevancy of extended affine
equivalence in the context of the design of cryptographic primitives.

Example 2.68 (Sboxes of Ascon and SHA3). As we can see on Figure 2.4, which is
extracted from [Dob+21], the Sbox S of Ascon can be computed as the composition
of three functions Lin, χ, Lout : F5

2 → F5
2 whose ANF are defined by:

Lin


x0
x1
x2
x3
x4

 :=


x0 + x1
x1

x2 + x3
x3

x4 + x0

 , Lout


x0
x1
x2
x3
x4

 :=


x0

x1 + x2
x2 + 1
x3 + x4
x0 + x4

 ,

χ


x0
x1
x2
x3
x4

 :=


x0 + (x4 + 1)x3
x1 + (x0 + 1)x4
x2 + (x1 + 1)x0
x3 + (x2 + 1)x1
x4 + (x3 + 1)x2

 .

In other words, it holds that:

S = Lout ◦ χ ◦ Lin.

From the ANF of Lin and Lout, we easily observe that they are affine bijective
mappings. This implies that S and χ are affine-equivalent. The Sbox χ is actually
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x4

x3

x2

x1

x0

1

1

1

1

1

1

x4

x3

x2

x1

x0

Figure 2.4: A possible implementation of the Sbox of Ascon extracted from
[Dob+21].

the Sbox used by the cryptographic permutation Keccak−f which is a component
of the standardized hash function SHA3 [Nis07, Ber+11].

▷



Chapter 3

Higher-order cryptanalysis and its
application to Ascon

Lightweight cryptography, that is introduced in Section 1.3.2.a promotes different
trade-offs between security, performances and cost than the ones proposed by
classical algorithms such as the AES. This pushes designers to build ciphers which
should be implemented very efficiently, but without cutting back security. Still,
some strong design choices need to be made in order to remain competitive.

Ascon [Dob+21], which is both one of the winners of CAESAR [Cae13] and
the winner of the recent NIST standardization process [Nis17], is indisputably the
lightweight cipher that attracts the most attention today. One of the most notable
decisions made by its designers, Dobraunig, Eichlseder, Mendel & Schläffer, is the
choice of a sparse quadratic 5-bit Sbox, which serves as example all along Chapter 2.
This quadraticity prevents the algebraic degree of the whole construction from
increasing rapidly, and the sparsity prevents the ANF from quickly becoming
intricate. As noticed in Section 2.3.1, this may make the cipher more vulnerable to
algebraic attacks.

Among them, higher-order differential [Knu95, Lai94] attacks take advantage
of both properties in a variety of forms. Cube testers [Aum+09], or integral
attacks [KW02] leverage the fact that a specific known monomial cannot appear
in the ANF of the targeted cryptographic function. This enables an adversary to
distinguish such a function from a random one for which any monomial is expected
to appear in each coordinate with probability 1

2 . On the other hand, the goal of
a cube attack [DS09] or methods based on the division property [Tod15b] is to
find simple equations in key bits by targeting some specific coefficients in the ANF.
All those techniques correspond to the same theory, but viewed through different
lenses.

The goal of this chapter is to first present the general framework of higher-order
differential attacks by relying on the prerequisite from Chapter 2. Then, a precise
description of Ascon is given, as well as a literature review of previous higher-
order differential attacks against it. Subsequently, we describe a new higher-order
differential attack against Ascon which, when the attacker is given sufficient power,
breaks its confidentiality, but not the claim made by the designers. Still, this
attack leads to a deeper understanding of the inner components of Ascon, especially
its Sbox. With the benefit of hindsight, we conclude this chapter with general
comments on higher-order differential attacks. This chapter is based on a joint
work with Anne Canteaut & Léo Perrin that is published in the IACR Transactions
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on Symmetric Cryptology, 2022(4) [BCP22].
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3.1 Higher-order differential cryptanalysis

3.1.1 Higher-order derivatives

The notion of higher-order derivative is the natural generalization of Definition 2.29
to successive derivations along distinct directions. In that case, the order in which
the different derivations are made does not matter.
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Lemma 3.1 (Multiple derivations formula [Lai94, Propositions 3 & 4]). Let
F : Fn2 → Fm2 . Let d ≥ 1 and let (∆(0), . . .∆(d−1)) ∈ (Fn2 )d be an independent family
and V :=

〈
∆(0), . . . ,∆(d−1)

〉
. Then:

∀x ∈ Fn2 , D∆(d−1) . . . D∆(0)F (x) =
∑
v∈V

F (x+ v). (3.1)

Proof. We prove it by induction on d. If d = 1, then Eq. (3.1) holds as it coincides
with Definition 2.23. Let us now assume that Eq. (3.1) holds for d ≥ 1. Let
(∆(0), . . . ,∆(d)) be an independent family. Let W :=

〈
∆(0), . . . ,∆(d−1)

〉
and

V :=
〈
∆(0), . . . ,∆(d)

〉
. Let x ∈ Fn2 . Then:

D∆(d) . . . D∆(0)F (x) = D∆(d) (D∆(d−1) . . . D∆(0)F ) (x)

= D∆(d−1) . . . D∆(0)F
(
x+ ∆(d)

)
+D∆(d−1) . . . D∆(0)F (x)

=
∑
w∈W

F
(
x+ w + ∆(d)

)
+
∑
w∈W

F (x+ w)

=
∑
v∈V

F (x+ v),

where we used the induction hypothesis for the third equality. Lemma 3.1 therefore
holds for any d ≥ 1.

It is therefore natural to define the derivation along a linear subspace.

Definition 3.2 (Higher-order derivative [Lai94]). Let F : Fn2 → Fm2 . Let V be a
linear subspace of Fn2 . The derivative of F along V (or with respect to V ) is the
function DV F : Fn2 → Fm2 defined by:

∀x ∈ Fn2 , DV F (x) :=
∑
v∈V

F (x+ v).

It corresponds to the successive derivations along ∆(0), . . . ,∆(d−1), for any basis
(∆(0), . . . ,∆(d−1)) of V . The dimension of V is called the order of the derivative
DV . ▷

Remark 3.3. With Definition 3.2, we restrict ourselves to successive derivations
in independent directions. This is explained by the fact that deriving in colinear
directions leads to the zero function. Indeed, let V be a subspace and ∆ ∈ V .
Then:

D∆DV F (x) = DV F (x+ ∆) +DV F (x)
=
∑
v∈V

F (x+ v) +
∑
v∈V

F (x+ ∆ + v)

=
∑
v∈V

F (x+ v) +
∑
v∈V

F (x+ v) = 0,

where we use the v ← v + ∆ as change of variables to obtain the third equality. ▷
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From Definition 3.2, we observe that the derivative of a function F along V
can be evaluated at any point, at the cost of 2dim(V ) evaluations of F at chosen
points. Despite the cost that is growing exponentially with the dimension of V ,
this implies that some properties of its derivatives can be used to distinguish F
from a random function or permutation. We therefore list the main interesting
properties about higher-order derivatives.

First, as we can expect with the intuition due to polynomial derivatives, the
more we derive, the more the degree decreases.

Proposition 3.4 (Derivation and degree fall [Lai94, Proposition 2]). Let F : Fn2 →
Fm2 . Let V be a subspace. Then dega(DV (F )) ≤ max (0, dega(F )− dim(V )).

Proof. We only prove the fact for any ∆ ∈ Fn2 , dega(D∆(F )) ≤ dega(F )− 1, as the
original statement can be directly deduced by induction on the dimension of V .
Furthermore, because the algebraic degree of F is the maximum over the algebraic
degree of its coordinates, it is sufficient to prove it for a Boolean function f : Fn2 →
F2, and, because it is clear from Definition 2.23 that D∆(f + g) = D∆f +D∆g, it
is sufficient to prove it for f : (x0, . . . , xn−1) 7→ xu for some u ∈ Fn2 . Let ∆ ∈ Fn2 .
Then for any x ∈ Fn2 :

D∆f(x) = xu + (x+ ∆)u = xu +
∑
v⪯u

∆u+vxv =
∑

v⪯u,v ̸=u
∆u+vxv.

Therefore dega(D∆f) ≤ wt(u)− 1 = dega(f)− 1.

Furthermore, the close link between the definition of DV F and F enables us to
derive the ANF of DV F from the one of F , when V is aligned with the canonical
basis. Recall from Eq. (2.2) that we denote by ξ(i) the i-th vector of the canonical
basis of Fn2 . For any u ∈ Fn2 , we also denote by Prec(u) and Succ(u) the sets defined
by:

Prec(u) := {x ∈ Fn2 , x ⪯ u} , Succ(u) := {x ∈ Fn2 , u ⪯ x} .

While Prec(u) is a linear space of dimension wt(u), Succ(u) is an affine space of
dimension n− wt(u).

Proposition 3.5 (ANF of DV f where V = Prec(u) [DS09, Theorem 1]). Let
f : Fn2 → F2 be defined by x 7→∑

v∈Fn
2
avx

v. Let u ∈ Fn2 and V = Prec(u). Then f
can be decomposed as:

f = DV f ·Xu + g,

where g contains no monomial Xv, such that Xu divides Xv. Equivalently, DV F
can be expressed as:

DV f :=
∑

w∈Succ(u)
awX

w+u.

Proof. The equivalence between the two statements is immediate, so we only prove
the second one. Furthermore, we restrict ourselves to the case where f is defined
by (x0, . . . , xn−1) 7→ xa for some a ∈ Fn2 , as the general case is deduced from this
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particular one by invoking the linearity of the operator DV . In that case, the
equality that must be proved is the following:

∀x ∈ Fn2 , DV f(x) =
{
xa+u if u ⪯ a,
0 otherwise.

Let x ∈ Fn2 . First, we observe that:

DV f(x) =
∑
v∈V

(x+ v)a

=
∑
v⪯u

∏
i∈Supp(a)

(xi + vi)

=
∑
v⪯u

∏
i∈Supp(a)\Supp(u)

xi
∏

i∈Supp(u)∩Supp(a)
(xi + vi),

where the last equality comes from the fact that for any i /∈ Supp(u), and any
v ⪯ u we necessarily have vi = 0. Therefore, by factoring by ∏i∈Supp(a)\Supp(u) xi,
we obtain:

DV f(x) =

 ∏
i∈Supp(a)\Supp(u)

xi

∑
v⪯u

∏
i∈Supp(u)∩Supp(a)

(xi + vi)

 .
Let b ∈ Fn2 be such that Supp(b) = Supp(u) ∩ Supp(a). Let g : x 7→ xb. We can
rewrite the previous equality as:

DV f(x) =

 ∏
i∈Supp(a)\Supp(u)

xi

DV g(x).

But DV g is a derivative of order wt(u) of a function of algebraic degree wt(b), with
wt(b) ≤ wt(u). So, by Proposition 3.4, this implies that DV g is a constant function
whose value is DV g(0). By observing that ∀v, w ∈ Fn2 , vw = 1 if and only if w ⪯ v,
we obtain:

DV g(0) =
∑
v⪯u

vb =
∑

b⪯v⪯u
1.

If u ⪯ a, then b = u and the only term in the previous sum is the one for v = u,
so DV g(0) = 1. We conclude in that case that DV f(x) = xu+a by observing that,∏
i∈Supp(a)\Supp(u) xi = xu+a. Otherwise, u ̸⪯ a, so b ⪯ u, with b ̸= u. This implies

that the sum is of even size 2wt(u)−wt(b), and therefore DV g(0) = 0.

Because of Proposition 3.5, higher-order derivatives along Prec(u) have attracted
more attention. Note that those linear spaces are exactly the linear spaces spanned
by a subset of the canonical basis. In this sense, those spaces are aligned with the
canonical basis. Recently, Hu, Peyrin, Tan & Yap [Hu+23] employed new tools to
study properties of derivatives along non-aligned spaces by introducing auxiliary
functions with twice as many variables as the original function f : Fn2 → F2. We
stress here that this is not necessary. After all, a space V :=

〈
∆(0), . . . ,∆(d−1)

〉
is

aligned with respect to any basis that contains the vectors ∆(0), . . . ,∆(d−1).
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Proposition 3.6 (Realignment of non-aligned derivatives). Let f : Fn2 → F2.
Let ∆(0), . . . ,∆(d−1) ∈ (Fn2 )d be an independent family. Let A : Fn2 → Fn2 be a
bijective linear mapping satisfying A(ξ(i)) = ∆(i) for any i ∈ J0, d− 1K. Let
V :=

〈
∆(0), . . . ,∆(d−1)

〉
and W :=

〈
ξ(0), . . . , ξ(d−1)

〉
Then:

DV f = DW (f ◦A) ◦A−1.

Proof. By a direct computation, we observe that:

DV f◦A =
∑
v∈V

f(A(X)+v) =
∑
w∈W

f(A(X)+Aw) =
∑
w∈W

f◦A(X+w) = DW (f◦A),

where we use the fact that A maps bijectively W onto V , and the linearity of A.
Finally, because A is bijective, we further obtain DV f = DW (f ◦A) ◦A−1.

Proposition 3.6 therefore states that the derivative along any space can be
obtained from the ANF of a linear-equivalent function.

Example 3.7 (Non-aligned derivative). Let f : F3
2 → F2 be the function introduced

in [Hu+23, Example 1], i.e. f is defined by:

f : (x0, x1, x2) 7→ x0x1x2 + x0x1 + x0x2 + x1x2.

Let us compute the same derivative as the one considered in this paper, that is,
DV f where V =

〈
∆(0),∆(1)

〉
with ∆(0) = (1, 0, 1) and ∆(1) = (1, 1, 1). Let us

consider the following matrices:

A :=

∆(0) ∆(1) ξ(2) 1 1 0
0 1 0
1 1 1

and A−1 :=

1 1 0
0 1 0
1 0 1

 .
We first compute f ◦A. For any x0, x1, x2 ∈ F2, we get:

f ◦A(x0, x1, x2) = f(x0 + x1, x1, x0 + x1 + x2)
= (x0 + x1)x1(x0 + x1 + x2) + (x0 + x1)x1+

(x0 + x1)(x0 + x1 + x2) + x1(x0 + x1 + x2)
= x0x1x2 + x0x1 + x0x2 + x1x2 + x0

= (x2 + 1)x0x1 + (x0x2 + x1x2 + x0).

Let W =
〈
ξ(0), ξ(1)

〉
. By applying Proposition 3.5, we get:

∀(x0, x1, x2) ∈ F3
2, DW (f ◦A)(x0, x1, x2) = x2 + 1.

Finally, we observe that DW (f ◦A) ◦A−1(x0, x1, x2) = x0 + x2 + 1. Therefore,
as announced in [Hu+23, Example 1], we obtain DV f : (x0, x1, x2) 7→ x0 + x2 + 1,
but in a much more direct way. ▷



3.1. Higher-order differential cryptanalysis 69

3.1.2 Cryptanalysis based on higher-order derivatives

Many cryptanalysis techniques leverage properties of higher-order derivatives,
one way or another. These techniques are included in the class of integral
attacks [KW02], because of the summation process that appears in Definition 3.2.
In the following, we make distinction between the attacks that are distinguishers,
or based on distinguishers, from the ones that are key-recovery attacks by nature.

3.1.2.a Higher-order differential distinguishers

The first higher-order differential cryptanalysis dates back to a paper of
Knudsen [Knu95] in which the author presents a higher-order distinguishing
property on Feistel networks using quadratic Sboxes (over Fp with odd p). This
attack relies on the fact that any second-order derivative of a quadratic function is
necessarily constant. This distinguisher is then used to mount a last-round attack.

The fact that a derivative of a cryptographic function might be constant is the
most prominent distinguishing property based on higher-order derivatives. In the
case of a block cipher E = (Ek : Fn2

∼−→ Fn2 )k∈Fκ
2
, this amounts to proving that there

exists a subspace V such that for any k, DVEk is not only constant, but also that
the constant value DVEk(0) is the same for all k, i.e. independent of k.

Soon after the work by Knudsen, the so-called1 Square attack [DKR97] or
saturation attacks [Luc02] tackled this problem. These attacks are structural in
nature: they do not rely on the actual choice of Sbox, but only on its bijectivity,
and they often focus on diffusion at the byte (or 4-bit nibble) level, rather than
the bit level. By analyzing diffusion of the input bits due to the overall structure
of the cipher, the authors of these works exhibit such constant derivatives.

The Square attack. Let us describe in more detail the 3-round Square attack
on the AES, that is depicted in Figure 3.1. Let k ∈ Fκ2 . This attack considers
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Figure 3.1: Three-round Square attack on AES-like ciphers. All stands for “all
values are taken”, Balanced for “the values sum to 0”, and Constant for “all values
are identical”.

1The name Square attack refers to the “dedicated attack” mounted against the block cipher
Square [DKR97, Section 6].
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DVEk = ∑
v∈V Ek(X + v) where V = (F2)8 × {0} . . . × {0}. To do so, it follows

the evolution of the affine spaces a + V for any a through the cipher. Because
the constant addition and the Sbox are parallel applications of bytewise bijections,
we know that the image of an affine coset of V by S ◦ Tk(0) is still a coset of V .
The ShiftRows operation only reorganizes the bytes. Regarding the MixColumns
function, it applies the linear function M : (F28)4 → (F28)4 that is defined by:

M : x 7→ (M0(x),M1(x),M2(x),M3(x)),

where for any i ∈ J0, 3K, Mi is defined by:

Mi(x0, x1, x2, x3) 7→ ai,0x0 + ai,1x1 + ai,2x2 + ai,3x3,

with ai,j ̸= 0 for all i, j. If the set in input is {a} × {b} × {c} × {d}, with
a, b, c, d ∈ F8

2, the image is again a one-point set. But if the set is F8
2×{b}×{c}×{d}

each output byte takes each possible value. Indeed, as a0,0 ̸= 0, the function
x0 7→ a0,0x0 + a0,1b+ a0,2c+ a0,3c is a bijective affine mapping, and the same holds
for the other coordinates because of the natural symmetries. These rules enable
us to follow the evolution until the third MixColumns operation. This time, the
input set of each column takes all values on each byte. Let us denote by x(j) for
j ∈ J0, 255K the 256 input values. Let us denote by Fk : F128

2 → F8
2 the function

which corresponds to the the first output byte after three rounds of AES. By
summing over all output values, we obtain:

DV Fk(0) =
255∑
j=0

M0(x(j)
0 , x

(j)
1 , x

(j)
2 , x

(j)
3 ) =

255∑
j=0

a0,0x
(j)
0 + a0,1x

(j)
1 + a0,2x

(j)
2 + a0,3x

(j)
3

= a0,0

255∑
j=0

x
(j)
0 + a0,1

255∑
j=0

x
(j)
1 + a0,2

255∑
j=0

x
(j)
2 + a0,3

255∑
j=0

x
(j)
3 .

But as ∑255
j=0 x

(j)
0 = ∑

x∈F8
2
x = 0, we conclude that DV Fk(0) = 0. The same can

be done for any output byte, so we deduce that DVEk(0) = 0. Finally, everything
remains true if the input space V is replaced by V + a for some a ∈ F128

2 , so we
can conclude that DVEk is the zero function. This serves as a distinguisher as the
analysis is independent of the key k. It is furthermore independent of the actual
Sbox used and still holds if distinct bijective Sboxes are used at each round and at
each byte position.

Note that the best key-recovery attacks against 6-round AES are based on
enhancements of this distinguisher [Fer+01, Dun+24]. We refer to the thesis of
Bariant [Bar24, Sections 2.3.3.2 & 4.1] for an up-to-date report on the cryptanalysis
of AES. Finally, in line with Square attacks, Biryukov & Shamir [BS01] use the
same methodology in multiset attacks.
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Distinguisher based on degree bounds. Another way of finding such
distinguishers is by carefully analyzing the growth of degree. Because of
Proposition 3.4, if an upper bound D on the degree is known, the derivative along
any subspace V of dimension dim(V ) ≥ D is constant. Moreover, if dim(V ) ≥ D+1,
then the derivative is the zero function. The distinguishing attack then consists in
evaluating the derivative at one point, at the cost of 2dim(V ) chosen plaintexts, and
verifying whether or not its value is 0. If DV F is a function with m output bits,
this is expected at random with probability 1

2m . This is the reason why bounds on
the degree of iterated constructions often come with associated distinguishers on
cryptographic primitives. Examples are given in Section 2.3.1.c.

Among all choices of directions V , spaces of the form Prec(u) for some u ∈ Fn2
play a particular role, and among all points where the derivative along V can be
evaluated at, 0 plays also a particular role. Indeed, let f : Fn2 → F2, x 7→

∑
v∈Fn

2
avx

v.
In that case, if V = Prec(u) for some u, the value of DV f(0) is expressed as:

DV f(0) =
∑
v∈V

f(v) =
∑
x⪯u

f(v) = av, (3.2)

where we used Proposition 2.10 to obtain the last equality. The evaluation of a
derivative in that case corresponds to an ANF coefficient. Therefore, ensuring that
a specific coefficient does not appear in any coordinate of a cryptographic function
F : Fn2 → Fm2 is another way of finding a higher-order differential distinguisher.

Division property. In 2015, Todo [Tod15b] tackled this problem by introducing
the division property which generalizes the fact that a set of values sums to 0.

Definition 3.8 (Division property [Tod15b, BC16]). A set Z ⊂ Fn2 is said to fulfill
the division property of order k ∈ J1, nK if it satisfies:

∀u ∈ Fn2 ,wt(u) < k,
∑
x∈Z

xu = 0.

Equivalently, Z fulfills the division property of order k if its indicator function
1Z is of degree n− k, where 1Z is defined by:

1Z : Fn2 → F2, x 7→
{

1 if x ∈ Z,
0 otherwise.

▷

The equivalent definition is due to Boura & Canteaut [BC16]. Thanks to it,
we observe that the division property of order 2 is equivalent to having a set Z of
even cardinality whose elements sum to 0. From there, Todo studies the evolution
of the division property of subspaces of the form a+ Prec(u) through the round
function. In the end, he finds values for u ∈ Fn2 such that Ek(a+ Prec(u)) satisfies
the division property of order 2 for any a ∈ Fn2 . This exactly corresponds to the fact
that DVEk = 0 where V = Prec(u). Contrary to the Square attack, the method of
Todo takes into account the degree of the Sbox S, while the technique of Boura
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& Canteaut leverages the ANF of S in more detail. This technique happens to
be extremely powerful as highlighted by the first attack on the full block cipher
Misty1 [Tod15a, Tod17].

Exact division property. The division property is however heuristic and does
not guarantee that a distinguisher will be found, even if it exists. This is the reason
why a line of papers [Tod15b, Tod17, TM16, Hao+20, Hao+21] approached the
problem of refining this method with the help of automated solvers. After a few
years, the exact formalisms [BC16, Hu+20, BV23] that were suggested all sum up
to being able to compute exactly (part of) the ANF of a cryptographic primitive
that is iteratively built.

This iterated construction naturally leads to notions of trails, such as division
trails [Xia+16], monomials trails [Heb+20, Hu+20], or algebraic trails [BV23], which
are all closely related. The link between parity sets [BC16], division trails and
monomial trails is clearly established by Hebborn, Leander & Udovenko [HLU23,
Section 3.2]. Beyne & Verbauwhede [BV23, Section 4.1] complete this classification
with the link with algebraic trails. This latest study [BV23] also introduces a matrix
point-of-view, similiar to the ones regarding differential and linear cryptanalysis
that are presented in Sections 2.3.3.d and 2.3.4.c.

As times goes, the name division property has been overloaded. It now often
refers to any algorithmic method to recover part of the ANF of an iterated
construction, and not the Definition 3.8 anymore.

3.1.2.b Higher-order differential key-recoveries

On the other side of the scope of higher-order differential attacks are the attacks
that are key-recovery by design. Those attacks are often called cube attacks due to
the work of Dinur & Shamir [DS09]. Yet their infancy dates back to the AIDA
attack by Vielhaber [Vie07]. The idea of such attacks is to obtain equations in key
bits in order to gain partial or full knowledge about the key thanks to the solving
of a system. But contrary to the standard scenario described in Section 2.3.1.b, the
equations are not derived by using y = Ek(x) for a single known plaintext/ciphertext
pair (x, y). Instead, equations of the form y = DVEk(x) are derived using 2dim(V )

chosen plaintexts.
More precisely, let E = (Ek : Fn2

∼−→ Fn2 )k∈Fκ
2
. Let V ⊂ Fn2 , and x ∈ Fn2 . An

attacker that is interested in the family (DVEk(x))k∈Fκ
2
, can consider the function

F V,x defined by:
F V,x : Fκ2 → Fn2 , k 7→ DVEk(x),

and look at the ANF of each of its coordinates:

∀i ∈ J0, n− 1K , F V,xi : k = (k0, . . . , kκ−1) 7→
∑
v∈Fκ

2

bv,ik
v.

From there, with a blackbox access to the instantiated cipher Ek for an unknown
key k ∈ Fκ2 , the adversary can query the encryption of all plaintexts in x+ V , and
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recover the value of y := DVEk(x) = ∑
v∈V Ek(x + v). Therefore, the following

equations in unknowns k0, . . . , kκ−1 are obtained:

∀ i ∈ J0, n− 1K , yi =
∑
v∈Fκ

2

bv,ik
v.

Such a system can finally be solved as explained in Section 2.3.1.b. Traditionally,
such cube attacks are presented in two steps: the offline phase during which the
attacker recovers the ANF of F V,x and the online one, where he asks for encryption
and solves the system deduced from the queries. Two major challenges are therefore
brought to an adversary.

1. First, while the ANF of F V,x is theoretically at hand (because of Kerckhoff’s
principle), it is necessary for its recovery to be effective.

2. Secondly, once the system of equations has been mounted, it should also be
solvable at reasonable cost.

Expression of key-dependent coefficients. To cope with the first challenge,
the first simplification that is usually (if not, always) made is to only consider
pairs (V, x) of the form (Prec(u), 0) for some u ∈ Fn2 . Such space Prec(u) can be
considered as a cube in Fn2 , hence the name of the attack.

As shown by Eq. (3.2), this simplification amounts to looking for the expression
of a key-dependent coefficient in the ANF of Ek. More precisely, it is possible to
look at E as a function in both key and plaintext variables:

E : Fn2 × Fκ2 → Fn2 .

In that case, for any i ∈ J0, n− 1K the i-th coordinate can be expressed as:

Ei : (x0, . . . , xn−1, k0, . . . , kκ−1)→
∑
u∈Fn

2

au,ix
u,

where each au,i is a function of k: au,i := ∑
v∈Fκ

2
bu,i,vk

v.
Deriving along V = Prec(u) then corresponds to deriving along W =

Prec((u, 0)) ⊂ Fn2 × Fκ2 . Indeed, for any k ∈ Fκ2 , we obtain:

DVEk,i(0) =
∑
v∈V

Ek,i(v) =
∑
v∈V
Ei(v, k)

=
∑
w∈W

Ei ((v, k) + w) = DWEi(0, k) = au,i(k).

In that case, this implies that the function F V,0, that is a function of k, coincides
with the function au,i. So, according to Proposition 3.5, recovering its ANF can
be done by recovering part of the ANF of Ei. This can for instance be done using
the algorithms mentioned in Section 3.1.2.a. Before the exact formalisms were
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established, some heuristic methods were used to probe the ANF and search for
simple key-dependent coefficients. Some of them were later proved to actually be
key-independent, and only usable as distinguishers [YT19]. The exact methods
were also not developed at the time of [DS09]. Instead, Dinur & Shamir target
coefficients au,i which are linear in key variables. To do so, because a full access
to the cipher is given during the offline phase, they can compute au,i(k) for many
keys k, k′. If au,i(k) +au,i(k′) = au,i(k+k′), for many keys, they consider au,i to be
linear and interpolate it. This solves both of the problems that are presented above
as interpolating a linear polynomial is not too costly, and solving the obtained
linear equations is simple.

Finding effective cubes. In the general case, the second challenge is the hardest
of both. While it seems at first sight to be a challenge of the online phase, it is not
the case. Indeed, the effective solving of the system is entirely dependent on the
simplicity of the equations. It is therefore necessary to target, during the offline
phase, functions au,i : Fκ2 → F2 as simple as possible, for instance, of low degree
and/or in few variables and/or as sparse as possible. This is actually the hardest
task to mount a practical cube attack.

The main heuristic to cope with this problem is based on bounds on the
algebraic degree of E : Fn2 × Fκ2 → Fn2 . If such a bound D is known, the coefficient
au,i associated to a monomial of degree wt(u) (or equivalently to a cube of dimension
wt(u)) is necessarily a polynomial in variables k0, . . . , kκ−1 of degree dega(au,i) ≤
D − wt(u). This heuristic is already used by Dinur & Shamir in their seminal
work [DS09]: in order to look for equations of low degree in k, they target cubes of
high degree in x. This however comes with a strong caveat as the data complexity
is exponential in the dimension of the cube. Building an effective cube attack sums
up to finding a good trade-off between data complexity and time complexity to
solve the system. In this context, this trade-off is a balance between the degree of
xu that should not be too high, and the expression of the corresponding au,i that
should not be too intricate.

In conditional cube attacks [Hua+17], a different notion of simplicity for the
coefficients au,i is considered: the family (au,i)i∈Fn

2
is considered simple enough if

it has a simple common divisor. Such property is exploited in previous works that
are presented in Section 3.3, but also in our work described in Section 3.4.

Vocabulary. The term cube attack is in practice ill-defined. As for higher-
differential attacks, different names can be given to the same notion. For instance,
the function x, k 7→ DVEk(x) or when x is fixed, the function k 7→ DVEk(x) are
sometimes known as superpoly associated to V . The derivative along a cube Prec(u)
is sometimes known as the cube-sum. Furthermore, as the division property before
it, the name cube attack is overloaded. It often refers to key-recovery as just
described, but cube distinguishers or cube tester [Aum+09] refer to higher-order
differential distinguishers as described in Section 3.1.2.a. We continue using the
latter naming.
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With this formalism in mind, we give concrete applications of higher-order
differential attacks against (round-reduced) Ascon. Section 3.2 is dedicated to
the precise description of Ascon, while Section 3.3 reviews the previous analyzes
of Ascon, with respect to higher-order differential attacks. The practical cube
attack against nonce-misused Ascon, that was mounted collaboratively with Anne
Canteaut & Léo Perrin, is presented in Section 3.4.

3.2 Description of Ascon

3.2.1 The Ascon family

As already mentioned, Ascon [Dob+21] is a family of symmetric primitives designed
for lightweight use cases. In particular, part of the family was selected in the final
portfolio of the CAESAR [Cae13] competition, in the “lightweight applications”
category. Ascon was also selected by the NIST in February 2023 as the winner of
the lightweight standardization process. It is currently being standardized. This
puts Ascon in the spotlight of lightweight cryptography, and demands a continued
cryptanalysis effort of this family.

The Ascon suite is made of:

• three authenticated encryptions with associated data (AEAD [Rog02]),
namely Ascon-128, Ascon-128a & Ascon-80pq;

• two hash functions, namely Ascon-Hash, and Ascon-Hasha;

• and two extendable-output functions, namely Ascon-Xof, and Ascon-Xofa.

Even if we focus more on Ascon-128 in the remaining of this chapter, it is
important to note that all members of the Ascon family share their two main
components:

• both the AEAD mode and the hashing mode are derived from the sponge
construction [Ber+07], and

• these modes are instantiated using the same cryptographic permutation
p : F320

2
∼−→ F320

2 , which is iterated a possibly-different number of times.

It is therefore natural that all members also share the same state size of 320 bits,
and the same security claim of 128 bits, even though the key size of Ascon-80pq is
160 bits.

In the following, we first describe the encryption mode shared by the three
AEAD ciphers. The cryptographic permutation p : F320

2 → F320
2 is described in

Section 3.2.3. Note that the usage of p is in conflict with the principle of using upper-
case for vectorial Boolean functions that is introduced in Section 2.2. Nonetheless,
we continue using this notation introduced by the designers in the remaining of
this chapter. Furthermore, if not stated otherwise, Ascon now refers to Ascon-128.
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3.2.2 The AEAD mode of Ascon

As any AEAD primitive, Ascon-128 aims to provide integrity, confidentiality,
together with authenticity in an effective integrated manner [BN00]. It must also
ensure the authenticity of associated public data.

To do so, the design of the AEAD versions are based on the well-studied
Sponge Duplex mode of operation [Ber+07, Ber+12a], but with initialization and
finalization strengthened by a feed-forward addition of the key.

This mode is depicted in Figure C.1, where IV ∈ F64
2 , N ∈ F128

2 , T ∈ F128
2

respectively stands for initial value, nonce, and tag. Furthermore, the i-th 64-bit
blocks of associated data, plaintext and ciphertext are denoted by A(i), P (i), C(i)

respectively. Finally, sr and sc are respectivelly called rate and capacity. They are
defined as the sizes of the outer state and inner state. The outer state corresponds
to the part of the state in which external values are added, and from which
ciphertext blocks are output. On the other hand, the inner state is the part of the
state that, ideally at least, is not available to an adversary. For Ascon-128, the
rate is sr = 64 bits and the capacity is sc = 256. We also denote by ΣAD,ΣE,ΣF
the 320-bit state before the processing of associated data, before encryption and
before finalization. The notation || stands for the concatenation of binary words.
The numbers rout and rin are the amount of time the permutation p is iterated,
during initialization and finalization for rout, and during encryption for rin. For
Ascon-128, rout is equal to 12 and rin to 6.

IV∥k∥N

prout

Initialization

0∗∥k

ΣAD

A(0)
sr

prin

sc

A(s−1)
sr

prin

sc

Associated Data

0∗∥1

ΣE

P (0)

C(0)

sr

sc

prin

P (t−2)

C(t−2)

sr

sc

prin

Plaintext

P (t−1)

C(t−1)

sr

sc

ΣF

k∥0∗

prout

Finalization

k

T

128

Figure 3.2: The AEAD encryption mode of Ascon.

Ascon-128 is then an instantiation of this mode, with the already-introduced
values for the parameters rout, rin, sc, sr, and with the round permutation p that
is described in the following section. The security level claimed for Ascon-128 is
128 bits in terms of plaintext confidentiality, and plaintext/data/nonce integrity.
However, these claims are made under three hypothesis:

1. The single usage of each nonce,

2. the encryption of less than 264 blocks for each key, and
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3. the output of a decrypted plaintext only if the tag is correct.

3.2.3 The round function p

The advantage of permutation-based cryptography is that both the design and the
analysis are mainly focused on the used cryptographic permutation. In the case of
Ascon, the permutation p is a 320-bit permutation, which is built by alternatively
looking at F320

2 as (F64
2 )5 and as (F5

2)64. More precisely, its construction follows the
logic of an SPN (see Figure 1.4): p is built as the composition of three bijective
layers. We denote by pL, pS , pC : F320

2 → F320
2 respectively, the linear layer, Sbox

layer and constant addition. With this notation, p is defined by p := pL ◦ pS ◦ pC .
In order to describe the different layers, it is convenient to look at a state X ∈ F320

2
as a binary matrix with 5 rows and 64 columns. In that case X(i) ∈ F64

2 denotes
the i-th row of the matrix, and X

(i)
j the j-th value of the i-th row. With this

representation in mind, the outer part of the state is the first row for Ascon-128 and
Ascon-80pq, and the first two rows for Ascon-128a. As described in the following
paragraphs and as depicted in Figure 3.3, the round-constant addition and the
linear layer are applied row-wise, while the Sbox layer is applied column-wise.

X(4)X(3)X(2)X(1)X(0)

⊕⊕⊕⊕⊕⊕⊕⊕

Figure 3.3: The column-wise S-box layer, the row-wise linear layer and the constant
addition.

Constant addition. Despite the fact that the round index does not appear
in the notation pC , the constant addition is round-dependent. At each round, a
distinct constant is added to the state. Those constants are sparse, as they affect
only 8 bits of the third row X(2), and they are easily-computable. Indeed, from
the first constant, the following ones are deduced by successively incrementing the
least significant half by one, and decrementing the most significant half by one.
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Substitution layer. The substitution layer of Ascon is made of 64 parallel calls
to a single bijective 5-bit Sbox. This Sbox S : F5

2 → F5
2 is applied to each column

of the state. This choice enables the designers to easily obtain a fast bit-sliced
implementation of this layer. As the outer state corresponds to the first row, it
also avoids the control of all entries of a single S-box by an adversary. Regarding
its properties, we remind the main ones that are already mentioned throughout
Chapter 2.

• The ANF of S is given in Example 2.5. Its algebraic degree is 2.

• The DDT of S is given in Example 2.38. Its differential uniformity is δS = 8.

• The LAT of S is given in Example 2.17. Its linearity is L(S) = 16.

• As shown in Example 2.68, the Sbox of Ascon is affine-equivalent to the χ
Sbox of the current NIST standard SHA3 [Ber+11, Nis07].

The quadraticity of S is the main property leveraged by the higher-order
differentials presented in Section 3.3 and Section 3.4.

Linear layer. The linear layer of Ascon consists in 5 parallel calls to 5 distinct
linear bijections L(i) : F64

2 → F64
2 for i ∈ J0, 4K. Each of them can easily be described

using two additions and two cyclic shifts. For any X(0), X(1), X(2), X(3), X(4) ∈ F64
2 ,

they are defined by:

L(0)(X(0)) := X(0) ⊕ (X(0) ≫ 19) ⊕ (X(0) ≫ 28),
L(1)(X(1)) := X(1) ⊕ (X(1) ≫ 61) ⊕ (X(1) ≫ 39),
L(2)(X(2)) := X(2) ⊕ (X(2) ≫ 1) ⊕ (X(2) ≫ 6),
L(3)(X(3)) := X(3) ⊕ (X(3) ≫ 10) ⊕ (X(3) ≫ 17),
L(4)(X(4)) := X(4) ⊕ (X(4) ≫ 7) ⊕ (X(4) ≫ 41).

The iterated permutations prout and prin. As shown in Figure C.1, the
permutation p is iterated rout times at initialization and finalization and rin times
during encryption. In the case of Ascon-128, rout is equal to 12 and rin to 6. We
therefore denote by p(i)

L , p
(i)
S , p

(i)
C the i-th application of pL, pS , pC , as depicted in

Figure 3.4.

3.3 Previous higher-order differential attacks against
Ascon

In this section, we sum up the higher-order differential attacks mounted by other
authors. The distinguishing attacks are presented in Table 3.1 and the key-recovery
attacks in Table 3.2.
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Figure 3.4: The iterated permutation p6.

Attack Nb of Data /
type Target rounds Time Method Source

Permutation 12/12 2130 Zero-sum [Dob+15]
4/12 22 Proba. H-O [Hu+23]
5/12 212 Proba. H-O [Hu+23]

Nonce-respecting 6/12 233 Deg. bound [Dob+15]
distinguisher Initialization 6/12 231 Deg. bound [Roh+21]

6/12 217 † Deg. bound [RS21]
7/12 260 Deg. bound [Roh+21]
7/12 233 † Deg. bound [RS21]

Nonce-misuse Encryption 6/12 233 Deg. bound [Dob+15]distinguisher
† stands for weak-key subspace, Proba. H-O for probabilistic higher-order

differential distinguisher.

Table 3.1: Summary of higher-order differential distinguishers against Ascon.

These attacks have been applied to round-reduced variants of the initialization
of Ascon, but also to round-reduced versions of the encryption phase of Ascon. In
that later case, key-recoveries are instead inner-state recoveries.

3.3.1 Initial cryptanalysis

The first analysis of Ascon with respect to higher-order differential attacks was
made by its designers [Dob+15]. In this work, the authors mount a so-called
zero-sum distinguisher [Aum+10, BC11] against the full permutation p12 with time
complexity 2130. This kind of distinguishers works for unkeyed permutations. First,
p12 is decomposed as p12 = pn1 ◦ pn0 . Then, the algebraic degrees of p−n0 and pn1 ,
that we denote by d0 := dega(p−n0) and d1 := dega(pn1), are estimated and finally
a vector space V of dimension d > max(d0, d1) is considered. Finally, the sums
over the sets {p−n0(v), v ∈ V } and {pn1(v), v ∈ V } are considered and must both
be 0, as seen in Section 3.1.2.a.
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Attack Nb of Data /
type Target rounds Time Method Source

5/12 219/235 Cube [Dob+15]
5/12 224 Cond. cube [LDW17]
5/12 222/222 Proba H-O. [Hu+23]
6/12 234/266 Cube [Dob+15]
6/12 240 Cond. cube [LDW17]

Nonce-respecting 7/12 277.2 / 2103.9 Cond. cube [LDW17]
key-recovery Init. 7/12 277.2 / 277 Cond. cube† [LDW17]

7/12 264 / 2123 Cube [Roh+21]
7/12 264 / 297 Cube† [RS21]
7/12 263 / 2115.2 Cube† [RS21]
7/12 270 / 272.4 Cond. cube† [Hu24]
7/12 270 / 2104.7 Cond. cube [Hu24]

Nonce-misuse
key-recovery Init. 7/12 ? / 297 Cube-like [Li+17]

5/6 ? / 266 Cube-like [Li+17]
Enc. 6/6 244.8/2128 Cond. cube [CHK22]Nonce-misuse

state-recovery
6/6 ≤ 240 Cond. cube Section 3.4

† stands for “Weak-key subspace”, Cond. for conditional.

Table 3.2: Summary of key-recoveries and state-recoveries against Ascon, based
on higher-order differentials.

The designers of Ascon also observe that, because public variables (either the
nonce in a misuse-free scenario, or the plaintext in a nonce-misuse scenario) are
input on the same row, they cannot be multiplied together during the first round
as Sboxes are applied column-wise. This implies that higher-order differential
distinguishers with 2r−1 + 1 time and data complexities exist over r rounds, while
the algebraic degree is rather bounded by 2r. In the same spirit, a monomial
of degree 2r with 2r−1 public variables x0, . . . , x2r−1−1 depends on at most 2r−1

private variables k0, . . . , k2r−1−1. In the case of round-reduced Ascon, with well-
chosen fixed public variables x0, . . . , x2r−1−1, the set of possible private variables
is known and is of size 2r−1. This implies that the coefficient au(k) of xu in any
coordinate depends only on a fraction of the key bits. This leads to the recovery
of the whole key in a divide-and-conquer manner for 5- or 6-round initializations
presented in [Dob+15]. The online phase costs 2r−1 in data to recover the value
of the derivative. But during the offline phase, this derivative must be computed
for each 2r−1 possible keys, which leads to a time complexity close to 2r. In
Corollary 3.13, the monomials we consider have a similar property, but depend on
64 private variables. Such an offline phase is therefore too costly.
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3.3.2 Conditional cube attacks

Li, Dong & Wang [LDW17] continued analyzing the resistance of Ascon against
cube-like attacks by adapting and generalizing the conditional cube attacks against
Keccak introduced by Huang, Wang, Xu, Wang & Zhao [Hua+17]. In [LDW17],
the authors searched for monomials xu whose coefficients (α(r)

u,i)i∈J0,63K in all output
coordinates after r rounds share a linear divisor L. For initialization reduced
to 5 and 6 rounds, they exhibit such monomials without determining the entire
expression of the coefficients, by analyzing the diffusion of variables throughout
the rounds. If such a common divisor L exists, an adversary is able to occasionally
deduce its value from the value of the coefficients (α(r)

u,i)i∈J0,63K: indeed if there
exists i such that α(r)

u,i ̸= 0, it necessarily means that L ̸= 0.
This attack is extended to 7 rounds (out of 12) in the same paper. In that

case, the key space is partitioned into affine spaces Ak0,...,ks−1 depending on the
0/1 value of some key bits k0, . . . , ks−1. For each space Ak0,...,ks−1 , a family of
linear polynomials L0, . . . , Lℓ−1 is built. Then, for each (ε0, . . . , εℓ−1) ∈ Fℓ2 a
monomial xu is chosen so that each coefficient α(7)

u,i has a linear divisor among
L0 +ε0, . . . , Lℓ−1 +εℓ−1. If the vector (α(7)

u,i)i∈J0,63K is the zero vector, it is assumed2

that the key lies in Ak0,...,ks−1 and that the additional conditions Li + εi = 0 for
any i are satisfied. Otherwise, if none of the 2ℓ vectors is the zero vector, it is
guaranteed that the key does not belong to Ak0,...,ks−1 . This attack however exceeds
the 264 data limitation.

Later, Rohit, Hu, Sarkar & Sun et al. [Roh+21] presented the first 7-round
misuse-free key-recovery cube-attack on Ascon, which does not exceed this limitation.
This attack is based on similar observations as the ones made in [Dob+15] which
enables the authors to find initial scenarios where coefficients of monomials of
degree 64 after 7 rounds only depend on 64 variables. They then precisely analyze
the cost of computing and storing all value vectors (α(7)

u,i(k))i∈J0,63K for all 64-bit
partial keys. By assuming that the functions k 7→ α

(7)
u,i(k) are all balanced, this

enables them to recover in average a single candidate for the partial key. The
other 64-bit partial key is recovered by exhaustive search. They also refine the
degree analysis in some initialization scenario to derive new upper-bounds which
ultimately lead to cheaper higher-order differential distinguishers.

Rohit & Sarkar [RS21] also tackle weak-key scenarios. By fixing some conditions
on the key, the previous bounds on the degree can be lowered. This naturally
gives cheaper distinguishers, which however only work if the key is known to
satisfy the previous conditions. Stated otherwise, this distinguishes a key satisfying
those conditions from a key that does not satisfy them. By considering all these
conditional distinguishers, the authors therefore obtain a weak-key recovery, by
successively trying all distinguishers for the different key conditions.

Very recently, Hu [Hu24] adapted the 7-round distinguisher from [Roh+21],

2This is only assumed because the fact that the key lies in Ak0,...,ks−1 and that any Li + εi = 0
is only a sufficient condition for the vector to be zero.
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which is based on the absence of terms of degree 60 in public variables, into a
conditional cube attack against 7-round Ascon. This is done by slightly relaxing the
initial scenario so that degree-60 terms can a priori appear. Then, key conditions
are established to avoid this appearance. Testing this cube enables them to verify
whether or not the actual key satisfies these conditions.
Remark 3.9. We would like to emphasize the difference between cube and conditional
cube methods. In Table 3.2, it is striking that their complexities greatly differ.
Indeed, a conditional cube attack can be seen as an alternative to the costly
offline phase of a “standard” cube attack. In a standard cube attack, an adversary
first has to compute offline the table of values of the coefficients that are later
targeted during the online phase. The computation of this table can be long and
is proportional to the memory needed to store the table. However it only has to
be done once. Afterwards, the online-time cost (which is proportional to the data
complexity) is low. A conditional cube attack offers another trade-off: avoiding the
precomputation is possible at the cost of higher data and online-time complexities,
and an increased cryptanalysis effort. ▷

3.3.3 Probabilistic higher-order differential studies

Most of the probabilistic higher-order differential studies (against Ascon) fall under
the differential case, that is, with respect to derivatives of order 1. Last year
however, Hu, Peyrin, Tan & Yap [Hu+23] improved the best distinguishers on 4-,
5- and 6-round initializations, with or without conditions on the key, by looking
at probabilistic behaviors of derivatives of order strictly larger than 1. They also
consider derivatives along spaces unaligned with the canonical basis. Key-recovery
attacks based on these distinguishers are also described in the paper.

All of the aforementioned works study the nonce-respecting scenarios and
thus focus on the initialization. In Section 3.4, we take another approach by
looking at nonce-misuse attacks. This point of view is motivated by the fact that
implementation errors will eventually happen and sometimes with high risk. We
indeed show that, if a nonce is reused many times, confidentiality is compromised.

3.4 Practical cube attack against nonce-misused Ascon
This section describes the attack, mounted together with Anne Canteaut & Léo
Perrin, that is published at published in the IACR Transactions on Symmetric
Cryptology, 2022(4) [BCP22].

This attack breaks confidentiality of the messages encrypted using Ascon-128
and Ascon-80pq. It takes place in a particular scenario and thus does not contradict
the security claims of the designers. We start by clarifying this scenario.
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3.4.1 Nonce-misuse setting and attack model

Nonce-misuse scenario. The nonce-misuse scenario assumes, contrary to the
recommendations of the designers, that a key/nonce pair is reused several times to
encrypt plaintexts. As shown in Figure C.1, the initialization takes as input the
key, the nonce and the fixed IV to produce the state ΣAD. In the nonce-misuse
scenario, this state ΣAD is therefore fixed once and for all. But if no associated
data is proccessed, then the state after initialization ΣAD is equal to the state just
before encryption ΣE, as depicted in Figure 3.5, and this latter is, again, fixed.

IV∥k∥N

prout

Initialization

0∗∥k

ΣAD = ΣE

x

x+ Σ(0)
E

prin

Encryption

0

y

Figure 3.5: Nonce-misuse attack model.

In other words, in the nonce-misuse scenario, with no associated data, the
encryption of plaintext blocks only depends on the fixed value ΣE. This is therefore
in conflict with the genuine use case in which this value ΣE changes each time a
different nonce is used. Such a situation can however occur in cases where Ascon is
not properly implemented, or if the attacker gains physical access to the cipher.

Note that the same observation can be made if the same associated data is
processed before each encryption: in that case ΣE, which depends on key, nonce,
and associated data is once again fixed. To simplify, we keep considering the
situation depicted in Figure 3.5.

State-recovery attack. In such a situation, the recovery of the full state ΣE is
sufficient to break confidentiality of all the messages that have been encrypted with
the same key, nonce (and associated data). Indeed, because the permutation p is
publicly known, any intermediate state between ΣAD and ΣF (the internal state
before the finalization phase) can be computed from the knowledge of ΣE (or any
other full state). Any plaintext block x can therefore be recovered by computing
x = y + Σ(0) where y is the corresponding ciphertext block and Σ(0) the first row
of the corresponding intermediate state. This is the reason why the recovery of the
full state ΣE is our target.

To do so, we consider an adversary in a chosen-plaintext scenario. The attacker
can therefore ask for the encryption of any plaintext and observe the associated
ciphertext.
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By querying the encryption of a 64-bit zero block, the adversary immediately
recovers the value of the first row of the state before encryption, Σ(0)

E , which
corresponds to the outer state. The real goal is therefore to recover the four rows
of the inner state that are denoted, from top to bottom, by a, b, c and d:

a := Σ(1)
E , b := Σ(2)

E , c := Σ(3)
E , d := Σ(4)

E .

The attack setting. To do so, the following attack only relies on the encryption
of messages which are 2-block long, as shown in Figure 3.5. The first block, that is
denoted by x = (x0, . . . , x63) ∈ F64

2 can take different values. The second one is
always the 64-bit zero block.

This way, the corresponding ciphertext is also 2-block long. The first block
is of no use, as it corresponds to the sum x+ Σ(0)

E which only gives information
about the already-known outer state Σ(0)

E . The second one however, that is denoted
by y, can be expressed polynomially as a function with 256 private variables, 64
public variables and 64 coordinates. This function is nothing else than p6 where
the output is restricted to the 64 first coordinates, and where the input variables
of the first row are public, and the other ones are private. Indeed, if we denote by
p6

J0,63K : F320
2 → F64

2 the function defined by:

p6
J0,63K : X 7→

(
p6

0(X), . . . , p6
63(X)

)
,

then p6
J0,63K(x, a, b, c, d) = y. Section 3.4.2 is dedicated to the study of the algebraic

properties of this function, that will be needed to mount the state-recovery attack.

Comparison with [CHK22]. It is worth noting that our attack recovers the
whole state ΣE as soon as enough plaintexts of the previous form are encrypted
from the same internal state ΣE, i.e., from the same triple of key, nonce and
associated data. This differs from the attack scenario in the work by Chang, Hong
& Kang [CHK22] which recovers a part of the state ΣE only if it satisfies a few
conditions. It follows that the first step of their attack needs to be repeated for
32 triples of key, nonce and associated data in average, until the corresponding
state can be recovered.

Comparison with [VV18]. There exists a generic nonce-misuse attack against
the Sponge Duplex construction that is presented by Vaudenay & Vizár [VV18].
This attack works as follows. First, by asking for the encryption of the 64-bit
zero block, the first outer state is recovered and therefore the first plaintext block
P (0) corresponding to any ciphertext obtained with the same key, nonce and IV.
Then by asking for the encryption of the 2-block message (P (0), 0), the second
ciphertext block exactly corresponds to the second value of the outer state, and the
second plaintext block can therefore be recovered. The attacker continues asking
the decryption of messages (P (0), . . . , P (ℓ−1), 0) until the full plaintext has been
recovered.
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This attack is cheap as a single adapted query is necessary for each block that
needs to be decrypted. It has then a lower query complexity than our attack for
messages whose length does not exceed 240 blocks. However, our attack and the
generic attack differ both in their settings and their intention: contrary to [VV18],
the attack that is presented in Section 3.4 relies on the actual permutation of
Ascon that is used in the mode. It therefore gives new insights about its security.
Moreover, once the state is recovered with our attack, the confidentiality of any
message encrypted with the same key/nonce/associated data triplet is compromised.
In particular, it can be applied to previous or future encryption with the same
triple without any other interaction with the cipher.

Toward key-recovery? Finally, it is tempting to mount an actual key-recovery
from the state recovery that is described in the next section. This does not seem
as simple as one could think. Contrary to the genuine MonkeyDuplex [Ber+12b]
or SpongeWrap [Ber+12a] constructions, in the AEAD mode of Ascon, the
permutation used after initialization and before finalization are keyed permutations.
They are obtained using feed-forward key additions as depicted in Figure C.1. This
in particular means that a state-recovery does not directly lead to a key-recovery
(by going through the initialization backward) or a tag forgery (by going through
the finalization). However in the case of Ascon-80pq only, as pointed out by Chang,
Hong & Kang [CHK22], a state-recovery as described in Section 3.4 can lead to
a key-recovery of the 160-bit key in less than 2160 operations. Nevertheless, this
requires a nonce-misuse setting, and more operations than the 2128 claimed by the
designers for the nonce-respecting setting.

Now that both the objective and the scenario in which the attack takes place
are clarified, we start describing its actual setup by making observations on the
algebraic properties of the function E .

3.4.2 Algebraic properties of p6 in a nonce-misuse setting

As required by the nonce-misuse scenario, we study in this section the properties
of p6 used with public xi, i ∈ J0, 63K and private variables ai, bi, ci, di, i ∈ J0, 63K.
As explained in Section 3.1.2.b, in order to mount a cube attack, it is necessary
to find some monomial xu, u ∈ F64

2 in the ANF of the output bits of p6 such that
the family (αu,i)i∈J0,63K of coefficients (viewed as polynomials αu,i ∈ F2[a, b, c, d]) is
simple enough to recover partial information about a, b, c, d.

To do so, we use the same heuristic as the one presented in the mentioned
section: a coefficient αu,i in variables a, b, c, d has a bigger chance to be simple if its
corresponding monomial xu is of high degree in variables (xi)i∈J0,63K. We therefore
study the terms αu,ixu that appear in the successive ANF of pr for r ∈ J0, 6K where
xu is of high degree. More precisely, for any r ∈ J0, 6K let us express the ANF of
pr as:

∀i ∈ J0, 319K , (pr)i : (x, a, b, c, d) 7→
∑
u∈Fn

2

α
(r)
u,ix

u,
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where α(r)
u,i is a polynomial of F2[a, b, c, d] for any u, i, r.

A highest-degree term refers to α(r)
u,ix

u where α(r)
u,i is a non-zero polynomial and

xu is of highest possible degree among all terms that appear in pr. Such α
(r)
u,i is

called a highest-degree coefficient.
Remark 3.10. We do not take into account the degree in the variables ai, bi, ci, di
for now. Thus, if not stated otherwise, by degree, we mean algebraic degree in the
variables (xi)i∈J0,63K, and by constant coefficients we mean α

(r)
0,i ∈ F2[a, b, c, d]. ▷

We start by presenting the following simple yet very important observation
about the highest-degree terms in the successive ANFs of pr.

Proposition 3.11 (Highest-degree terms in the ANF of pr). Let r ∈ J1, 6K. Then:

• (Bound on the degree) ∀ i ∈ J0, 319K , ∀ u ∈ F64
2 , α

(r)
u,i ≠ 0 =⇒ dega(xu) ≤ 2r−1.

• (Tight bound) ∃ i ∈ J0, 319K ,∃ u ∈ F64
2 , α

(r)
u,i ̸= 0 and dega(xu) = 2r−1.

• (Trails of highest-degree terms) Let r ≥ 2. Let i ∈ J0, 319K , u ∈ F64
2 such

that α(r)
u,i ̸= 0, and dega(xu) = 2r−1. Then α

(r)
u,i can be expressed as a sum

α
(r)
u,i = ∑

α
(r−1)
v,j α

(r−1)
w,ℓ over some v and w with dega(xv) = dega(xw) = 2r−2.

Proof. At the input of the first Sbox layer p
(1)
S , each public variable xi only

appears in the i-th coordinate of the first row of the state. In particular, public
variables cannot be multiplied together during the first round, as the Sbox is the
only non-linear operation and it is applied column-wise. So after one round, the
highest-degree in the ANF of p1 is still 1 = 21−1. Afterwards, because the Sbox is
quadratic, the degree in the variables (xi)i∈J0,63K can at most double. This proves
the announced bound.

Regarding the existence of some terms α(r)
u,ix

u with α(r)
u,i ≠ 0 and dega(xu) = 2r−1,

such terms will be exhibited in Section 3.4.3 for r = 6 so the bound is tight for 6
rounds. But, the existence of a term of degree 32 at round 6 implies the existence
of terms of degree 2r−1 at each round r ∈ J1, 6K, otherwise the degree should grow
more than twice during one round, which is excluded by the quadraticity of the
round function.

Finally, the last statement only expresses the fact that monomials of highest
degree xu can only be obtained as products of monomials of highest degree one
round before. Indeed, degree 2r−1 can be reached by multiplying monomials of
degree at most 2r−2.

Remark 3.12. The previous result ensures the existence of a non-zero polynomial
α

(r)
u,i . However the value of this polynomial, can, and does change in practice with

the value of (a, b, c, d), and therefore depends on the key and the nonce. We do
not ensure here the existence of a coefficient that is constant independently of the
key/nonce pair. This would help to distinguish the function, but probably not to
recover an equation in private variables.
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Furthermore, according to our observations, it seems very likely that an even
stronger second statement holds. Indeed, the bound seems to be tight for every
coordinate i ∈ J0, 319K. Furthermore it also seems that for every value (a, b, c, d) ∈
F256

2 , and for every coordinate i, there exists a highest-degree coefficient α(r)
u,i such

that α(r)
u,i(a, b, c, d) = 1. We do not need either of these supposed properties in the

following. ▷

From Proposition 3.11, we immediately deduce the following corollary.

Corollary 3.13 (Recursive formula for highest-degree coefficients). Let r ∈ J1, 6K.
Let u be such that dega(xu) = 2r−1. Let i ∈ J0, 319K such that α(r)

u,i ̸= 0. Then α
(r)
u,i

can be expressed as a sum of products, where each product has the following form:∏
j∈Supp(u)

Lj , where Lj ∈ {aj + 1, 1, cj + dj + 1, aj} .

Proof. By inductively using the third statement of Proposition 3.11, it is clear that
any highest-degree coefficient at round r can be expressed as a sum of products of
2r−1 highest-degree coefficients which appear in the ANF of p1, that is, coefficients
of monomials of degree 21−1 = 1 in p1. The ANF of p(1)

S is given in Table 3.3.
Let j ∈ J0, 63K. The monomial xj is present only in the j-th column, with four
possible coefficients depending on the row: aj + 1, 1, cj + dj + 1 and aj . This
remains true for the ANF of p(1)

S ◦ p
(1)
C as the composition of the input with p

(1)
C

only amounts to change some variables bj by bj + 1, which does not impact the
previous coefficients. After p(1)

S ◦ p
(1)
C , there are then at most one monomial xj

on each row. The linear layer, that is applied row-wise (see Section 3.2.3), can
therefore only copy this single monomial xj in other coordinates, but not combine
linearly two such monomials. Therefore, a non-zero coefficient of xj in the ANF of
p1 = p

(1)
L ◦ p

(1)
S ◦ p

(1)
C can only be aj + 1, 1, c1 + dj + 1 or aj .

Initial state S(xj , aj , bj , cj , dj)
xj (aj + 1)xj + ajbj + ajdj + aj + bj + cj
aj xj + ajbj + ajcj + bjcj + aj + bj + cj + dj
bj 0 + cjdj + aj + bj + dj + 1
cj (cj + dj + 1)xj + aj + bj + cj + dj
dj ajxj + ajdj + aj + cj + dj

Table 3.3: ANF of Column j after initialization and after the first Sbox layer p(1)
S .

In the following, for any j ∈ J0, 63K, we denote by ej the linear combination
cj + dj + 1 =: ej . With this notation, any highest-degree coefficient α(r)

u,i for some
u, i, r only depends on aj and ej with j ∈ Supp(u). In particular, any cube attack
targeting highest-degree coefficients can at best lead to the recovery of a and
e := c + d. In order to mount a full recovery, we thus need to focus on other
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coefficients. In our case, we consider sub-leading terms, that is terms α(r)
u,ix

u for
which α(r)

u,i ̸= 0 and dega(xu) = 2r−1 − 1. We refer to the corresponding coefficient
α

(r)
u,i and monomial xu as sub-leading coefficient and sub-leading monomial. The

same kind of observations as the ones made in Proposition 3.11 and Corollary 3.13
can be done for sub-leading terms.

Proposition 3.14 (Sub-leading terms in the ANF of pr). Let r ∈ J2, 6K. Let
i ∈ J0, 319K , u ∈ F64

2 such that α(r)
u,i ̸= 0 and dega(xu) = 2r−1 − 1. Then α

(r)
u,i can

be expressed as a sum α
(r)
u,i = ∑

α
(r−1)
v,j α

(r−1)
w,ℓ over some v and w corresponding to

monomials which satisfy one of the two following conditions:

• either dega(xv) = 2r−2 and dega(xw) = 2r−2 − 1 (or the other way around);

• or, dega(xv) = dega(xw) = 2r−2 and gcd(xv, xw) = xj for some j ∈ J0, 63K.

Proof. A term of degree α(r)
u,ix

u of degree dega(xu) = 2r−1 − 1 in the ANF of r
rounds is necessarily obtained by a product of terms of the ANF of r − 1 rounds.
Indeed, the degree of the ANF of r − 1 rounds is upper-bounded by 2r−2. Let
v, w ∈ F64

2 be such that wt(v),wt(w) ≤ 2r−2 and wt(v + w) = 2r−1 − 1, it must
hold that:

wt(v) + wt(w)− |Supp(v) ∩ Supp(w)| = wt(v + w) = 2r−1 − 1.

If wt(v) < 2r−2 − 1, then

wt(v) + wt(w)− |Supp(v) ∩ Supp(w)| < 2r−2 − 1 + 2r−2 − |Supp(v) ∩ Supp(w)|
≤ 2r−1 − 1.

So it must hold that wt(v),wt(w) ≥ 2r−2 − 1. If wt(v) = wt(w) = 2r−2 − 1, then:

wt(v) + wt(w)− |Supp(v) ∩ Supp(w)| = 2r−1 − 2− |Supp(v) ∩ Supp(w)|
< 2r−1 − 1.

So the only remaining possibilities are wt(v) = 2r−2 and wt(w) = 2r−2 − 1 (which
implies |Supp(v) ∩ Supp(w)| = 0), the symmetric possibility and wt(v) = 2r−2 and
wt(w) = 2r−2, which implies |Supp(v) ∩ Supp(w)| = 1.

Corollary 3.15 (Recursive formula for sub-leading coefficients). Let r ∈ J2, 6K.
Let u be such that dega(xu) = 2r−1 − 1. Let i ∈ J0, 319K be such that α(r)

u,i ̸= 0.
Then α

(r)
u,i can be expressed as a sum of products of 2r−1coefficients of terms of the

ANF of p(2)
C ◦ p.

Let ∏(v,j)∈Z αv,j be one of these products. Then it satisfies one of the following
conditions:

• ∀(v, j) ∈ Z, dega(xv) = 1. Furthermore there exist (v, j), (w, k) ∈ Z, such
that v = w and j ̸= k (i.e. only coefficients of monomials of degree 1, with
two (possibly different) coefficients of the same monomial).
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• or, ∃! (v, j) ∈ Z, v = 0 and ∀(w, k) ∈ Z \ {(v, j)} dega(xv) = 1 (i.e. 2r−1 − 1
coefficients of monomials of degree 1, and one constant coefficient).

Proof. This is a direct consequence of Proposition 3.14 and the proof is similar
to the one of Corollary 3.13. The only difference is that the ANF of p(2)

C ◦ p(1) is
considered rather than the one of p(1). The reason is that sub-leading coefficients
after one round correspond to the constant coefficients α(1)

0,i with i ∈ J0, 319K. Some
of these coefficients are flipped through p

(2)
C .

In the following, we only focus on highest-degree and sub-leading terms.
Regarding highest-degree terms, they benefit from the inherent symmetries due to
the structure of the permutation of Ascon. In the following, we denote by ≪ the
cyclic shift on 64-bit words. In other words, for any u ∈ F64

2 and ℓ ∈ J0, 63K, we
denote by u≪ ℓ ∈ F64

2 the element defined by the following relation:

∀ i ∈ J0, 63K , i ∈ Supp(u≪ ℓ) ⇐⇒ (i− ℓ mod 64) ∈ Supp(u).

Proposition 3.16 (Rotation invariance for highest-degree terms). Let r ∈ J1, 6K.
Let j ∈ J0, 4K, let u ∈ F64

2 such that dega(xu) = 2r−1. Let α(r)
u,0+64j be decomposed

as:
α

(r)
u,0+64j =

∑
va,vb,vc,vd∈F64

2

βa,b,c,d a
vabvbcvcdvd ,

with βa,b,c,d ∈ F2. Then for any i ∈ J0, 63K, we have:

α
(r)
u≪ℓ,i+64j =

∑
va,vb,vc,vd∈F64

2

βa,b,c,d a
va≪ℓbvb≪ℓcvc≪ℓdvd≪ℓ.

Proof. The only layers that break the symmetries in the ANF of Ascon are the
constant additions p

(r)
C , r ∈ J1, 6K. But constant additions only modify the

polynomial expression of the constant coefficients. Therefore the only constant
addition that can influence the expressions of highest-degree terms is p(0)

C . But it
is already noticed in the proof of Corollary 3.13 that it is not the case.

Proposition 3.16 then enables us to only study highest-degree terms in a single
column, as any property can be adapted to any other column. This is not the case
for sub-leading terms which are influenced by the first two constant additions. The
first one, p(0)

C , can completely be ignored as it only flips the value of a few unknown
bits bi into bi + 1. Recovering the value of ones or the others is equivalent, up to
a flip at the end of the state-recovery. The second one, p(1)

C , flips the value of a
few constant terms α(1)

0,i . The equations recovered in Section 3.4.4.c may be based
on them but, as we will see, these flips will have no influence on the hardness of
solving such equations.
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3.4.3 Two specific families of highest-degree terms

For now, we focus on exhibiting conditional cubes based on highest-degree terms.
To do so, we first fix as primary variable x0 so that all described monomials xu
now always contain x0. Because of Proposition 3.16, every statement is easily
generalized to any other choice of primary variable by a mere shift of all indices.

Linear divisors after 2 rounds. Let i ∈ J0, 319K, ℓ ∈ J1, 63K. Let consider
x0xℓ, that we denote by xu (with u = ξ(0) + ξ(ℓ)), and its coefficients α(2)

u,i ≠ 0 in
the ANF of p(2)

i . By Corollary 3.13, α(2)
u,i can be decomposed as:

α
(2)
u,i =

∑
(j,k)∈Z

α
(1)
ξ(0),j

α
(1)
ξ(ℓ),k

,

over a set of pairs Z. For any (j, k) ∈ Z, let us decompose j as j = jc + 64 · jr with
jc ∈ J0, 63K its row index and jc ∈ J0, 4K its column index. As shown by Table 3.3,
the coefficients of x0 after one round are only row-dependent and are linear for
rows 0, 3, 4. Therefore, if for all (j, k) ∈ Z, jr is constant and equal to 0, 3 or 4,
then α

(2)
u,i has a linear divisor which belongs to {a0 + 1, e0, a0}.

This phenomenon does happen in the ANF of p(2). More importantly, for
some ℓ, this happens for each non-zero α(2)

u,i and the linear divisor is sometimes
independent of i. In that case, the family (α(2)

u,i)i∈J0,319K has a common linear divisor.
We therefore introduce the subsets Za0+1, Za0 , Ze0 , Z0, Z

′ that partition J1, 63K
and that are defined as follows. Let ℓ ∈ J1, 63K, let u = ξ(0) +ξ(ℓ) so that xu = x0xℓ.
Then:

• ℓ ∈ Za0+1 if a0 + 1 is a linear common divisor of the coefficients (α(2)
u,i)i∈J0,319K.

• ℓ ∈ Za0 if a0 is a linear common divisor of the coefficients (α(2)
u,i)i∈J0,319K.

• ℓ ∈ Ze0 if e0 is a linear common divisor of the coefficients (α(2)
u,i)i∈J0,319K.

• ℓ ∈ Z0 if ∀ i ∈ J0, 319K , α(2)
u,i = 0.

• ℓ ∈ Z ′ otherwise.

This partition classifies the monomials x0xℓ in the ANF of p(2). Because its
ANF is still sparse, the contents of the sets Za0+1, Za0 , Ze0 , Z0, Z

′ can be clearly
identified and are detailed in Table 3.4.
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Set Cardinality
Za0+1 = {9, 12, 18, 19, 21, 28} 6
Za0 = {7, 24, 41, 43, 52} 5
Ze0 = {17, 35, 40, 46, 55} 5

Z0 =

 1, 4, 5, 6, 8, 14, 15, 16, 26, 27, 30, 34,
37, 38, 48, 49, 50, 56, 58, 59, 60, 63

 22

Z ′ =

 2, 3, 10, 11, 13, 20, 22, 23, 25, 29, 31, 32, 33,
36, 39, 42, 44, 45, 47, 51, 53, 54, 57, 61, 62

 25

Table 3.4: The sets Za0+1, Za0 , Ze0 , Z0, Z
′.

Two classes of highest-degree terms. From there, we exhibit two classes of
highest-degree monomials after 6 rounds whose coefficients have a very particular
structure. In order to build monomials of degree 32, 31 variables have to be chosen,
as we already (arbitrarily) selected x0.

Proposition 3.17 (Class C(a0 + 1, e0)). Let Z ⊂ Za0+1 ∪ Ze0 ∪ Z0 be such that
|Z| = 31. Let u ∈ F64

2 be such that Supp(u) := {0} ∪ Z. Let i ∈ J0, 319K. Then,
α

(6)
u,i can be decomposed as:

α
(6)
u,i = (a0 ⊕ 1)γu,i,a + e0γu,i,e,

for some γu,i,a, γu,i,e ∈ F2[a, b, c, d].

Proof. According to Corollary 3.13, α
(6)
u,i can be seen as a sum of products∏

(v,j)∈W α
(2)
v,j where ∀(v, j) ∈ W , wt(v) = 2. For each product, there exists a

single (v, j) such that xv = x0xℓ for some ℓ ∈ Z. But according to the definitions
of Z, all coefficients (α(2)

v,k)k∈J0,319K of xv = x0xℓ are either 0, or divisible by a0 + 1
or e0. The result follows immediately.

In the same way, we prove the following proposition for another class of
coefficients with a slightly different decomposition.

Proposition 3.18 (Class C(a0, e0)). Let Z ⊂ Za0 ∪ Ze0 ∪ Z0 such that |Z| = 31.
Let u ∈ F64

2 such that Supp(u) := {0} ∪ Z. Let i ∈ J0, 319K. Then, α(6)
u,i can be

decomposed as:
α

(6)
u,i = a0φu,i,a + e0φu,i,e,

for some φu,i,a, φu,i,e ∈ F2[a, b, c, d].

Definition 3.19 (Classes C(a0 + 1, e0) and C(a0, e0)). Let u ∈ F64
2 . The monomial

xu is said to belong to the class C(a0 + 1, e0) if u matches the criteria of
Proposition 3.17. Similarly xu belongs to the class C(a0, e0) if u matches the
criteria of Proposition 3.18. ▷
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Partial linear divisors. As shown by Propositions 3.17 and 3.18, the coefficients
of monomials in C(a0 + 1, e0) and C(a0, e0) are highly structured. This structure
generalizes the idea of coefficients with linear divisors, with instead two partial linear
divisors. This generalization is needed as the same reasoning cannot lead to highest-
degree coefficients that share a common divisor. Indeed for any β ∈ {a0 + 1, a0, e0},
we observe that |Z0 ∪ Zβ| < 31. Interestingly, linear common divisors exist if the
number of rounds is reduced or when looking at the initialization of Ascon. As an
example, Li, Dong & Wang [LDW17] mounted conditional cube attacks against 5-
and 6-round initializations. Their choice of coefficients that share a linear divisor
can be explained by such a reasoning.

Two specific choices of monomials. In the following, we leverage the structure
of the coefficients of monomials in classes C(a0 + 1, e0) and C(a0, e0) to mount our
cube attack. To do so, we only need one specific monomial of each class. These
monomials are chosen by following a simple rationale.

For the monomial xv ∈ C(a0 + 1, e0), we build the set of indices Z by selecting
all indices of Ze0 , all indices of Z0 and the 4 smallest indices of Za0+1. Similarly,
the monomial xw ∈ C(a0, e0) is built by selecting all indices of Ze0 , all indices of Z0
and the 4 smallest indices of Za0 . The supports of v, w are detailed in Table 3.5.

Prim.† Za0+1 Za0 Ze0 Z0 Z′

v
9, 12, 17, 35, 40, 1, 4, 5, 6, 8, 14, 15, 16, 26, 27, 30,

-0
18, 19

-
46, 55 34, 37, 38, 48, 49, 50, 56, 58, 59, 60, 63

w -
7, 24, 17, 35, 40, 1, 4, 5, 6, 8, 14, 15, 16, 26, 27, 30,

-0
41, 43 46, 55 34, 37, 38, 48, 49, 50, 56, 58, 59, 60, 63

Table 3.5: Supports of v and w. † Prim. stands for primary variable.

For the inner-state recovery, we also need shifted versions of xv, xw, namely
xv≪j , xw≪j for any j ∈ J0, 63K. Each of them belongs to a class C(aj + 1, ej) or
C(aj , ej) for j ∈ J0, 63K, that can be defined as in Definition 3.19. Their coefficients
have thus a decomposition similar to the ones described in Propositions 3.17
and 3.18.

3.4.4 Inner-state recovery against the full encryption of Ascon

Everything is now setup to describe the actual recovery of the inner state. This
attack considers an adaptative chosen-plaintext scenario and is decomposed into
three steps, that will be successivelly described in this section.

1. The first step, that will be described in Section 3.4.4.a, recovers all ej and (in
average) half of the bits aj , from the values (α(6)

u,i)i∈J0,63K where u = v ≪ j or
u = w ≪ j for all j ∈ J0, 63K. These bits ej , aj are deduced from the general
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form of the coefficients exhibited in Propositions 3.17 and 3.18 even if their
expressions will not be explicitly computed.

2. The second step (see Section 3.4.4.b) recovers the remaining aj by a classical
cube-attack targeting other highest-degree monomials xu. Indeed, the bits
recovered at Step 1 drastically simplify the polynomial expressions of the
considered (α(6)

u,i)i∈J0,63K, which can this time be exactly computed.

3. Finally, the third step (see Section 3.4.4.c) recovers most of the bits bj and
cj by targeting some sub-leading monomials, whose coefficients are sparse
polynomials of degree at most 2 in these unknowns. The few remaining bits
bj and cj are eventually recovered by an exhaustive search.

3.4.4.a First step: recovering most of the bits ai and ei

In the first step, we recover the value of ej for all j and the value of aj for most
of the indices j. To do so, we mount a conditional cube attack using xv and xw

defined in Table 3.5, and their 63 rotations xv≪j , xw≪j with j ∈ {1, . . . , 63}.

The case of a0, e0. For now, let us focus on j = 0, that is, on xv. For any
i ∈ J0, 319K, the algebraic expression of αv,i is partially known from Proposition 3.17.
However, as shown on Figure 3.5, only p(6)

J0,63K(x, a, b, c, d) is accessible to an attacker.
Therefore, only (α(6)

v,i )i∈J0,63K are considered and the values of these coefficients are
recovered using Eq. (3.2), or equivalently using Proposition 2.10. As evaluating the
64 coefficients corresponds to evaluating the derivative of 64 coordinates along the
same direction, these evaluations are done in parallel for a time and data complexity
of 232, by computing ε := ∑

x⪯v p
6
J0,63K(x, a, b, c, d).

The adversary then studies the obtained system of equations:

∀ i ∈ J0, 63K , (a0 ⊕ 1)γu,i,a + e0γu,i,e = εi.

If there exists i such that εi = 1, then necessarily a0 = 0 or e0 = 1. Without further
knowledge on γv,i,a, γv,i,e for all i, this is in theory the only way of recovering
information. However, experimental results show that the reciprocal statement
is in practice satisfied. In other words, each time that εi = 0 for all i ∈ J0, 63K,
then a0 = 1 and e0 = 0 can be assumed. This is highlighted by Figure 3.6. As
expected if a0 = 1, e0 = 0, any observed value for (α(6)

v,i )i∈J0,63K is necessarily3 0.
But more importantly, in the three remaining cases the coefficients (α(6)

v,i )i∈J0,63K

behave randomly: each individual α(6)
v,i not only follows a Bernouilli distribution

with probability 0.5 (see the bottom part of Figure 3.6), but they also seem to
behave independently from one another. This is highlighted by the top of Figure 3.6,
where the vector (α(6)

v,i )i∈J0,63K seems to follow a binomial distribution with success
probability 0.5.

3This can be thought as a conditional distinguisher : under the assumption, a0 = 1, e0 = 0,
the value of the coefficients is constant.
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This indicates that if (a0, e0) ̸= (1, 0), the vector (α(6)
v,i )i∈J0,63K is the zero vector

with an extremely low probability. During our experimentation, that we expect to
be representative due to the 4000 trials, this event was never observed. Therefore,
when the zero vector is observed, the guess that a0 = 1 and e0 = 0 is (almost)
never a wrong guess.

The same observations are made for the case of xw with Figure 3.7. In that case,
(α(6)

w,i)i∈J0,63K is zero for a0 = 0, e0 = 0 and behaves randomly in the three other
cases. In the light of these experimental results, the following two assumptions are
made in the remaining of this section.

Assumption 3.20. Let ε be the vector of values of (α(6)
v,i )i∈J0,63K computed during

the cube attack. If ε is the zero vector, then the guess (a0 ⊕ 1 = 0 and e0 = 0) is
wrong with a negligible probability.

Assumption 3.21. Let ε be the vector of values of (α(6)
w,i)i∈J0,63K computed during

the cube attack. If ε is the zero vector, then the guess (a0 = 0 and e0 = 0) is wrong
with a negligible probability.

The general case. The index of the considered bits a0, e0 is the index of the
primary variable x0. But according to Proposition 3.16, everything remains identical
if we choose another primary variable. So, Assumptions 3.20 and 3.21 can be
adapted to the shifted monomials xv≪j , xw≪j for any j ∈ J1, 63K. This enables us
to recover all the bits ei and, in average, half of the bits ai by following Algorithm 1.

Algorithm 1 Step 1: v and w are defined in Table 3.5.
Output: ej for all j ∈ {0, . . . , 63} and aj for some j ∈ {0, . . . , 63}

for all j ∈ {0, . . . , 63} do
aj ← −1, ej ← −1 ▷ Initialize all variables.

end for

for all j ∈ {0, . . . , 63} do
εv ← CubeSumVector(xv≪j)
if εv = (0, · · · , 0) then
aj ← 1, ej ← 0 ▷ Assumption 3.20

else
εw ← CubeSumVector(xw≪j)
if εw = (0, · · · , 0) then
aj ← 0, ej ← 0 ▷ Assumption 3.21

else
ej ← 1 ▷ No assumption

end if
end if

end for

The cost of this first step is thus upper-bounded by 64× 2 = 128 computations
of derivatives along spaces of dimension 32. In other words, time and data costs
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Figure 3.6: Distribution of the Hamming weight of (α(6)
v,i )i∈J0,63K (top) and

balancedness of each α
(6)
v,i for any i ∈ J0, 63K (bottom) for 4000 random inner

states sorted according to the value of (a0, e0).
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Figure 3.7: Distribution of the Hamming weight of (α(6)
w,i)i∈J0,63K (top) and

balancedness of each α
(6)
w,i for any i ∈ J0, 63K (bottom) for 4000 random inner

states sorted according to the value of (a0, e0).
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are upper-bounded by 128 × 232 = 239, while the memory cost is negligible. In
the worst case, only e is recovered. This happens when e is the all-one vector
e = (1, . . . , 1). On the other hand, in the best case scenario both e and a are
recovered and this happens when e is the zero vector.

Finally, note that xv, xw are arbitrary choices within the class C(a0 + 1, e0) and
C(a0, e0). We expect that any other choice would behave in a similar manner.

3.4.4.b Second step: recovery of the remaining bits ai

At the end of the first step, all bits ej for j ∈ J0, 63K are recovered while only
the bits aj where j ∈ J0, 63K \ Supp(e) are recovered. The objective of Step 2
is therefore to start from a set U = {j, aj is still unknown} = Supp(e) and to
iteratively update its contents so that U becomes as small as possible.

To do so, we rely on the knowledge from Step 1, but also from the knowledge
acquired throughout Step 2. This step therefore consists in an adaptative cube
attack.

Adaptative choice of cubes. Let u ∈ F64
2 of Hamming weight 32. As shown by

Table 3.3 and Corollary 3.13, any coefficient α(6)
u,i depends on at most 64 variables

which are aj , ej with j ∈ Supp(u). But because of Step 1, the 32 values of ej
with j ∈ Supp(u) are actually known. So only at most the 32 variables aj with
j ∈ Supp(u) remain. By choice, we can select u such that the actual number of
unknowns is far less than 32. This has two consequences.

• First, by replacing variables by their known values, the ANF becomes very
sparse. This happens either because terms are known to be 0, or because
two terms are simplified and cancel out, for instance e0a2a3x

u + e1a2a3x
u,

if e0 and e1 are known to be equal to 1. This sparsity obtained through
partial knowledge enables us to compute in practice the ANF of α(6)

u,i in
which the known variables are substituted by their values. This is what the
ComputeCoefficients procedure in Algorithm 2 performs.

• Secondly, by deliberately lowering the number of unknowns, we also lower
the degree of the obtained expressions. Therefore for each choice u, we
obtain 64 equations (one for each (α(6)

u,i)i∈J0,63K) of small degrees and in a few
variables. Such systems are usually easy to solve.

This is precisely the way the second step works, as described in Algorithm 2.
In our experiments, we tried to limit the number of unknowns variables to 4 or

5, that is, |U ∩ Supp(u)| ∈ {4, 5}. This might not always be possible, especially
at the first iteration where U = Supp(e). For the first iteration, the number of
variables can be limited to 5 in 91.5% of the time, and to 9 in 99.2% of the time.
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Algorithm 2 Overview of Step 2
Input: U = {j, aj is still unknown}.
A,E, sets of index-value pairs (i, v) corresponding to the recovered bits ai (resp.
ei) during Step 1.

Output: aj for most j in U .
while U ̸= ∅ do

Choose u ∈ F64
2 : wt(u) = 32, U ∩ Supp(u) ̸= ∅, preferably |U ∩ Supp(u)| ≤ 5.

P ← ComputeCoefficients(u,A,E) ▷ P , 64 polynomials.
ε← CubeSumVector(xu)
S ← SolvePolynomialSystem(P, ε) ▷ S, set of index-value
A← A ∪ S pairs of recovered values.
U.remove({i such that (i, v) ∈ S})

end while

Implementation of ComputeCoefficients. In order to recover the ANF of
α

(6)
u,i where the known variables are substituted by their values, we compute a

partial ANF of pr, r ∈ J1, 6K, round after round. Because of Proposition 3.11, this
partial ANF contains only highest-degree terms xv. Furthermore, each xv satisfies
v ⪯ u as they are the only terms that can influence the coefficient of xu at the
sixth round. This way, the computation of a partial coefficient only took a few
seconds and less than 16 Go of RAM. This can be considered as an implemented
version of the Partial Polynomial Multiplication method introduced by Rohit et
al.[Roh+21].

System solving. The obtained systems were also quickly solved. To do so, we
used Cryptominisat [SNC09] which is a SAT-based solving algorithm. Note that
linearization might also be possible as there are only 25 = 32 monomials in 5
variables and we have at hand 64 equations. The choice of u, and especially the
value of |L ∩ Supp(u)| affects the cost of solving the system. The only heuristic
that we used was to lower the number of unknowns as much as possible. It gave in
practice good results.

Finalizing the second step. However, quite unexpectedly, the very last bits of
a may be harder to recover. The problem is not the system solving, but finding
an interesting system instead. Indeed, the more variables are known, the more
likely we are to build a partial ANF of a coefficient which happens to be constant.
In that case, there is no problem with stopping Step 2 with a few remaining
unknowns aj . As shown below, the next step requires only a few values of aj
with j ∈ Supp(e). The other ones can be recovered in the final exhaustive search.
Overall, the online cost of Step 2 is less than 64 computations of derivations along
spaces of dimension 32. The time complexity of building and solving the systems
is harder to predict. According to our experimentation, with proper choices from
the adversary, these costs remain negligible compared to the time complexity of
the cube-sum computations.
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3.4.4.c Third step: recovering most of the bits bi and ci

At this stage, we expect that all the bits ej are recovered, as well as almost all aj .
Step 3 then consists in recovering bits bj and cj for all j ∈ J0, 63K, while dj can
then be computed as dj = ej ⊕ cj ⊕ 1. To do so, we cannot leverage highest-degree
terms which only depend on variables ej , aj . We therefore mount a cube attack
targeting sub-leading monomials xu, that is, monomials of degree 31. As the second
step, the third one is adaptative and is based on the computation of the expression
of α(6)

u,i where the recovered variables are substituted by their values.

Quadratic equations in the remaining unknowns. Because all ej and most
aj bits have been recovered, almost all coefficients α(1)

u,i where wt(u) = 1 are
recovered and can be considered constant. Corollary 3.15 can thus be greatly
simplified.

Corollary 3.22. Let r ∈ J2, 6K. Let u ∈ F64
2 such that dega(xu) = 2r−1 − 1. Let

i ∈ J0, 319K such that α(r)
u,i ≠ 0. Let us assume that aj and ej are known for all j,

j ∈ Supp(u). Then α
(r)
u,i can be expressed as a sum whose terms have one of the

following forms:

• a binary constant, or

• a quadratic polynomial with monomials of the form bj , cj , bjcj for all j ∈ J0, 63K.

Proof. This is a direct consequence of Corollary 3.15 where the coefficients of all
degree-1 terms are replaced by known constants. The first case of Corollary 3.15
boils down to a product of known constants, that is, to a known constant. The
second case boils down to the product of a constant with a coefficient α0,i after
p

(2)
C , for some i. This coefficient is (up to an addition by 1) equal to α(1)

0,i . But α(1)
0,i

is the sum of three coefficients α(0.5)
0,ℓ for some ℓ. The expressions of α(0.5)

0,ℓ are given
in Table 3.3. Only the monomials bj , cj , bjcj remain once dj is expressed as the
sum cj + ej + 1, and ej , aj are replaced by their known values.

In the case where some aj with j ∈ Supp(u) are still unknown, the same
corollary holds. In that case however, the monomials aj , ajbj , ajcj can also appear
for all j such that aj is unknown.

Any coefficient α(6)
u,i with dega(u) = 31 can therefore be expressed as a sparse

quadratic polynomial. Indeed, if |U | ≥ 0 values of aj remain unknown before Step 3,
any α(6)

u,i with dega(u) = 31 depends, after substitution, on at most 128 + |U | linear
terms and 64 + 2 |U | quadratic terms.
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Avoiding useless equations. Contrary to the second step, some unwanted
choices of u, where (α(6)

u,i)i∈J0,63K does not give information, can be avoided thanks
to the following analysis.

Proposition 3.23. Let u ∈ F64
2 be such that dega(xu) = 16. Let i ∈ J0, 319K. Let∏

j∈Supp(u) Lj ̸= 0 be a product appearing in the decomposition of α(5)
u,i given by

Corollary 3.13. Then, there exists j ∈ Supp(u) such that Lj = ej.

Proof. This is proved by keeping track, at round r ∈ J1, 5K of the coordinates
i ∈ J0, 319K in which, any α(r)

u,i (for u ∈ F64
2 , wt(u) = 2r−1) satisfies the announced

property. Bounds on the number of ei appearing in each product are given in
Table 3.6.

Round 1 2 3 4 5 6
Row r0 0 0 1-2 1-4 1-7 2-13
Row r1 0 1 1-2 0-3 1-6 3-15
Row r2 x 1 0-1 1-2 3-7 3-15
Row r3 1 0-1 0-1 1-3 2-8 2-15
Row r4 0 0 1 2-4 1-7 2-13

Table 3.6: Lower and upper bounds on the number of ej variables appearing in
each product (Corollary 3.13) of the coefficients α(r)

u,i , where dega(xu) = 2r−1.

Corollary 3.24. Let u ∈ F64
2 be such that dega(xu) = 31. Let us suppose that

ej = 0 for all j ∈ Supp(u). Then, for any i ∈ J0, 319K, α(6)
u,i = 0.

Proof. This is a direct consequence of Proposition 3.23, together with Corollary 3.15.

The choice of monomials xu for Step 3 is therefore made so that Supp(u) ∩
Supp(e) ̸= ∅.
Remark 3.25. Such choice is not possible if e = 0. However, in that case, it is
expected that recovering b and c should be easier than in any other cases. This is
highlighted by the observation made with Algorithm 1: the case e = 0 is the best
case scenario where the entire Step 2 can be skipped. ▷

Apart from the selection process of the monomials, Step 2 and Step 3 follow
the same process, already presented in Algorithm 2.
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Some possible trade-offs. In that case however, the set Supp(u) ∩ Supp(e)
only affects the number of variables and the sparsity of the system, but not
its degree, which is bounded by 2. A small set Supp(u) ∩ Supp(e) makes the
procedure ComputeCoefficients faster, while a larger one allows the recovery of
more unknowns in one stroke. We prefer keeping |Supp(u) ∩ Supp(e)| around 4
or 5. In that case, for a given u with dega(xu) = 31, computing in parallel the
expressions of (α(6)

u,i)i∈J0,63K took about 5 to 25 minutes on two AMD EPIC 7352
(24 cores, 2.3GHz). The long computations were skipped by using the intermediate
number of terms as indicator of whether or not the remaining computations will
be too costly.

Overall, at least 128 equations are needed to recover the 128 bits of b and
c, so at least two derivatives along spaces of dimension 31 have to be computed.
Indeed, contrary to the case of coefficients of highest-degree terms, the dependency
of sub-leading monomials is not only limited to variables bj , cj with j ∈ Supp(u).
Using 3 random monomials is often enough to recover all the unknown bits except
at most 10.

3.4.4.d Finalizing the recovery

After the three steps, a small number of unknown bits of the inner state is expected
to remain. They can be recovered through an exhaustive search. In the end, the
complexity of the attack is dominated by the cost of the cube-sums of degree-32
monomials, that is, by (128 + 64)232 ≈ 27.6+32 < 240 both in time and data.

It is hard to give an explicit formula for the time complexity of the adaptative
phases during Steps 2 and 3. However, from our experiments, they can be effectively
mounted on a personal computer or a single cluster node. The entire process did
not last more than a few hours on two AMD EPIC 7352.

3.4.5 Analyzing the attack with the benefit of hindsight

In this section, we comment the attack described in Section 3.4. First, we identify
the properties that make our attack possible. This is particularly important from a
designer’s point of view. Next, we compare our attack with the independent work
and Chang, Hong & Kang [CHK22] which was published around the same time as
our work, and which shares similarities with it.

3.4.5.a Counter measures

The first step that is described in Section 3.4.4.a is the cornerstone of the attack.
Indeed, by using conditional cubes, this step enables us to recover 96 bits in average
of a and e, without having to compute the exact ANF of any coefficient α(6)

u,i . From
there, the security of the remaining bits collapses with an avalanche effect. We thus
consider counter-measures that avoid the use of cubes similar to those involved in
Step 1.



102 Chapter 3. Higher-order cryptanalysis and its application to Ascon

As in all previous cube attacks against Ascon, the targeted monomials in
Step 1 are chosen to have the highest possible degree. This is motivated by an
already-mentioned heuristic: let D be a bound on the degree of a function F . If
F is used with both public variables x0, . . . , xn−1 and private ones k0, . . . , kκ−1,
then the coefficient αu,i ∈ F2[k0, . . . , kκ−1] of xu cannot be of degree more than
D − wt(u). Targeting highest-degree term then a priori provides the simplest
possible equations. From the analysis made in Proposition 3.11 and Corollary 3.13,
this also enables us to consider 64 equations in only 128 unknowns, out of the 256
possible ones. Finally, because of the quadratic Sbox and the small number of
rounds, targeting this highest-degree cube is still possible in practice.

Increasing the number of rounds. The most natural idea to prevent such an
attack is to increase the number of rounds during encryption. By adding a single
round, a highest-degree term would be a term of degree 64, and there exists a single
such term in 64 variables. This means that only a single highest-degree term could
be exploited. Each of its 64 coefficients α(7)

u,i with i ∈ J0, 64K would depend a priori
on 128 private variables, and the data limitation of 264 would be reached with the
single derivation along the 64-dimensional space. The major drawback is of course
an increased encryption and decryption cost, as well as a lowered throughput.

Changing the outer-state row. A more-interesting counter-measure could be
to change the row corresponding to the outer state. Indeed, we could consider
XORing the plaintext with any of the four other Rows 1, 2, 3 or 4 instead of Row
0. This would have no effect on the performance of Ascon. However, contrary to
its affine-equivalent form χ [Ber+11], the Sbox of Ascon is not rotation-invariant.
Therefore, changing the position of the outer state changes the algebraic properties
of the considered function, because public and private variables do not play the same
role anymore. We carried out the same study as the one described in Section 3.4.2
for each of the four other possibilities and tried to find some conditional cubes in
the line of Section 3.4.3. The main observations are summarized in Table 3.7. The
sets mentioned in the third column of this table are similar to the ones described
in Table 3.4. For instance, the first row of Table 3.7 should be understood as, for
5 indices j, the coefficients α(2)

u,i where xu = x0xj have (a0 + b0 +d0 + 1) as common
linear divisor.

As a result, any of the four other choices is achieving a better resistance against
our method than the current setting. Indeed, when the outer state corresponds to
Row 2, the average number of recovered bits is 32, while it is 96 for Row 0. The
other three scenarios do not enable us to find any conditional cube of dimension
32.

Our method leverages the slow diffusion of the public variables through the
first rounds, and more specifically the low number of distinct quadratic monomials.
Inserting public variables in different columns while the Sboxes are applied column-
wise limits the number of quadratic monomials in public variables after the first
rounds. When the outer state corresponds to Row 0, this is accentuated by the
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Initial Linear terms
state after S1

Cardinality Analysis

a0 (a0 + b0 + d0 + 1)x0 |Za0+b0+d0+1| = 5
x0 (b0 + c0 + 1)x0 |Zb0+c0+1| = 3
b0 x0 5 + 3 + 5 + 12 < 31
c0 x0 No cube as in Section 3.4.3.
d0 (a0 + d0 + 1)x0 |Za0+d0+1| = 5

|Z0| = 12
a0 (b0 + 1)x0 |Zb0+1| = 4 4 + 6 + 23 > 31.
b0 (b0 + c0 + 1)x0 |Zb0+c0+1| = 6 Cubes can be built
x0 x0 as in Section 3.4.3.
c0 x0 The event (bi, ci) = (1, 0)
d0 * should be detected.

|Z0| = 23 Avg. recovered bits: 32.
a0 x0
b0 (b0 + c0 + 1)x0 |Zb0+c0+1| = 3
c0 d0x0 |Zd0 | = 4 3 + 4 + 5 + 12 < 31
x0 (a0 + 1)x0 |Za0+1| = 5 No cube as in Section 3.4.3.
d0 x0

|Z0| = 12
a0 b0x0 |Zb0 | = 5
b0 x0 5 + 4 + 5 + 5 + 12 = 31
c0 (d0 + 1)x0 |Zd0+1| = 4 but b0 and b0 + 1 cannot
d0 (a0 + 1)x0 |Za0+1| = 5 be used at the same time.
x0 (b0 + 1)x0 |Zb0+1| = 5 No cube as in Section 3.4.3.

|Z0| = 12

Table 3.7: Overview of conditional cubes when the outer state is moved to Row 1,
2, 3 or 4.

absence of all public variables in the third row after one round. It also occurs
in the only case where conditional cubes can be built, that is when the outer
state corresponds to Row 2. When initialization is targeted, as done in [LDW17,
Dob+15, Roh+21, RS21], the same observations can be made when inserting public
variables (corresponding to the nonce) on Row 3 and keeping Row 4 all-zero, or by
inputting the same variables on both Row 3 and Row 4.

It seems that the sparsity of some of the coordinates of the Sbox is the main
cause: another Sbox might achieve a better resistance to (conditional) cube attacks,
but probably at the cost of an increased number of gates.
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3.4.5.b Comparison with the work of Chang, Hong & Kang

Another conditional cube attack against nonce-misused Ascon has been exhibited in
a concurrent work by Chang, Hong & Kang [CHK22]. Both our attack and theirs
were proposed independently. They both use conditional cubes to first recover the
128 bits of a and e. In particular, similarities appear between our cube xv and
their Pattern-A as 27 out of the 32 variables involved in the cube are identical.
The objective of this section is to compare both choices. The main comparison
points are presented in Table 3.8.

Our attack [CHK22]

Conditional cube = Conditional cube

Za0 ∪ Z0 = {v1, · · · , v27}

Recovery of primary variable = conditional cube variable

a and e Supp(w) = Pattern-A =

{0} ∪ Z0 ∪ (Za0 \ {52}) ∪ Ze0

≈
{0} ∪ Z0 ∪ Za0 ∪ {2, 9, 12, 18}

239 in time and data ≈ 244.8 in time and data

Recovery of Ad hoc cube-like attack ̸= Exhaustive search

b and c ≈ 238 in time and data ̸= 2128 in time

=, ≈ stand for exact and partial correspondence, ̸= stands for no correspondence.

Table 3.8: Comparative study of our attack with [CHK22].

The similarities are due to a common desire to conditionally study the
(dis)appearance of coefficients α(2)

u,i , where xu = x0xj , and which involve a0. To
do so, with x0 as primary variable, both works start from the 27 variables from
Za0 ∪Z0. But 5 additional variables are required to build a monomial of degree 32.
From there, the directions taken by both parties greatly differ. They can be
compared by classifying the quadratic monomials in the ANF of p2 used with
private and public variables. This ANF is simple enough to be fully computed
using SageMath [Sage24]. This classification is presented in Figure 3.8.

Under the assumption that a0 = 0, it can be observed that 27 monomials x0xj
do not appear: Chang, Hong & Kang selected all corresponding xj in their pattern
while we only selected 26. As explained in Section 3.4.3, this is only because in our
rationale, the variables of Za0 were the last ones to be selected, and only 4 out of
the 5 indices of Za0 were needed.

The remaining 63− 27 = 36 monomials split into subsets depending on whether
or not all x0xj could disappear from the ANF if other conditions were added to
condition a0 = 0. Among them, 12 + 7 = 19 monomials (represented in the bottom
right-hand corner of Figure 3.8) can disappear from the ANF if a single linear
condition (depending on j) is added to a0 = 0:

• 7 monomials are such that the GCD of the coefficients of x0xi is divisible
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{x1, · · · , x63}

27

Some x0xi appear under condition a0 = 0.

10

2

5

A single other linear condition on the inner state
is required to make all x0xi disappear.

12

7

Variables xi such that:
no x0xi appear under condition a0 = 0 : Sa ∪ S0 = {v1, · · · , v27}, see [CHK22].

Variables xi such that some x0xi appear under condition a0 = 0, and:
no condition on the inner state will change that (some constant coefficients are present).
no condition on the inner state will change that (some complementary coefficients are present).
two linear conditions at least are needed to make them all disappear.
a single other linear condition different from e0 = 0 is sufficient to make them all disappear :
{w1, · · · , w12},see [CHK22].
no x0xi appear under conditions (a0 = 0, e0 = 0) : Se ∪ {10, 13}.

Figure 3.8: Overview of the quadratic monomials x0xi, i ∈ {1, . . . , 63} after the
second round.

by e0. Their indices form the set Ze0 ∪ {10, 13}. We chose the remaining
32− (1 + 26) = 5 variables among Ze0 .

• The 12 remaining ones have 12 distinct linear GCDs independent from e0:
they form the set {w1, · · · , w12} [CHK22] in which the authors chose the
remaining 32− (1 + 27) = 4 cube variables.

Our choice corresponds to variables j such that all terms x0xj vanish when
e0 = 0 and a0 = 0, see Proposition 3.17. The choice from [CHK22] is different since
a linear condition per variable is needed in addition to condition a0 = 0; hence
4 + 1 = 5 conditions. This is the reason why their attack does not work for any
value of the state ΣE and needs to be repeated for 32 triples of key, nonce and
associated data in average, until the state satisfies the required conditions.

Moreover, it is worth noting that minimizing the number of conditions per cube
has several advantages. First of all when the vector of coefficients (α(6)

u,i)i∈J0,63K
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is not the zero vector, the adversary recovers the OR of all negated conditions.
The fewer conditions, the easier it is to combine these multiple ORs to recover
more bits as it is done in the last else case of Algorithm 1. Furthermore, the fewer
conditions, the easier it is to partition all inner states into disjoint subsets, thus
enabling independent recoveries of bits, as shown by the independent use of all
xv≪j for j ∈ J0, 63K.

The recoveries of the last 128 bits are also entirely different in both works, as
pointed out in Table 3.8.

3.5 Concluding remarks
As shown in this chapter, higher-order differential techniques are redoubtable
vectors of attacks against block ciphers. They can leverage the inherent structure
of the overall construction of a round function, as shown with the Square attack,
but they also benefit from the simplicity of the algebraic normal form. Such flaws
can be detected using automatic tools or other methods related to the division
property, but also by hand. In that case, a careful analysis of the successive ANF
of the first rounds can lead to attacks as the one presented in Section 3.4. However,
such analyzes are only reserved to ciphers where the ANF is sufficiently sparse
and structured. They moreover highly rely on the small growth of degree. This is
the main reasons why higher-order differential attacks can often only be applied
to round-reduced versions of cryptographic primitives, or to primitives based on
low-degree round functions.

Today, while very-optimized tool-based methods lead to relatively small gain,
the attacks mounted by hand are not in the spotlight anymore and have trouble
taking on new forms. This is however the latter ones that nourish the former
ones. In the following, we therefore expose some directions that, to the best of
our knowledge, have never been investigated, and which seem, at least on paper,
interesting to pursue.

Data-optimized cube attacks. As mentioned many times, most, if not all,
cube attacks target monomials of highest-degree, due to the a priori simplest
form of their coefficients. This implies a high cost in data as derivation along
Prec(u) requires the value of F (v) for any v ⪯ u. This high data requirement is
in practice never exploited to its fullest. Indeed, the knowledge of {F (v), v ⪯ u},
not only enables the attacker to recover the value of the coefficient of xu (see
Proposition 2.10 or Eq. (3.1)), as the 2wt(u) coefficients of monomials xv with v ⪯ u
can be recovered as well. These coefficients are a priori more intricate, but could
be made sparser after the recovery of some first bits.
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Conditional distinguishers. A related idea is to directly focus on coefficients
of low degree. Again, their a priori complexities is counter-balanced by the
low data cost of evaluating them. This therefore enables us to target a lot of
them, rather than just a few costly ones. It is then possible to accept the fact of
recovering information only one out of many times: this may happen for instance
for coefficients (αu,i)i∈J0,63K with very intricate polynomial representations, which
degenerate into very simple polynomials under some conditions on the unknowns.
This is for example the case of the coefficients targeted in Section 3.4.3, which,
under two linear conditions, collapse into the zero polynomial. Such coefficients
could be used in attacks, especially if querying their values is not too costly.

This direction is in particular made possible by the efficient and exact techniques
mentioned in Section 3.1.2.a that can compute the exact ANF of some coefficients.
In most of the cases such coefficients cannot be directly used in an attack because
they are too dense. But if a heuristic method was able, given a known polynomial
to effectively point out conditions under which this polynomial is simplified, for
instance becomes unbalanced, this would be highly beneficial to the field.

Probabilistic distinguishers. Finally, while the recent work of Hu, Peyrin,
Tan & Yap [Hu+23] is very refreshing and proved to be very powerful, it seems
that their framework could be clarified. In the light of Example 3.7, the so-called
higher-order algebraic transitional form and the differential supporting function are
not yet clearly understood (at least to the author of this thesis) and could benefit
from further analysis. As shown by the case of derivatives of order 1, probabilistic
higher-order differential distiguishers should in practice be way more versatile and
powerful than the more restrictive deterministic ones.





Chapter 4

From invariants to the differential
cryptanalysis of conjugates

While the exact theoretical definition of lightweight cryptography is hard to
grasp [BP17], determining the different trends in this field may be a way to
better understand it. One of the main criteria that are taken into account by
designers of lightweight primitives is the hardware area, that is, the size of the
implemented circuit. More recently, as highlighted for instance by the block ciphers
Prince [Bor+12], Mantis [Bei+16], or QARMAv2 [Ava+23] achieving a low-latency
started to gain more and more attention. The designers of Midori [Ban+15] however
took another approach by trying to reduce the energy consumption of a cipher. To
do so, in the original paper [Ban+15], they analyze all the components of their
primitive under construction and present a cipher that is heavily inspired by the
AES, together with a thorough initial cryptanalysis.

In the following years, this cipher attracted many third-party analyses [GL16,
TLS16, Guo+16, LW17, BCC19, Bey18, BCL18, TLS19, Bey21]. In particular, the
invariant subspace attack by Guo, Jean, Nikolić, Qiao, Sasaki & Sim [Guo+16],
the non-linear invariants by Todo, Leander & Sasaki [TLS19] or the invariants by
Beyne [Bey18] all enable us to distinguish Midori (or slightly-modified versions of
it) in a weak-key setting. Even if all of those attacks point out that the choices of
the designers were too aggressive, it is still unclear what exactly goes wrong. This
is actually not an isolated case: many other designs such as iSCREAM [LMR15],
NORX v2.0 [Cha+17], Simpira v1 [Røn16] or Haraka v1 [Jea16] are also threatened
by such attacks.

In this chapter, our first goal is then to draw a precise description of Midori and
a review of the aforementioned cryptanalyses. In particular, the close relationships
between them are exhibited. In a second phase, we continue the analysis effort of
Midori by presenting a differential cryptanalysis, not of Midori directly, but of one
of its conjugates. This technique is highly-inspired from the non-linear conjugate
framework by Beierle, Canteaut & Leander [BCL18]. As in the latter work, this
technique shows that an adversary can always choose to analyze a cipher in a
system of variables in which differential or linear flaws are easier to detect and
stronger than expected, at least in a weak-key setting. Afterwards, we translate
the differential properties of conjugates G ◦ F ◦G−1 of a cryptographic function
F into inherent properties of F , which points out commutative cryptanalysis as a
natural generalization of standard differential cryptanalysis. Finally, we bridge the
gap between differential cryptanalysis of conjugates, commutative cryptanalysis

109
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and, differential cryptanalysis using alternative group laws that is introduced by
Civino, Blondeau & Sala [CBS19]. Hopefully, the obtained dictionary will help
understanding the underlying security notions that a designer should target.

This chapter is based on a joint work with Patrick Felke, Gregor Leander, Patrick
Neumann, Léo Perrin & Lukas Stennes that is published at IACR Transactions
on Symmetric Cryptology, 2022(4) [Bau+23], and on an on-going work with the
same coauthors, together with Christof Beierle. While the differential cryptanalysis
of conjugates is briefly mentioned in the appendix of the published paper, this
technique is described in detail in this chapter.
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4.1 Description of Midori

4.1.1 Context around Midori

Midori is a family of block ciphers designed by Banik, Bogdanov, Isobe, Shibutani,
Hiwatari, Akishita & Regazzoni [Ban+15] in 2015. This primitive is designed to
be competitive with respect to energy consumption, but also to make decryption
available with no significant area or energy overhead. This latter property is also
sought by the reflection ciphers Prince [Bor+12] or Mantis [Bei+16]. As described
in the following sections, both criteria heavily influenced the design of the family.

The Midori family is composed of two members, namely Midori64 which has a
state of 64 bits, and, Midori128 which has a state of 128 bits.

Both Midori64 and Midori128 are ciphers using a 128-bit key. The two designs
are AES-like ciphers that are very similar one to the other. This is the reason why
we first present in Section 4.1.2 the 64-bit-state version which is the most widely
analyzed of both, and in particular by us in Sections 4.3 and 5.1. Based on its
sibling, Midori128 is then succinctly described in Section 4.1.3. At the same time,
we take the opportunity to present and give a name to variants of both Midori64
and Midori128, that were already analyzed in previous works, and that we further
study in Section 5.4.1.a.

4.1.2 Midori64

As in the AES (see Example 1.7), the 64-bit state of Midori64 is viewed as a 4× 4
matrix, but this time of 4-bit nibbles. These nibbles are sometimes called cells in
the following. The cells are numbered from top to bottom, and from left to right,
as depicted in Figure 4.1, and the enumeration is done from the least significant
nibble to the most significant one. For instance, the nibble of index 0 (resp. 12) of
the word 0xfedcba9876543210 is equal to 0x0 (resp. 0xc), and is located at the
top left-hand (resp. right-hand) corner of the matrix representation.

The round function is therefore built with this matrix representation in mind,
as shown on Figure 4.2. The different layers of the round function are described in
the following section.
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Figure 4.1: The 64-bit state of Midori64 seen as a 4× 4 matrix of 4-bit nibbles.
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Figure 4.2: The Sbox layer, MixColumns, ShuffleCells, and constant addition layer
of Midori64.

4.1.2.a The round function

The round function of Midori64 follows a standard SPN construction which
alternates between linear and non-linear layers.

The Sbox layer. The first operation is the Sbox layer. This layer is built as the
parallel application of a single 4-bit Sbox S : F4

2 → F4
2. This Sbox S is therefore

applied to each nibble. We denote by S the Sbox layer, so that S : (F4
2)16 → (F4

2)16

is defined by:
S : (x0, . . . , x15) 7→ (S(x0), . . . , S(x15)).

The look-up table of the Sbox S is given in Table 4.1.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Table 4.1: Look-up table of the Sbox of Midori64 in hexadecimal notation.

We non-exhaustively list some of its noteworthy properties.

• It is an involutive Sbox, i.e. S satisfies S ◦ S = Id. In other words, S is
bijective and its inverse is S itself.

• The linearity of S is L(S) = 8.

• The differential uniformity of S is δS = 4.

• The Sbox S has four fixed points: S(0x3) = 0x3, S(0x7) = 0x7, S(0x8) = 0x8
and S(0x9) = 0x9.
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The MixColumns layer. Then, a MixColumns operation is applied. This
operation, that we denote by MC : F64

2 → F64
2 , is defined as the parallel application

of a single F24-linear operation M : (F24)4 → (F24)4 whose matrix M ∈M4(F24) is
defined by:

M :=


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (4.1)

Contrary to the matrix of the MixColumns operation in the AES, this matrix is
not MDS, but almost MDS as its branch number is equal to 4. While diffusion is not
optimal, the advantage is of course that the MixColumns of Midori is way cheaper
to implement than the one in the AES. Indeed, while M belongs to M4(F24), we
can further observe that it is only made of copies and addition: given a column,
the i-th output cell is the sum of the three input cells of index different from i. As
the addition in F24 coincides with the bitwise addition in F4

2, this further implies
that the MixColumns operation actually corresponds to 16 parallel applications of
N : (F2)4 → (F2)4, where N is defined “just as M”:

N := (x0, x1, x2, x3) 7→ (x1 + x2 + x3, x0 + x2 + x3, x0 + x1 + x3, x0 + x1 + x2).

In other words, it should be noted that M provides no intra-nibble mixing:
given a column, and i, j ∈ J0, 3K, the j-th bit of the i-th output cell only depends
on the j-th bits of the three input cells with index different from i. The function
M is also involutive; the full MixColumns layer MC therefore inherits from the same
property.

The ShuffleCells layer. Afterwards, the cells of the state are reorganized during
the ShuffleCells operation, that is denoted by SC. More precisely, there exists a
permutation σ : J0, 15K ∼−→ J0, 15K such that the i-th output cell after SC, exactly
corresponds to the σ(i)-th input cell before SC. The look-up table of σ is given in
Table 4.2, and a graphical representation of SC is given in Figure 4.3.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ(x) 0 7 14 9 5 2 11 12 15 8 1 6 10 13 4 3

Table 4.2: Look-up table of the permutation of cells σ.

It can be observed that the ShuffleCells operation is noticeably less structured
than the ShiftRows operation of the AES.
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Figure 4.3: Matrix representation of the vectors 0xfedcba9876543210 (left) and
SC(0xfedcba9876543210) (right).

The constant and key addition layer. Finally, additions of constant and
round key occur. Given a round index r ∈ J0, R− 2K, where R ≥ 1 is the number
of rounds, we denote by c(r) and k(r) the respective 64-bit round constant and
64-bit round key added at the end of the round. As r ≤ R− 2, no addition layer
takes place in the last round, but the last round is followed by a post-whitening.
The constants used in Midori are very sparse: if c(r) is seen as a 16-nibble-long
vector, then c(r) ∈ {0, 1}16. In other words, the constant addition only affects the
least significant bit of each nibble of the state.

The whole round function. Finally, given a round index r ∈ J0, R− 1K, we
denote by F

(r)
k : F64

2 → F64
2 the r-th round function. If r ∈ J0, R− 2K, F (r)

k is
therefore defined by:

F
(r)
k := Tk(r)+c(r) ◦ SC ◦MC ◦ S.

The last round function F
(R−1)
k only consists in an Sbox layer: F (R−1)

k := S.

4.1.2.b The full encryption

From the round functions described above, the full block cipher E = (Ek : F64
2

∼−→
F64

2 ) is defined as the composition of R = 16 rounds, with a pre- and post-whitening.
Stated otherwise, let k ∈ F128

2 be the master key and WK ∈ F64
2 be the whitening

key derived from it. Then Ek is defined by:

Ek := TWK ◦ F
(15)
k ◦ F (14)

k ◦ . . . ◦ F (1)
k ◦ F (0)

k ◦ TWK.

The key schedule. The only remaining component to describe is the generation
of the whitening key WK and the round keys k(r) for r ∈ J0, 14K, that are all derived
from the master key k ∈ F128

2 . This scheduling is almost trivial and (therefore)
very efficient: the master key k is decomposed as k = (k0, k1) where k0 ∈ F64

2 (resp.
k1 ∈ F64

2 ) is the least (resp. most) significant half of k. Then WK is defined as the
sum of k0 and k1, while k(r) is equal to either k0 or k1 depending on the value of r
modulo 2, i.e.:

WK := k0 + k1, and ∀ r ∈ J0, 14K , k(r) := kr mod 2.
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4.1.2.c The Vert family of toy ciphers

In the following, we study not only the original Midori64, but also variants of this
cipher where the permutation of cells and/or the round constants are modified.

We therefore introduce a family of toy ciphers called Vert.1 Each instance is
parameterized by a pair (ρ, d) and denoted by Vertdρ. More precisely:

• ρ : J0, 15K ∼−→ J0, 15K is a bijection defining a permutation of cells. The
permutation σ defined in Section 4.1.2.a is replaced by ρ in that case.

• d ∈ F4
2 is a 4-bit constant. In that case, each round constant c(r) =(

c
(r)
0 , . . . , c

(r)
15

)
is replaced by d(r) =

(
d

(r)
0 , . . . , d

(r)
15

)
where for any i, d(r)

i = d

if c(r)
i = 1, and d

(r)
i = 0 otherwise.

Any member of the Vert family is then a 64-bit-state and 128-bit-key cipher.
We denote by VertSC the subfamily of ciphers which uses the original ShuffleCells
permutation used in Midori64, and by VertSR the subfamily which rather uses
ShiftRows, that is, the permutation of cells that is used in the AES.

In other words, if the round constants are considered to be part of the key
schedule algorithms, that is, if k(r) is defined by k(r) := kr mod 2 + c(r) for any r,
then any instance of VertSC can be considered as the original Midori used with a
very-close key schedule. In particular, Vert1

SC coincides with Midori64.
Such modified versions of Midori64 have already been studied. For instance the

subfamily VertSR is considered in the original Midori paper [Ban+15], where bounds
on the number of differential active S-boxes are given. In third-party cryptanalysis
papers, the ciphers VertdSC, with d ∈ ⟨2, 8⟩ have been analyzed by Beyne [Bey18,
Bey20], while Vert5

SC is studied by Todo, Leander & Sasaki in [TLS19].

4.1.3 Midori128

The general construction. As already mentioned, the structure of Midori128 is
really close to the structure of the AES, but even more to the structure of Midori64.
Its 128-bit state is seen as a 4× 4 matrix of bytes, that are sometimes named cells
as well. The round function is also built as the composition of an Sbox layer, a
MixColumns layer, a ShuffleCells layer, and a key/constant addition layer.

The MixColumns MC : (F28)16 → (F28)16 is defined using the same matrix M
that is defined in Eq. (4.1) but M is this time seen as a matrix of M4(F28), and
the ShuffleCells uses the same permutation of cells σ that is given in Table 4.2.

The number of rounds R is equal to 20. The first 15 rounds constants C(r) ∈
(F8

2)(16) are almost identical to the ones used in Midori64: if each byte C(r)
i is

considered as an element of F4
2 × F4

2, then C(r)
i = (c(r)

i , 0). Therefore if C(r) is seen
as 16-byte vector, then C(r) ∈ {0, 1}16. In other words, the first 15 round constants
are the ones of Midori64, but seen as bytes instead of nibbles. The four constants

1As midori means green in Japanese, we choose the French translation of this color to name
this family.
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C(15), C(16), C(17), C(18) also belong to {0, 1}16. Each round key k(r) is equal to the
master key k. This is also the case of WK.

The Sbox layer in detail. Finally, only the Sbox layer is built differently. In
Midori128 four different 8-bit Sboxes are used in parallel. They are denoted by
SSb0,SSb1,SSb2, SSb3. The first one, SSb0, is applied four times in parallel on
the first row, the second one, SSb1, is applied four times in parallel on the second
row, and so forth. The four Sboxes are depicted in Figure 4.4. As we can see on
this figure, for each i ∈ J0, 3K, the Sbox SSbi is defined by Li ◦ SS ◦ L−1

i where
Li : F8

2 → F8
2 is a bit permutation, and SS: F8

2 → F8
2 is the application of two

involutive 4-bit Sboxes in parallel. In other words, each of the Sbox SSbi is a
(linear) conjugate of SS, and therefore is involutive as well.

Figure 4.4: The Sboxes used in Midori128, extracted from [Ban+15].

The Grün family of toy ciphers. Finally, we define a family of toy ciphers
containing Midori128 as a member. We name this family Grün in honor of the
German coauthors of the paper on which this chapter is based on. This family
is again parameterized by a permutation of cells used in place of SC, and by a
constant D ∈ F8

2, so that the the i-th byte of the r-th round constant D(r)
i is equal

to D if the genuine C(r)
i is equal to 1. Otherwise D(r)

i = 0.
From now on, if not explicitly mentioned, Midori stands for Midori64 and not

Midori128, which is only studied in Section 5.4.1.b.

4.2 Previous cryptanalyses of Midori64
With this notation and description in mind, we look back to the main third-party
cryptanalyses of Midori64.
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4.2.1 Invariant subspaces

Main principle. In a paper from 2016, Guo, Jean, Nikolić, Qiao, Sasaki &
Sim [Guo+16] present a distinguishing attack against Midori64, when the cipher is
used with very specific keys. With the naming already introduced in Section 3.3,
this is thus a weak-key attack. The distinguishing property leveraged by the authors
is the existence of an invariant subspace for the round function F : Fn2 → Fn2 without
key/constant addition, that is, an affine space a+ V satisfying F (a+ V ) = b+ V
for some a, b ∈ Fn2 .

Let us suppose that such a, b ∈ Fn2 and V ⊂ Fn2 exist. In that case, given a
round key k(r) in the affine space a+ b+ V , we observe that:

Tk(r) ◦ F (a+ V ) = Tk(r)(b+ V ) = a+ V,

where the last equality is obtained because for any v, w ∈ V , (b+ v) + a+ b+w =
a+ (v +w) ∈ a+ V . In particular, if all round keys belong to the space a+ b+ V ,
then, no matter the number of rounds, the ciphertext corresponding to a plaintext
x ∈ a+V necessarily belongs to a+V . This therefore allows to distinguish a cipher
used with such a weak-key from a random bijection, by using only a single chosen
plaintext. This technique was introduced by Leander, Abdelraheem, AlKhzaimi &
Zenner in 2011 [Lea+11], and an automatic tool to detect such invariant spaces
was proposed by Leander, Minaud & Rønjom [LMR15] in 2015.
Remark 4.1. This tool not only led to the discovery of flaws in block ciphers
such as iSCREAM in the original work [LMR15], it was also a cornerstone in the
discovery of the alternative representation of the key schedule of AES by Leurent
& Pernot [LP21]. This work indeed starts from a partition of the key space into
four subspaces, which are invariant, not over one, but over four rounds of the key
schedule. ▷

Invariants subspaces of Midori64. In the case of Midori64, the authors
of [Guo+16] detect such an invariant by a careful analysis starting from the
Sbox S.

As observed in Table 4.1 and as mentioned in Section 4.1.2.a, 0x8 and 0x9 are
two fixed points of the Sbox. This means that the space {0x8, 0x9}16 = (0x8+V )16

where V = {0, 1} is not only an invariant space of S, it is actually sent onto itself
by S as S((0x8+V )16) = (0x8+V )16. We denote this set by V := (0x8+V )16. The
subspace V is also preserved by the ShuffleCells operation which only reorganizes
the cells, and by the MixColumns layer. Indeed, if u, v, w ∈ {0, 1}, then we observe
that:

0x8 + u+ 0x8 + v + 0x8 + w = 0x8 + (u+ v + w) ∈ 0x8 + {0, 1} .

We prove in the same way the more general fact that M((a+W )4) = (a+W )4

for any linear subspace W ⊂ F4
2 and any constant a ∈ F4

2. Finally, for any r, the
round constant c(r) belongs to V . This in particular means that:

T
c

(r)
i

(0x8 + V ) = 0x8 + (c(r)
i + V ) = 0x8 + V,
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and V is also preserved by any round-constant addition Tc(r) . From there, we
deduce that V is preserved by Tc(r) ◦ SC ◦MC ◦ S. If each round key belongs to
V 16, then the round-key addition behaves as the round-constant addition, and
an invariant subspace for the whole cipher is deduced. Because of the very light
key-schedule, we observe that this is the case if the two halves k0, k1 ∈ F64

2 of k
both belong to V 16. This is how the weak-key space of size 216 × 216 = 232 is
deduced in [Guo+16]. This distinguishing property can immediately be generalized
as a property of any member of Vert1, as the permutation of cells has no influence
here.

A very specific case. In this very specific case, the distinguisher is not just
a standard invariant subspace: the restriction of Midori64 to plaintexts within V
and to keys within {0, 1}32 is actually affine. Indeed, the only non-linear operation
S becomes the identity map, and in particular a linear map, when its inputs are
restricted to its fixed points. The hypothesis made on the keys enables each of
the Sbox layers to satisfy this property. This is the reason why the distinguishing
attack of [Guo+16] leads to a powerful key recovery in the weak-key setting that is
based on solving the linear system obtained.

4.2.2 Non-linear invariants

Main principle. In the following years, Todo, Leander & Sasaki [TLS19]
continued studying weak-key distinguishers. In their paper [TLS19], they again
leverage the fact that, key schedules as light as the one of Midori64 allow to easily
convert conditions on round keys into actual conditions on the master key.

A non-linear invariant of a block cipher E = (Ek : Fn2
∼−→ Fn2 ) is a non-linear

Boolean function f : Fn2 → F2 such that for many k ∈ Fκ2 , there exists εk ∈ {0, 1}
such that Eq. (4.2) is satisfied:

∀x ∈ Fn2 , f(x) + f(Ek(x)) = εk. (4.2)

If such a function f is balanced, this property enables to distinguish the cipher
instantiated with a weak key from a random function F : Fn2 → F2, in a known
plaintext scenario. Indeed, the equality f(x) + f(F (x)) = ε holds in average for
half of the inputs x ∈ Fn2 . If f is not balanced, such a distinguisher can still be
mounted, only with a smaller advantage.

More generally, if there exists f, g : Fn2 → F2 and F : Fn2 → Fn2 such that
g ◦ F = f , we denote it in the following by f F−→ g.

Example 4.2 (Invariant subspaces and non-linear invariants). An invariant
subspace a+V that is mapped onto itself by a block cipher can be interpreted as a
non-linear invariant. Indeed, the function f = 1a+V satisfies in that case f Ek−−→ f .
Furthermore, f is unbalanced unless dim(V ) = n − 1. This unbalancedness is
compensated by considering a chosen plaintext scenario instead of a known plaintext
one. If dim(V ) is instead equal to n− 1, as f is the indicator function of an affine
hyperplane, f is not only balanced, it is actually an affine function.
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On the other hand, a balanced non-linear invariant can be thought of as a subset
Z ⊂ Fn2 (and not a subspace) that is mapped onto itself (or onto its complement
Fn2 \ Z) by a block cipher. Indeed, any function f can be considered as the
indicator function of its support:2 f = 1Supp(f) and Eq. (4.2) is equivalent to
Ek(Supp(f)) = Supp(f) or Ek(Supp(f)) = Fn2 \ Supp(f) depending on the value
of εk. ▷

The restriction to non-linear Boolean functions f is not necessary. However, the
existence of a linear function f satisfying Eq. (4.2) is not expected, as most
of the ciphers today are built with resistance against linear cryptanalysis in
mind. Indeed, in the linear case, Eq. (4.2) is equivalent to Eq. (2.16) with
α = β, because of Proposition 2.49. In other words, invariant subspaces generalize
linear approximations holding with probability one, which correspond to indicator
functions of hyperplanes, while non-linear invariants generalize the former ones to
any indicator function.

Equivalent definition. By looking at Eq. (4.2), we observe that a (non-linear)
invariant for Ek is nothing more than a function f such that for any cycle C ⊂ Fn2
of Ek, f is either constant over C when ε = 0, or alternating between 0 and 1 over
C when ε = 1. The latter case can only occur when the lengths of all cycles in the
decomposition of Ek are even. In the case where some cycles have odd lengths,
the set {1Ci , i ∈ J0, ℓ− 1K} of indicator functions of all cycles immediately yields a
basis of the space of (non-linear) invariants. This is applicable for instance to the
Sbox S of Midori64 which has fixed points and therefore cycles of length 1. We
obviously deduce that invariants then exist for any function. The challenge is then
to find one that is common to many Ek with different keys.

However, for a given k, the cycle decomposition of an instantiated cipher Ek is
usually unavailable due to the cardinality of its domain. This is the reason why,
such invariants are usually found by leveraging both the iterative construction and
the simplicity of the layers.

Non-linear invariants of each layer of Midori64. For the Sbox S of Midori64,
the invariants can be exhaustively listed thanks to the previous observation. The
functions f, g : F4

2 → F2 that are defined by:

f : (x0, x1, x2, x3) 7→ x0+x3+x0x3+x2x3, g : (x0, x1, x2, x3) 7→ x0+x1+x2+x2x3

are among this list and, as shown in Tables 4.3 and 4.4, they satisfy:

f
S−→ f, and g

S−→ g.

We naturally deduce that the functions f̃ , g̃ : (F4
2)16 → F2 defined by:

f̃ : (x0, . . . , x15) 7→
15∑
i=0

f(xi), and g̃ : (x0, . . . , x15) 7→
15∑
i=0

g(xi),

2The support of a Boolean function f is defined as the support of its truth table viewed as a
vector: (f (x))x∈Fn

2
∈ Fn

2 .
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x 0 1 2 3 4 5 6 7 8 9 a b c d e f
f(x) 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0
S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

f(S(x)) 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0

Table 4.3: The quadratic invariant f of the Sbox of Midori64.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
g(x) 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0
S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6
g(S(x)) 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0

Table 4.4: The quadratic invariant g of the Sbox of Midori64.

are invariants of S that satisfy:

f̃
S−→ f̃ and g̃

S−→ g̃.

The functions f̃ , g̃ are also obvious invariants of the ShuffleCells operation, which
only reorganizes the cells, and therefore the sum in the previous definitions of f̃ , g̃.
Furthermore, let (x0, x1, x2, x3) ∈ (F4

2)4 and Σcol := ∑3
i=0 g(Mi(x0, x1, x2, x3)). We

observe that:

Σcol :=
3∑
i=0

g (Mi(x0, x1, x2, x3)) =
3∑
i=0

g(
3∑

j=0,
j ̸=i

xi)

=
3∑
i=0

 3∑
j=0,
j ̸=i

(xj,0 + xj,1 + xj,2) + (
3∑

j=0,
j ̸=i

xj,2)(
3∑

ℓ=0,
ℓ ̸=i

xℓ,3)


=

3∑
i=0

xi,0 + xi,1 + xi,2 +
3∑
i=0

xi,3 3∑
j=0

xj,2 + xi,2

3∑
ℓ=0

xℓ,3 + xi,2xi,3

 ,
where we obtain the last equality by replacing, for all t, ∑3

j=0,j ̸=i xj,t by(∑3
j=0 xj,t

)
+xi,t and then by simplifying thanks to cancellation modulo 2. Finally,

by decomposing the second sum, we observe that:

Σcol =
3∑
i=0

xi,0 + xi,1 + xi,2 +
3∑
j=0

xj,2

3∑
i=0

xi,3 +
3∑
ℓ=0

xℓ,3

3∑
i=0

xi,2 +
3∑
i=0

xi,2xi,3

=
3∑
i=0

xi,0 + xi,1 + xi,2 +
3∑
i=0

xi,2xi,3 =
3∑
i=0

g(xi).

We therefore deduce that (x0, x1, x2, x3) 7→ ∑3
i=0 g(xi) is an invariant for M ,

and therefore that g̃ is an invariant of the whole MixColumns MC. We prove in
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a similar manner that f̃ is an invariant of MC. In the original paper [TLS19,
Theorem 1], this result is proved even more generally for quadratic invariants and
orthogonal linear layers.

Only the addition of a constant (or key) remains to be studied. Let c ∈ F4
2. For

any x ∈ F4
2, we get:

g(x+ c) = (x0 + c0) + (x1 + c1) + (x2 + c2) + (x2 + c2)(x3 + c3)
= g(x) + g(c) + x2c3 + x3c2.

Therefore, if c2 = c3 = 0, that is, if c ∈ ⟨0x1, 0x2⟩, then g(x+ c) = g(x) + g(c).
This is in particular the case of each nibble of the round constants of Midori64.
This implies that g̃ is an invariant of the constant additions satisfying:

∀ r ∈ J0, R− 2K ,∀ x ∈ F64
2 , g̃(x+ c(r)) = g̃(x) + g̃(c(r)).

Non-linear invariant of Midori64. All in all, we deduce that for any x ∈ F64
2

and r ∈ J0, R− 2K:

g̃(Tc(r) ◦MC ◦ SC ◦ S(x)) = g̃(MC ◦ SC ◦ S(x)) + g̃(c(r))
= g̃(SC ◦ S(x)) + g̃(c(r))
= g̃(S(x)) + g̃(c(r))
= g̃(x) + g̃(c(r)).

Finally, by assuming that all round keys k(r) satisfy kri ∈ ⟨0x1, 0x2⟩ for any
i ∈ J0, 15K, and that the same holds for the whitening key, a similar reasoning leads
to:

∀x ∈ F(64)
2 , g̃(Ek(x)) = g̃(x) +

R−2∑
r=0

g̃(c(r)) +
R−2∑
r=0

g̃(k(r)) + g̃(WK) + g̃(WK),

which means that the sum g̃(Ek(x)) + g̃(x) is independent of the input message
x. Note that it also provides one quadratic equation in the key bits. Because
of the light key-schedule of Midori64 that is described in Section 4.1.2.b, we
immediately observe that if both halves k0, k1 ∈ F64

2 of the master key satisfy
k0, k1 ∈ ⟨0x1, 0x2⟩16, then all the aforementioned conditions on the whitening and
round keys are satisfied. The space of weak keys is therefore ⟨0x1, 0x2⟩32, and has
cardinality 264.

Non-linear invariant of the Vert family. The same analysis remains true for
the whole families Vertc where c ∈ ⟨0x1, 0x2⟩, as the function g̃ is an invariant of
any ShuffleCells operation and of any round constant addition in that case.

Regarding f̃ , we observe that if, a constant c ∈ F4
2 satisfies c3 = 0 and c0 = c2,

that is, if c ∈ ⟨0x2, 0x5⟩, then f is an invariant of the constant addition over F4
2

and f̃ of the constant addition over F64
2 if the condition is satisfied for each nibble.

Therefore, f̃ is not an invariant of Midori64, as some nibbles of round constants can



122 Chapter 4. From invariants to the differential cryptanalysis of conjugates

take the value 1, that does not belong to ⟨0x2, 0x5⟩. However, as already mentioned
in [TLS19], f̃ is an invariant of any member of Vertc, with c ∈ ⟨0x2, 0x5⟩, with a
space of weak keys of cardinality 264.

4.2.3 Non-linear invariants from two other points of view

Non-linear invariants of block ciphers were encompassed into two fruitful frameworks
that were also applied to analyze Midori64.

4.2.3.a The matrix point of view

Invariants as eigenvectors. In [Bey18], Beyne studies the non-linear invariants
of Midori64 from the matrix point of view that is presented in Section 2.2.2.b. As
outlined in the aforementioned section, the transition matrix TF of a function
F : Fn2 → Fn2 is, by construction, (the matrix of) the operator which maps for any
x ∈ Fn2 , the function 1x : Fn2 → F2 to the function 1F (x). This means that for
any complex-valued Boolean function g : Fn2 → C, we have, TF (g) = g ◦ F . In
particular for a Boolean function f : Fn2 → F2, by defining g as g = (−1)f , we
obtain TF (−1)f = (−1)f ◦ F = (−1)f◦F . This enables us to reformulate Eq. (4.2)
as:

(−1)f = (−1)f◦Ek+εk ⇐⇒ (−1)f = (−1)εk(−1)f◦Ek = (−1)εkTEk(−1)f .

In other words, a Boolean function f : Fn2 → F2 is an invariant of Ek if and only
if (−1)f is an eigenvector of TF with eigenvalue ±1. In [Bey18], Beyne rather
studies the eigenvectors of the correlation matrix CF with eigenvalue ±1, which
are in one-to-one correspondence with the latter ones, and manages to encounter
again the aforementioned invariant subspace and non-linear invariants. But he
also exhibits a non-linear invariant over two rounds of Midori64 which is not an
invariant under a single round. After all, an eigenvector of a product of matrix
does not have to be an eigenvector of each individual matrix, or equivalently the
two-round invariant f F◦G−−−→ f does not necessarily mean that f G−→ f and f

F−→ f .

New invariants for Vert. To do so and by using his framework, Beyne exhibits
two functions h0, h1 : F4

2 → F2 defined by:

h0 : (x0, x1, x2, x3) 7→ x0 + x2, h1 : (x0, x1, x2, x3) 7→ x0x2 + x0 + x1 + x3 + 1,

which satisfy h1
S−→ h0. This can be immediately deduced from the ANF of S that

is given in Eq. (4.3) by looking at h0 ◦ S = S0 + S2.

S : (F2)4 → (F2)4 (4.3)
x0
x1
x2
x3

 7→

x0x1x2 + x0x1x3 + x0x2 + x0x3 + x1x2x3 + x1

x0x2 + x0x3 + x0 + x2x3 + x2
x0x1x2 + x0x1x3 + x0x3 + x0 + x1x2x3 + x3 + 1
x0x1x3 + x0x1 + x1x2x3 + x1x3 + x2x3 + 1

 .
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By defining h̃0, h̃1 : F64
2 → F2 in a similar manner to Section 4.2.2, and reasoning

likewise, we prove that for any c ∈ F64
2 , it holds that:

h̃0 ◦ S = h̃1, h̃0 ◦MC ◦ SC = h̃0, but also h̃0 ◦ Tc = h̃0 + h̃0(c).

The fact that the last equality holds without any restriction on c is a consequence
of the linearity of h0. All in all, we obtain:

∀c ∈ F64
2 , h̃0 ◦ Tc ◦MC ◦ SC ◦ S = h̃1 + h̃0(c).

Furthermore, because S is involutive, we immediately observe that h0 ◦ S = h1 is
equivalent to h1 ◦ S = h0. We therefore prove in a similar manner that:

∀c ∈ ⟨0x2, 0x8⟩16 , h̃1 ◦ Tc ◦MC ◦ SC ◦ S = h̃0 + h̃1(c),

where the condition on c is due to the non-linearity of h1 and is deduced as in
Section 4.2.2. This proves that the following two equalities hold for all c0 ∈ F64

2
and all c1 ∈ ⟨0x2, 0x8⟩16:

h̃0 ◦ Tc0 ◦MC ◦ SC ◦ S ◦ Tc1 ◦MC ◦ SC ◦ S = h̃0 + h̃0(c0) + h̃1(c1), (4.4)
h̃1 ◦ Tc1 ◦MC ◦ SC ◦ S ◦ Tc0 ◦MC ◦ SC ◦ S = h̃1 + h̃0(c0) + h̃1(c1). (4.5)

This gives two invariants of two rounds of Midori, with conditions only on a single
key/constant addition, which provides distinguishers for the family Vertc where
c ∈ ⟨0x2, 0x8⟩, but not for the original Midori64 as 1 /∈ ⟨0x2, 0x8⟩. The weak-key
space is of cardinality 296 as 32 linear conditions have to be satisfied, but only by
one of the two halves of the master key k.

Weak-key exact linear approximations. Very interestingly, Eq. (4.4) can be
interpreted from the point of view of linear cryptanalysis. Indeed, because h̃0 is
linear, Eq. (4.4) is nothing else than an exact linear approximation, i.e. that holds
with probability 1, in a weak-key setting. This phenomenon goes against intuition
for at least two reasons.

• First, such weak-key exact linear approximations exist for any even number
of rounds. This contradicts, at least in a weak-key setting, the preconception
that the higher the number of rounds is, the more secure the cipher is.

• Secondly, this holds even if the correlation of each linear trail (see Eq. (2.18))
is proved in the original paper [Ban+15] to be of low absolute value. As
mentioned in the comments following Proposition 2.46, this is reminiscent of
a clustering effect where all trails have the same sign and therefore leads to
a maximal correlation.

These two counter-intuitive points are again put on the table with our analyzes
in Section 4.3.3 but also in Section 5.5.2, but this time with a differential
flavor. Similarly, we also show in the aforementioned section that commutative
cryptanalysis provides a tool for capturing differential clustering effects, in the
same way as non-linear invariants capture linear clustering.
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4.2.3.b Conjugate-cipher point of view

In a subsequent work, Beierle, Canteaut & Leander [BCL18] continued investigating
the link between linear cryptanalysis and invariants.

Invariants and high absolute Walsh coefficients. First, they prove in [BCL18,
Theorems 4 and 5] that the existence of quadratic invariants, or of invariants
subspaces, as in the case of Midori or Vert, always imply the existence of highly-
biased linear approximations for the whole cipher instantiated with a weak key.
In particular, the lower bound on the absolute value of the corresponding Walsh
coefficient WEk

(α, β) is exact and not based on any heuristic such as dominant
trails. It can by itself contradicts claims made by some designers. The black spot
is however that this result is non-constructive: an attacker would still have to find
such a linear approximation, which can a priori be different for all keys.

Conjugate ciphers with linear flaws. Furthermore, the authors also unveil a
way to study balanced non-linear invariants through the scope of linear cryptanalysis.
To do so, it suffices to encapsulate the balanced Boolean function g : Fn2 → F2 as
the α-component of a bijection G : Fn2 → Fn2 : α ·G = g. Such a G can be built as
presented in Example 4.3 below. Then, using the bijectivity of G, we can observe
that:

∀x ∈ Fn2 , g(x) + g(Ek(x)) = εk ⇐⇒ ∀x ∈ Fn2 , α ·G(x) + α ·G(Ek(x)) = εk

⇐⇒ ∀x ∈ Fn2 , α · x+ α ·G(Ek(G−1(x))) = εk.

In other words, the conjugate cipher EG := (G ◦ Ek ◦G−1)k∈Fκ
2

admits a space
of weak keys for which there exists a linear relation in input and output bits that
holds with probability 1. Equivalently, the existence of a non-linear invariant can
be understood as the existence of an invariant affine hyperplane of some conjugate
ciphers. In the following, we denote by FG the conjugate of a function F : Fn2 → Fn2
by a bijection G : Fn2

∼−→ Fn2 , that is, FG := G ◦ F ◦G−1.

Example 4.3 (Construction of G). Let g : Fn2 → F2 be a balanced Boolean function
and let us build G : Fn2 → Fn2 such that G0 = g. This particular case corresponds to
α = 0x1 and is actually sufficient to consider. Indeed, for any linear bijection L, the
sets of components of G and of L ◦G are identical, but each individual component
is located at a different place as α · L ◦G = L⊤(α) ·G. For G with G0 = g to be
balanced, it is necessary and sufficient that the restriction of G to its n− 1 last
variables, πn−1 ◦ G : Fn2 → Fn−1

2 is balanced on both Supp(g) and Fn2 \ Supp(g).
In order to build G, we can look at its LUT as a matrix M ∈Mn×2n(F2) where
each row is the look-up table of one of its coordinates, the first one being already
set. Then, M can be completed by considering the two disjoint submatrices
P := MJ1,n−1K×Supp(g) and Q := MJ1,n−1K×(Fn

2 \Supp(g)). Because P and Q have the
size of the LUT of vectorial Boolean functions with n− 1 inputs and outputs bits,
replacing P and Q by the LUT of any bijection of Fn−1

2 leads to a bijection G of
Fn2 with the announced property. ▷
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This point of view provides interesting directions. First, we observe that
invariants only study situations where the input and output masks are both equal
(to α). In standard linear cryptanalysis, such a restriction does not hold, and
should not hold here as well. By considering possibly different masks α, β, an exact
linear approximation for EG coincides with the existence of two balanced Boolean
functions f, g : Fn2 → F2 such that f = g◦Ek for many k. This is already mentioned
by Todo, Leander & Sasaki [TLS19] as a direction “clearly worth discussing”, while
the 2-round invariant of Beyne [Bey18] that is presented in Section 4.2.3.a is based
on such a property over one round. Moreover, this framework enables us to study
probabilistic linear approximations of EG and therefore probabilistic non-linear
invariants of E using the classical methods of linear cryptanalysis. For instance, by
decomposing any EGk as:

EGk = G ◦ Ek ◦G−1 = G ◦ F (R−1)
k ◦G−1︸ ︷︷ ︸(
F

(R−1)
k

)G

◦G ◦ F (R−2)
k ◦ · · · ◦G ◦ F (0)

k ◦G−1︸ ︷︷ ︸(
F

(0)
k

)G

, (4.6)

the conjugates of the round functions can be studied in order to find some dominant
linear trails.

Linear cryptanalysis of a conjugate of Midori. Such a study is already
presented in [BCL18]. In particular, the authors point out some surprising
phenomenon.

First of all, the aforementioned invariants are all of the form f̃ : (F4
2)16 →

F2, x 7→
∑15
i=0 f(xi), for some invariant f : F4

2 → F2 of the Sbox S. Because
it is built iteratively, this implies that the corresponding linear approximation
α · x = α · EGk (x) + εk, not only has probability 1, it also corresponds to a very
degenerate case of Proposition 2.46 where the linear trail α→ α→ . . . α is the only
trail with non-zero correlation. Furthermore, as each intermediate mask is equal to
α = (a, a, . . . , a) ∈ (F4

2)16, for some a ∈ F4
2\{0}, this also means, using the standard

vocabulary, that each Sbox of each round is linearly active. This does not contradict
the wide-trail strategy arguments, as this holds for a non-linear conjugate EG, and
not for E . Indeed, contrary to linear equivalence (see Proposition 2.64), non-linear
conjugation does not preserve linearity: while L(S) = 8, SG is by design built so
that L(SG) = 16. This is nevertheless remarkable, as a related observation in the
differential setting is made in Section 4.3.3.

Furthermore, the probabilistic case is hard to handle. As an example, it is
clear by definition that the number of solutions of α · x ≈ β ·EGk (x) or equivalently
of α ·G(x) ≈ β ·G(Ek(x)) only depends on the two components α ·G and β ·G.
However, by using Proposition 2.46 to approximate this number of solutions, we
observe that the correlation of a trail may depend on all the other components. As
shown by the authors, the approximation of the number of solutions using multiple
trails can, and in practice does, depend on the choice of change of variables G.
This implies that some choices of G theoretically provide an easier understanding
of the possible clustering effect, but no heuristic for this choice is presently known.
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x 0 1 2 3 4 5 6 7 8 9 a b c d e f
h(x) 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0
S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

h(S(x)) 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0

Table 4.5: The cubic invariant h of the Sbox of Midori64.

Nevertheless, the correlation of any single trail with intermediate masks γ =
(γi)i∈J0,15K, where γi ∈ {0, a, b} with α =: (a, . . . , a) and β =: (b, . . . , b), is only
dependent on the two coordinates α ·G and β ·G. An approximation of WEG

k
(α, β)

can thus be given without a formal instantiation of G. Such a study is made in
[BCL18, Section 4.2] by considering deterministic transitions through the Sbox
layer and probabilistic transitions through the linear layer. This provides a quite
accurate estimation of the experimentally observed probability. The obtained
distinguisher over four rounds is probabilistic, but has the advantage to hold for a
bigger space of weak keys. In [BCL18, Section 4.3], some of the deterministic Sbox
transitions are replaced by probabilistic ones to overall obtain a bigger estimated
probability over one full round, and further, over the full Midori. However the
authors experimentally show that the observed probability is actually highly key-
dependent and that the estimated average over all keys is not as representative as
one might at first expect. This is highlighted with a 2-round toy example over a
16-bit state that is described as:

M ◦ Tk1 ◦ (S×4) ◦M ◦ Tk0 ◦ (S×4),

where k0, k1 ∈ F16
2 are independent round keys, M : (F4

2)4 → (F4
2)4 is the Mix-

Columns matrix of Midori and S×4 : (F4
2)4 → (F4

2)4 is defined by (x0, x1, x2, x3) 7→
(S(x0), S(x1), S(x2), S(x3)). The invariant that is considered is based on the
already-introduced invariant for S, g : F4

2 → F2, x 7→ x0 + x1 + x2 + x2x3 and a
new one h : F4

2 → F2 that is defined by:

h : x 7→ x1x2x3 + x1x3 + x0 + x1 + x2 + x3.

The look-up table of h is given in Table 4.5. Then, the invariant of the toy cipher
is denoted by ρ : (F4

2)4 → F2 and defined by:

ρ : (x0, x1, x2, x3) 7→ h(x0) + g(x1) + g(x2) + g(x3).

The linear trail corresponding to the natural transitions ρ Tk◦S×4
−−−−−→ ρ

M−→ ρ was
believed to be dominant and its absolute correlation of at least 9/32 to be a good
approximation of the correlation of the approximation ρ◦M ◦Tk ◦S×4 ≈ ρ. This is
the reason why the absolute correlation of ρ◦M ◦Tk1 ◦S×4 ◦M ◦Tk0 ◦S×4 ≈ ρ was
believed to be at least equal to (9/32)2. Instead, using his matrix-based framework,
Beyne shows in [Bey21, Section 7] that under some conditions on k1, there exists a
better trail with correlation at least 9/16. It is given by:

ρ
Tk0 ◦S×4

−−−−−→ τ
M−→ τ

Tk1 ◦S×4

−−−−−→ τ
M−→ ρ,
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where τ : (F4
2)4 → F2 is defined by τ : x0, x1, x2, x3 7→

∑3
i=0 g(xi). With the benefit

of hindsight, this trail is not so surprising. Indeed, as shown in Tables 4.4 and 4.5,
g and h only differ for two inputs. This implies that τ(S×4(x)) = ρ(x) holds with
probability 14/16. Swapping from the probability-1 transition ρ

S×4
−−→ ρ to the

probabilistic transition ρ
S×4
−−→ τ , has the advantage to now consider τ , which is

an invariant of the first linear layer and the second Sbox layer. The mentioned
conditions on k1 are the ones that allow τ

Tk1−−→ τ to hold with probability 1. They
correspond to the conditions given for g in Section 4.2.2. This explains part of the
observations of [BCL18]. More of them are addressed in [Bey21, Section 7.2].

4.3 Differential cryptanalysis of conjugate ciphers
If previous works have thoroughly studied linear cryptanalysis of conjugate ciphers,
the differential one has been (to the best of our knowledge) left out until now.
As we show in this section, some specific conjugate ciphers can also have some
differential flaws. The Vert family, and in particular Midori64, serves as an example
throughout the section. This work, which is interesting by itself, is also the starting
point of the commutative framework that is presented in the next chapter.

4.3.1 Selecting interesting conjugates

4.3.1.a General overview

Let E = (Ek : Fn2
∼−→ Fn2 ) be a key-alternating block cipher where Ek is iteratively

built as the composition of the round functions (F (r)
k )r∈J0,R−1K, i.e.:

Ek = F
(R−1)
k ◦ . . . ◦ F (0)

k .

As highlighted by Eq. (4.6), any conjugate cipher EGk can be considered as the
composition of conjugate round functions (F (r)

k )G. This enables us to perform a
round-by-round analysis of its differential properties. From the functional point of
view, this amounts to study the block cipher, up to a change of variables described
by G. However, in order to be relevant and practical, some specific choices of G
need to be made.

• First, G needs to be a non-linear bijection. Indeed, as mentioned in
Proposition 2.64, the differential properties of two affine-equivalent functions
are identical, and little can therefore be expected from the consideration of
affine changes of variables.

• Secondly, as nothing is a priori known about the differential properties of non-
linear conjugates, the class of changes of variables that are considered must
be manageable. We therefore restrict ourselves to the parallel application of
changes of variables at the cell level. Stated otherwise, we consider the cases of
G : Fm2

∼−→ Fm2 where m is the size of the Sbox, and look at conjugates ciphers
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of the form EG where G : (Fm2 )s ∼−→ (Fm2 )s is the s-time parallel application of
G, with n = m× s. This in particular enables us to study the Sbox layer by
only focusing on the conjugate SG of a single Sbox.

• Finally, as shown in Proposition 2.33, the differential study of linear layers
and constant additions are usually easy to handle. However, when conjugated
by a non-linear bijection, those layers become a priori non-linear and their
study is therefore more intricate. In particular, the reasoning presented
in Section 2.3.3.d, and the standard assumptions of key-independence of
Section 2.3.3.e do not hold because a conjugate constant addition TGc , with
c ∈ Fm2 , is considered as a whole, and not as the successive composition of
G−1, Tc and G. We therefore study TGc in a weak-key setting. As we mention
below, keeping G as simple as possible simplifies this study.

These remarks have to be taken with caution. Regarding the restriction to
non-linear change of variables, we note that even linear ones can sometimes
be meaningful. For instance, in the already-mentioned work of Leurent &
Pernot [LP21], a linear change of variables for the key schedule of the AES is
exhibited. It also highly simplifies the overall structure of this component and
leads to a better understanding of how it operates.

Regarding the third point, a counter-example that can be given is the case of
a permutation of cells P : (Fm2 )s ∼−→ (Fm2 )s. Indeed, applying in parallel the same
mapping G before or after a permutation of cells is equivalent: G ◦ P = P ◦ G. In
other words, it holds that PG = P, which means that the conjugate permutation
remains identical, and in particular linear, no matter the complexity of G.

4.3.1.b The actual explored space for Midori64

Given the analysis sketched above, we start investigating the case of Midori by
looking at conjugates of its S-box S. With the necessity for G to be simple and
sparse enough, we consider G : F4

2 → F4
2 such that it only contains linear coordinates

except for a single one which is non-linear. These choices are not only the “simplest”
choices of non-linear mappings G, they are also in line with some of the choices
made by Beierle, Canteaut & Leander [BCL18]. Indeed, in [BCL18, Section 4.3]
the mapping that is denoted by G′

1 has a coordinate which coincides with the
previously-introduced invariant h, while the three other coordinates are linear.

Following this direction, we choose at first to study bijections of the form:

Gg(x0, x1, x2, x3) :=
(
x0 + g(x1, x2, x3), x1, x2, x3

)
,

where g is a (non-linear) Boolean function in variables x1, x2, x3. Such bijections are
in fact involutive and correspond to Feistel-like structures. The components of such
functions can be partitioned into a subspace V = ⟨0x2, 0x4, 0x8⟩ corresponding to
23 affine components and an affine space 0x1 + V of non-linear components. In
that sense, this choice of Gg induces an alignment with the canonical basis. Our
search space is nonetheless not limited by this property. Indeed, such an alignment
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disappears as soon as we composeGg with a linear bijection Lout in output. However,
such a composition sums up to study the conjugate Lout ◦Gg ◦S ◦Gg ◦L−1

out, which
has the same differential property as the linear-equivalent mapping Gg ◦ S ◦Gg.

Another arbitrary choice that appears is the fact that Gg is necessarily linear
in x0. This can be solved by composing Gg with a linear bijection Lin in input.
In that case, the mapping SGg◦Lin := Gg ◦ Lin ◦ S ◦ L−1

in ◦Gg is studied, or stated
otherwise, the linear-equivalent Sbox SLin is studied up to the non-linear change
of variables Gg. Note that while SLin and S share the same differential properties,
this is a priori not the case for SGg and SGg◦Lin .

The choice of L−1
in was limited to the usage of the following simple deterministic

algorithm. First, the image of 0x1, i.e. ξ(0), is freely chosen, and then the images of
0x2, 0x4, 0x8, i.e. ξ(1), ξ(2), ξ(3), are successively chosen as the minimum value such
that the rank of the partial list of images increases. The image of the canonical
basis is therefore a basis of F4

2, from which a linear mapping L−1
in is obtained by

linearly expanding the definition. We denote such a mapping by L−1
a , where a is

the image of 0x1.
All in all, we focus on the changes of variables Gg,a that are defined by:

Gg,a := Gg ◦ L−1
a . This space is sufficiently constrained to be efficiently explored

in practice. Indeed, 24 − 1 choices can be made for a, while there exist 28 Boolean
functions g mapping three bits to one. This gives about 212 possibilities for Gg,a.

4.3.2 Layer by layer analysis

The mentioned space of conjugates was first filtered by analyzing the conjugates
of the Sbox. A layer-by-layer analysis was then conducted with the promising
conjugates of Midori. This process is described in detail in the following subsections.

4.3.2.a Sbox layer

Within the class presented above, many changes of variables G induce very weak
conjugates of the S-box S of Midori. More precisely, we identified bijections G such
that SG has a probability-one differential ∆→ ∆.

For example, the look-up tables of Ga,g and SGa,g , in the case where
g(x1, x2, x3) = x1 + x1x3 = x1(x3 + 1), a = 0x5, and ∆ = 0xd, are given in
Table 4.6, and the matrices of La and L−1

a given in Eq. (4.7).

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
Ga,g(x) 0 3 4 7 2 1 6 5 8 a c e b 9 f d
SGa,g (x) b e f c 9 5 d 7 8 4 a 0 3 6 1 2

SGa,g (x+ ∆) 6 3 2 1 4 8 0 a 5 9 7 d e b c f

Table 4.6: A specific change of variables for the Sbox of Midori64.
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La =


0 0 1 0
1 0 1 0
0 1 0 0
0 0 0 1

 L−1
a =


1 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 (4.7)

As we can easily verify in that case, it holds that D∆S
Ga,g (x) = ∆ for any x ∈ F4

2.
This immediately yields a probability-one ∇ → ∇ transition through the conjugate
of the S-box layer SG , where ∇ := (∆, . . . ,∆) ∈ (F4

2)16 and G = G×16
a,g .

4.3.2.b Constant addition

Let us now focus on the other layers. First, we observe that for any x, c ∈ F4
2, and

any g : F3
2 → F2 it holds that:

TGg
c (x) = Gg


x0 + c0 + g(x1, x2, x3)

x1 + c1
x2 + c2
x3 + c3



=


x0 + c0 + g(x1, x2, x3) + g(x1 + c1, x2 + c2, x3 + c3)

x1 + c1
x2 + c2
x3 + c3


= Tc ◦GDδg(x), (4.8)

where δ = (c1, c2, c3).
In the same way, because La ◦ Tc ◦ L−1

a (x) = La(L−1
a (x) + c) = x + La(c) =

TLa(c)(x), we observe that:

TGa,g
c = Gg ◦ TLa(c) ◦Gg = TLa(c) ◦GDδg, (4.9)

where δ ∈ F3
2 corresponds in that case to the last three coordinates of La(c).

In particular, if g is quadratic (as it is the case for the specific one given in
Table 4.6), its derivative Dδg is of degree at most 1, and so does GDδg and therefore
T
Ga,g
c = TL−1

a (c) ◦GDδg. This implies in that case that for any constant c ∈ F4
2, the

derivative of TGa,g
c is constant, which means that any differential ∆in T

Ga,g
c−−−−→ ∆out

is deterministic, and has probability 0 or 1.

In our case, we denote by W (∆,∆) the set of constants for which ∆ T
Ga,g
c−−−−→ ∆

holds with probability 1, that is:

W (∆,∆) :=
{
c ∈ F4

2, D∆T
Ga,g
c (x) = ∆ ∀ x ∈ F4

2

}
. (4.10)

In the case where g is quadratic, the definition of W (∆,∆) can be simplified
into:

W (∆,∆) =
{
c ∈ F4

2, D∆T
Ga,g
c (0) = ∆

}
.
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We now determine W (∆,∆) in the specific case where g is chosen as in Table 4.6,
and where ∆ = 0xd = 0b1101, a = 0x5.

By replacing g and a in Eq. (4.9), we observe that for any x ∈ F4
2, it holds that:

TGa,g
c (x) =


x0 + c2 + x1(x3 + 1) + (x1 + c0 + c2)(x3 + c3 + 1)

x1 + c0 + c2
x2 + c1
x3 + c3



=


x0 + x1c3 + x3(c0 + c2) + c2 + (c0 + c2)(c3 + 1)

x1 + c0 + c2
x2 + c1
x3 + c3

 , (4.11)

where the ANF of La(c) is immediately deduced from its matrix in Eq. (4.7).
In particular, we can express TGa,g

c (0) and T
Ga,g
c (∆) as:

TGa,g
c (0) =


c2 + (c0 + c2)(c3 + 1)

c0 + c2
c1
c3

 ,

TGa,g
c (∆) =


1 + 0 · c3 + 1 · (c0 + c2) + c2 + (c0 + c2)(c3 + 1)

0 + c0 + c2
1 + c1
1 + c3



=


1 + c2 + (c0 + c2)c3

c0 + c2
1 + c1
1 + c3

 .

Therefore, we can express D∆T
Ga,g
c (0) as:

D∆T
Ga,g
c (0) = TGa,g

c (0) + TGa,g
c (∆) =


1 + c0 + c2

0
1
1

 , (4.12)

which implies that D∆T
Ga,g
c (0) = ∆ if and only if c0 + c2 + 1 = 1, i.e. c0 = c2.

In other words, we get W (∆,∆) = ⟨0x2, 0x5, 0x8⟩. To conclude, provided that a
64-bit round key or round constant C satisfies C ∈ (W (∆,∆))16, there exists a
probability-one differential ∇ → ∇ through the conjugate of key/constant addition
T G
C .
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4.3.2.c Linear layer

Let us now consider the linear layer and start with the MixColumns matrix M of
Midori. Given any linear bijection L : F4

2 → F4
2, and (x0, x1, x2, x3) ∈ (F4

2)4 it holds
that:

ML×4(x0, x1, x2, x3) = L×4 ◦M ◦ (L−1)×4(x0, x1, x2, x3)
= L×4 ◦M(L−1(x0), L−1(x1), L−1(x2), L−1(x3))
= L×4(L−1(x1 + x2 + x3), . . . , L−1(x0 + x1 + x2))
= L×4 ◦ (L−1)×4(x1 + x2 + x3, . . . , x0 + x1 + x2)
= (x1 + x2 + x3, . . . , x0 + x1 + x2)
= M(x0, x1, x2, x3),

where the third equality comes from the definition of M and the linearity of L−1.
In particular, the mapping MG×4

a,g can be simplified as:

MG×4
a,g = G×4

g ◦ L×4
a ◦M ◦ (L−1

a )×4 ◦G×4
g = G×4

g ◦M ◦G×4
g = MG×4

g .

Let us consider the first 4-bit coordinate of MG×4
g . We denote it by N0 : (F4

2)4 →
F4

2, in other words, we have:

N0(x, y, z, t) := Gg(Gg(y) +Gg(z) +Gg(t))

=


y0 + z0 + t0 + g(y) + g(z) + g(t) + g(y + z + t)

y1 + z1 + t1
y2 + z2 + t2
y3 + z3 + t3

 .
Therefore, its derivative D(∆,...,∆)N0 can be expressed as:

D(∆,...,∆)N0(x, y, z, t) =


3∆0 +Dδg(y) +Dδg(z) +Dδg(t) +Dδg(y + z + t)

3∆1
3∆2
3∆3



=


∆0 +Dδg(y) +Dδg(z) +Dδg(t) +Dδg(y + z + t)

∆1
∆2
∆3

 ,
where δ is made of the 3 last coordinates of ∆. For the specific g given in Table 4.6,
we observe that:

Dδg(x1, x2, x3) = δ1(x3 + 1) + δ3x1 + δ1δ3.

Furthermore, by considering ∆ = 0xd = 0b1101, the expression becomes
Dδg(x1, x2, x3) = x1. This implies in that case that:

Dδg(y) +Dδg(z) +Dδg(t) +Dδg(y + z + t) = y1 + z1 + t1 + (y1 + z1 + t1) = 0,
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which means that D(∆,...,∆)N0 is constant and equal to ∆. The same reasoning on
each of the three coordinates Ni with i ∈ {1, 2, 3} that can be defined in the same
way leads to the fact that D(∆,...,∆)M

G×4
a,g is constant and equal to (∆,∆,∆,∆),

which ultimately means that D∇MCG = ∇. Stated otherwise, the differential
∇ MCG
−−−→ ∇ holds with probability 1.

4.3.2.d Permutation of cells

As already mentioned, for any permutation of cells P, we have PG = P. This
implies that the conjugate is linear and that D∇(PG) is a constant function equal
to P(∇) = ∇. In other words, ∇ PG

−−→ ∇ holds with probability 1.

4.3.3 A new distinguisher for the Vert family

4.3.3.a A differential trail with probability 1

To sum up, provided that the round key and round constant belong to (W (∆,∆))16,
the differential ∇ → ∇ holds with probability 1 through all the layers of the
conjugate round function of Midori. This implies that, for any number of rounds

R, the iterated differential trail ∇
(F (R−1)

k
)G

−−−−−−→ ∇ −→ · · ·
F

(0)
k

)G

−−−−→ ∇ holds with
probability 1, as long as all keys and constants belong to (W (∆,∆))16. This single
trail gives rise to a differential with probability one for the conjugate cipher EG .
This can be used as a distinguisher against the original cipher E . Indeed, instead
of querying chosen pairs of plaintexts the form (x, x+∇), an adversary asks for
the encryption of a pair (G−1(x), (G−1(x+∇)). With the corresponding pair of
ciphertexts (y, z), he/she computes G(y) + G(z) which should always be equal to
∇ in the case of E . This happens with probability 2−n in the case of a random
function.

Because of the conditions on the round constants, this distinguisher does not
work for the original Midori64. However, it works for any member of Vertc for
c ∈W (∆,∆) = ⟨0x2, 0x5, 0x8⟩, and for 296 weak keys out of 2128, as each nibble
of the master key must belong to W (∆,∆). This space of weak-key is, to the best
of our knowledge, new.

4.3.3.b Relationship with previous distinguishers

Because of the close link between linear and differential cryptanalysis highlighted
in Section 2.3.5, it is natural to question the relationship between this new
distinguisher and the previous non-linear invariants that can be interpreted as
linear approximations of EG . The first thing to notice is that its space of weak keys
strictly contains the weak keys of the invariant x 7→ x0 +x3 +x0x3 +x2x3 exhibited
by Todo, Leander & Sasaki [TLS19]. Indeed, this invariant exists if, as explained in
Section 4.2.2, each nibble of the master key must lie in ⟨0x2, 0x5⟩ ⊂ ⟨0x2, 0x5, 0x8⟩.
On the other hand, our weak-key space has about the same cardinality as the



134 Chapter 4. From invariants to the differential cryptanalysis of conjugates

one of the two-round invariant of Beyne [Bey18], see Section 4.2.3.a. Their
intersection is non-trivial, but both sets are of different nature, as the one of
Beyne is

(
⟨0x2, 0x8⟩16 × F64

2

)
∪
(
F64

2 × ⟨0x2, 0x8⟩16
)

and it constrains only one
half of the master key.

Some of these similarities can be explained by the specific Ga,g that we use in
the above section. The ANF of Ga,g is given by:

Ga,g(x0, x1, x2, x3) 7→


x0x3 + x0 + x2x3

x0 + x2
x1
x3

 .
As we can observe, the component 0x9 ·Ga,g corresponds precisely to the non-linear
invariant mentioned just above. Furthermore, it can be verified with Eq. (4.3) that
0xf ·Ga,g = 0x7 · S + 1. Let us define the linear function h2 and the quadratic one
h3 by:

h2(x) := 0x7 · x = x0 + x1 + x2,

h3(x) := 0xf ·Ga,g(x) + 1 = x0x3 + x2x3 + x1 + x2 + x3 + 1.

The previous observation can then be rewritten as h2 ◦ S = h3. This pair of
functions (h2, h3) therefore plays the same role as the pair (h0, h1) introduced
by Beyne and presented in Section 4.2.3.a. It thus leads in the same way to a
two-round invariant, but this time with

(
⟨0x2, 0x5⟩16 × F64

2

)
∪
(
F64

2 × ⟨0x2, 0x5⟩16
)

as weak-key space. By observing that h2 also appears among the components of
Ga,g, namely 0x6 · Ga,g = h2, this implies that SGa,g admits three exact linear
approximations. Indeed, if we introduce α := 0xf, β := 0x6 and γ := 0x9, the
following linear transitions hold with probability 1:

α
SGa,g

−−−→ β, , β
SGa,g

−−−→ α, γ
SGa,g

−−−→ γ,

the second one being a direct consequence of the involutive property of S.
This is reminiscent of our design choice to select conjugates that stay as close

as possible from the ones of Beierle, Canteaut & Leander[BCL18]. However,
besides the differences between weak-key spaces, the link between our differential
distinguisher and the two-round invariants remains to be clarified. In particular,
the previous example of a single linear trail with maximal correlation and the
new example of a single differential trail with maximal probability that exist for
conjugate ciphers is not only intriguing, it also points out how much such flaws can
go unnoticed when only traditional linear and differential cryptanalysis are studied.
More generally, it opens the question of whether an efficient unified framework
could explain all these flaws at once, or equivalently, the question of whether all
these attacks leverage the same weakness (that still needs to be precisely defined)
only through different means.
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4.4 Two other readings of the differential cryptanalysis
of conjugates

The distinguisher of a differential nature that is presented above prompts further
investigation. In this section, we start a theoretical analysis of this same
phenomenon by presenting two equivalent points of view. The first one is a
subcase of commutative cryptanalysis that is developed in [Bau+23] and that is
presented in detail in the next chapter. We motivate its reason for being in the
following. The second one was recently drawn to our attention at WCC 2024 by
the work of Calderini, Civino & Invernizzi [CCI24a, CCI24b] which focuses on
differential cryptanalysis using other group laws than the usual addition modulo 2.
This section is then dedicated to drawing up a dictionary between the three points
of view. In particular, our distinguisher, as well as two examples used in [CBS19,
CCI24a, CCI24b] are further developed in Section 4.4.5.

4.4.1 Differential cryptanalysis of conjugates and commutative
cryptanalysis

In the following, by the cycle type of a bijection F : Z → Z over a finite set Z,
we mean the detail of how many cycles of each length are present in the cycle
decomposition of F . Let us recall that conjugation is first and foremost, a set-
theoretic notion that deals with the cycle type of a bijection, as it is highlighted by
the following well-known result.

Proposition 4.4. Let Z be a finite set. Let F0, F1 : Z → Z be two permutations.
Then F0 and F1 are conjugate if and only if F0 and F1 share the same cycle type.
In other words, a conjugacy class is characterized by a cycle type.

Proof. F1 can be expressed as a composition of cyclic permutations with disjoint
supports: F1 = σ0 ◦ · · · ◦ σr−1. Let G : Z ∼−→ Z be a bijection. Then, as already
observed in Eq. (4.6), FG1 can be decomposed as:

FG1 = σG0 ◦ . . . ◦ σGr−1.

We therefore only look at G ◦ σ ◦ G−1 for a cycle σ = (a0 . . . as−1). Let x ∈ Z.
If G−1(x) = ai for some i, then G ◦ σ ◦ G−1(x) = G(ai+1 mod s). In other words,
(G ◦ σ ◦G−1)G(ai) = G(ai+1 mod s) for any i ∈ J0, s− 1K. Otherwise, if G−1(x) /∈
{a0, . . . , as−1}, then G ◦ σ ◦G−1(x) = G(G−1(x)) = x. This proves that σG is the
cycle of length s (or s-cycle) (G(a0) . . . G(as−1)), and two conjugate permutations
therefore share the same cycle type. Conversely, let us consider another s-cycle
ρ = (b0 . . . bs−1). Then any permutation G for which there exists j such that
∀ i, G(ai) = bj+i mod s, gives a conjugacy relation between ρ and σ: ρG = σ. Thus,
in the definition of such a G, only the image of Supp(σ) is constrained. By first
pairing each cycle of F1 to a cycle of F2, and then building the look-up table
of G using the partition Z = ⊔i∈J0,r−1KSupp(σi), this proves that F0 and F1 are
conjugate.
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The analysis of Section 4.3 then proves that the security of a cipher not only
depends on its resistance to differential attacks, but also on the resistance of all
bijections sharing the same cycle type.

This can also be understood as an inherent property of the original function
F : Fn2 → Fn2 by using a generalized notion of commutation, rather than conjugation.

Definition 4.5 (Commutation). Let F,A,B : Fn2 → Fn2 . Then, F and A commute
if they satisfy F ◦ A = A ◦ F . By abuse of terminology, A and B are said to
commute through F if they satisfy F ◦ A = B ◦ F . This situation is denoted by
A

F−→ B. More generally, the set of solutions that satisfy a commutation relation is
denoted by:

Zcomm
F (A,B) := {x ∈ Fn2 , F ◦A(x) = B ◦ F (x)} .

By another abuse, we say that A and B commute with probability p ∈ [0, 1] through
F if it holds that:

|Zcomm
F (A,B)|

2n = p.

Such a function A (resp. B) is called the input (resp. output) commutant. ▷

As hinted by the introduced notation, deterministic and probabilistic commu-
tation relations through a cipher can be iteratively studied using commutative
trails. This theory is developed in Chapter 5. For now, let us only consider its
relationship with the differential cryptanalysis of conjugates with the following
proposition. Recall that Zdiff

F (∆in,∆out) is defined by:

Zdiff
F (∆in,∆out) =

{
x ∈ Fn2 , F (x+ ∆in) + F (x) = ∆out

}
.

Proposition 4.6 (Conjugation, commutation and differentials). Let F,G be
functions from Fn2 to itself where G is bijective. Let ∆in,∆out ∈ Fn2 . Then:

1. Zdiff
F (∆in,∆out) = Zcomm

F (T∆in , T∆out), and

2. Zdiff
FG (∆in,∆out) = G

(
Zcomm
F

(
TG

−1

∆in , TG
−1

∆out

))
.

Proof. The first item is an immediate rewording (or a consequence of the second
item with G = Id). Regarding the second item we observe that:

x ∈ Zdiff
FG (∆in,∆out) ⇐⇒ FG(x) + FG(x+ ∆in) = ∆out

⇐⇒ T∆outGFG−1(x) = GFG−1T∆in(x)
⇐⇒ G−1T∆outGFG−1(x) = FG−1T∆in(x)
⇐⇒ G−1T∆outGFG−1(x) = FG−1T∆inGG−1(x)
⇐⇒ TG

−1

∆out ◦ F (G−1(x)) = F ◦ TG−1

∆in (G−1(x))
⇐⇒ G−1(x) ∈ Zcomm

F (TG−1

∆in , TG
−1

∆out)

⇐⇒ x ∈ G
(
Zcomm
F (TG−1

∆in , TG
−1

∆out)
)
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As a direct reading of Proposition 4.6, we observe that differential cryptanalysis
is a particular case of commutation, restricted to commutants that are translations.
The differential study of FG corresponds instead to commutation with commutants
that are conjugates of translations, by G−1, and not G. We denote by T the group
of translations, i.e. T := {Tc, c ∈ Fn2} and state the previous observation as the
following informal corollary.

Corollary 4.7 (Conjugation and commutation). Let F,G : Fn2 → Fn2 , with G
a bijection. Studying the differential properties of FG is equivalent to studying
the commutative properties of F with respect to commutants among the group{
TG

−1
c , c ∈ Fn2

}
= G−1TG.

This simple observation leads to multiple remarks. First of all, Corollary 4.7 is
the differential counterpart of the work of Beierle, Canteaut & Leander [BCL18].
Indeed, commutative properties of a block cipher are related to differential
properties of its conjugates, in the same way as non-linear approximations (and in
particular invariants) are related to linear properties of the conjugates. Surprisingly
however, these properties have never been studied before, at least in such terms
and such generality.

However, Corollary 4.7 also points out that the considered class of commutants
is really restrictive. Indeed, G−1TG is a conjugate of the group T and this implies
that, like T , G−1TG is an Abelian 2-elementary regular group.

A group H is said to be 2-elementary if each non-zero element is of order 2. A
group H ⊂ Bij(Fn2 ) is said to be regular if it satisfies:

∀(x, y) ∈ Fn2 , ∃! h ∈ H, h(x) = y.

The conjugation with T (or the regularity) in particular implies that any element
of G−1TG, except Id, is an involution without fixed point.

For these reasons, differential cryptanalysis of a conjugate cipher can only
provide exact results about (either deterministic or probabilistic) commutations
relations A F−→ B where A,B : Fn2 → Fn2 are strongly constrained. For instance,
it cannot exactly handle pairs (A,B) where one of the commutants is not a
fixed-point-free involution (because of the 2-elementarity) or pairs for which there
exists x ∈ Fn2 , such that A(x) = B(x) (because of the regularity). This is the
reason why commutative cryptanalysis that is developed on its own in Chapter 5
provides in theory a larger class of attacks than the ones covered by differential
analyzes of conjugates. Nonetheless, for an arbitrary pair (A,B), it is still possible
to approximate the number of solutions of a given relation A

F−→ B, by first
approximating A and B by two elements of a given G−1TG.
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4.4.2 Elementary regular subgroups of the symmetric group

As already mentioned, another line of papers [CDVS05, CBS19, CCS21, CCI24a,
CCI24b] tackles a similar problem from a group-theoretic perspective. In particular,
Civino, Blondeau & Sala [CBS19] consider differential equations of a vectorial
Boolean function F : Fn2 → Fn2 of the form:

F (x) ⋄ F (x ⋄∆in) = ∆out,

where ⋄ : Fn2 ×Fn2 → Fn2 is an Abelian group operation for Fn2 . This then generalizes
the usual case which corresponds to the case where ⋄ is the bitwise addition.

Such an operation is built by the authors by first considering a regular 2-
elementary Abelian subgroup T ⊂ Bij(Fn2 ) of the symmetric group. In particular,
given a regular group T , we observe that {τ(0), τ ∈ T } is the full space Fn2 . We
can then enumerate T as T = {Ta, a ∈ Fn2} where Ta is the unique function τ ∈ T
that satisfies τ(0) = a.

Such a notation is chosen because a regular 2-elementary Abelian subgroup
mimics the group of translations T := {Ta : x 7→ x+ a} which is indeed made of
fixed-point-free involutions (except T0 = Id), which commute one with the others,
and where the only one that satifies Ta(x) = y is Tx+y.

Let us clarify this mimicry. First, it is possible to build a group law ⋄ for which
the group of translations is any regular 2-elementary (Abelian) subgroup of Bij(Fn2 ).
The following proposition is the keystone of [CBS19].

Proposition 4.8 (Group law based on a regular subgroup). Let T ⊂ Bij(Fn2 )
be a regular Abelian subgroup of the symmetric group. Let us define the operator
⋄ : Fn2 × Fn2 → Fn2 by:

∀x, y ∈ Fn2 , x ⋄ y := Tx(y).
Then (Fn2 , ⋄) is an Abelian group. Furthermore T coincides with its group of
translations.

Proof. Let us first observe that ⋄ is well-defined. It is a commutative operator
because for any x, y ∈ Fn2 we have:

x ⋄ y = Tx(y) = Tx(Ty(0)) = Ty(Tx(0)) = Ty(x) = y ⋄ x.

Furthermore, for any x ∈ Fn2 , we have by definition x ⋄ 0 = Tx(0) = x so 0 is the
identity element. As T −1

x ∈ T , there exists y such that T −1
x = Ty. We then observe

that this element y satisfies:

x ⋄ y = Tx(y) = Tx(Ty(0)) = Tx(T −1
x (0)) = 0,

which makes y the inverse of x. Finally for any x, y, z ∈ Fn2 , we observe that:

x ⋄ (y ⋄ z) = Tx(Ty(z)), and (x ⋄ y) ⋄ z = Tx(y) ⋄ z = TTx(y)(z).

But TTx(y) satisfies TTx(y)(0) = Tx(y) and Tx ◦ Ty belongs to T and also satisfies
Tx ◦Ty(0) = Tx(y). By the regularity of T , we necessarily have that TTx(y) = Tx ◦Ty
and therefore ⋄ is associative. So (Fn2 , ⋄) is indeed an Abelian group. Furthermore,
for any a ∈ Fn2 , the function x 7→ x ⋄ a coincides by construction with Ta.
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Remark 4.9. The previous proposition is stated without supposing that T is 2-
elementary. If it is the case, then for any x ∈ Fn2 , we have T −1

x = Tx and therefore
x is its own inverse for the group law ⋄. In the following, this will always be the
case. ▷

We can also go further in the parallel between such a group T and the group
of translations thanks to the following well-known result.

Proposition 4.10. Up to isomorphism, there exists a single 2-elementary group
of order 2n, which is Fn2 .

Proof. Any 2-elementary group H is actually Abelian since for any x, y ∈ H,
e = (xy)2 = xyxy. Therefore by left multiplication by x and right multiplication
by y, we observe that for any x, y ∈ H it holds that xy = yx.

Furthermore, there exists a unique definition for a scalar multiplication · : F2 ×
H → H as it should satisfy 1 · h = h for any h ∈ H, but also (1 + 1) · h =
(1 · h)(1 · h) = hh = e, which implies that 0 · h = e for any h ∈ H. This scalar
multiplication satisfies all the necessary axioms making H a finite vector space
over F2. Therefore, H is isomorphic to Fn2 as a vector space and a fortiori as a
group.

So any 2-elementary regular subgroup T of Bij(Fn2 ) is isomorphic to the group
of translations T . But due to a result of Dixon [Dix71, proof of Lemma 1], we can
be even more precise as two isomorphic regular subgroups of the symmetric group
are necessarily conjugate.

Proposition 4.11 (Isomorphic and conjugate regular subgroups [Dix71]). Let
n ≥ 1 and let Sn be the symmetric group of J0, n− 1K. Let H,K be two regular
subgroups of Sn such that there exists a group isomorphism φ : H → K. Then there
exists σ ∈ Sn such that σKσ−1 = H.

Proof. Adapted from [Dix71, Proof of Lemma 1]. Let us define the bijection
σ : J0, n− 1K→ J0, n− 1K by:

∀h ∈ H, σ(h(0)) := φ(h)(0). (4.13)

The bijection σ is well-defined. Indeed, H is regular so {h(0), h ∈ H} = J0, n− 1K,
but we also have {φ(h)(0), h ∈ H} = {k(0), k ∈ K} = J0, n− 1K because φ is
bijective and K is regular. By definition we also note that:

∀h ∈ H, h(0) = σ−1(φ(h)(0)). (4.14)

Let us enumerate K as K = {ki, i ∈ J0, n− 1K} where ki ∈ K is the unique
k ∈ K such that k(0) = i.

Let h ∈ H and let us consider σ◦h◦σ−1. Let i ∈ J0, n− 1K and let us introduce
h̃ := φ(ki)−1 and observe that by construction we have:

φ(h̃)(0) = φ(φ(ki)−1)(0) = ki(0) = i. (4.15)
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Then it holds that:

σ ◦ h ◦ σ−1(i) = σ ◦ h ◦ σ−1
(
φ
(
h̃
)

(0)
)

(4.16)

= σ ◦ h
(
h̃(0)

)
(4.17)

= σ
(
h ◦ h̃(0)

)
(4.18)

= φ
(
h ◦ h̃

)
(0) (4.19)

= φ(h) ◦ φ(h̃)(0) (4.20)
= φ(h)(i). (4.21)

Eq. (4.16) comes from Eq. (4.15), Eq. (4.17) from Eq. (4.14), Eq. (4.18) is only a
different bracket grouping, Eq. (4.19) comes from Eq. (4.13), Eq. (4.20) is due to
the morphism property of φ and finally Eq. (4.21) is again due to Eq. (4.15).

All in all, it holds that σhσ−1 = φ(h), and this implies that σHσ−1 = K.

Let T = {Ta, a ∈ Fn2} be a 2-elementary regular subgroup of Bij(Fn2 ). There
therefore exists a bijection G : Fn2 → Fn2 such that GT G−1 = T . This also implies
that there exists a bijection ψ : Fn2 → Fn2 that satisfies:

∀a ∈ Fn2 , G ◦ Tψ(a) ◦G−1 = Ta. (4.22)

By evaluating the previous equations at point G(0), we obtain:

∀a ∈ Fn2 , G ◦ Tψ(a)(0) = G(0) + a, ⇐⇒ G(ψ(a)) = G(0) + a.

In other words, for a given G such that GT G−1 = T , there exists a single ψ
satisfying Eq. (4.22) and it is defined by:

∀a ∈ Fn2 , ψ(a) := G(G(0) + a)−1.

Let c, a ∈ Fn2 . The group T being Abelian, it holds that Tc ◦ Tψ(a) = Tψ(a) ◦ Tc,
i.e., Tc ◦ Tψ(a) ◦ T −1

c = Tψ(a). But as T is also 2-elementary, any element is its own
inverse so Tc ◦ Tψ(a) ◦ Tc = Tψ(a).

This implies that for any G,ψ satisfying Eq. (4.22), it also holds that for any
c ∈ Fn2 :

∀a ∈ Fn2 , G ◦ Tc ◦ Tψ(a) ◦ Tc ◦G−1 = Ta. (4.23)
In other words, G can be replaced by G ◦ Tc for any c ∈ Fn2 . In particular, with

c = G−1(0), we observe that G ◦ TG−1(0)(0) = G(G−1(0)) = 0, so without loss of
generality, we can always consider G such that G(0) = 0. In that case ψ = G−1

and Eq. (4.22) can be simplified into:

∀a ∈ Fn2 , G ◦ TG−1(a) ◦G−1 = Ta.

We restate this in the following proposition.

Proposition 4.12. Let T = {Ta, a ∈ Fn2} be a 2-elementary regular subgroup of
Bij(Fn2 ) and T = {Ta : x 7→ x+ a, a ∈ Fn2} be the group of translations for the usual
addition law. Then there exists G ∈ Bij(Fn2 ) such that:

∀a ∈ Fn2 , G ◦ TG−1(a) ◦G−1 = Ta. (4.24)
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4.4.3 Differential cryptanalysis of conjugates and ⋄-differential
cryptanalysis

We can henceforth translate the framework of [CBS19, CCI24a, CCI24b] into the
differential cryptanalysis of some conjugates.
Remark 4.13. We stress that the relation between alternative group laws and
conjugation is beyond any doubt well-known by the authors of [CDVS05, CBS19,
CCS21, CCI24a, CCI24b] and mentioned multiple times in these papers. The
novelty of the following formulation is that it relates this technique to commonly-
used tools and notions of standard cryptanalysis. Furthermore, the following
dictionary used in one way or the other provides more examples to each approach.

▷

Let ⋄ : Fn2×Fn2 → Fn2 be an Abelian group operation defined as in Proposition 4.8
for a 2-elementary regular subgroup T ⊂ Bij(Fn2 ). As shown in the previous section,
this is equivalent to saying that we only consider group laws ⋄ that are commutative
and for which each element x ∈ Fn2 is its own inverse.

Let F : Fn2 → Fn2 be vectorial Boolean function and let us consider ⋄-differential
equations of the form:

F (x) ⋄ F (x ⋄∆in) = ∆out, (4.25)
for any ∆in,∆out ∈ Fn2 . In order to study Eq. (4.25), the notion of ⋄-differential
probability is defined in [CBS19] for any ordered pair (∆in,∆out) ∈ (Fn2 )2 as the
quantity denoted3 by P

[
∆in F,⋄−−→ ∆out

]
and defined by:

P
[
∆in F,⋄−−→ ∆out

]
:= 1

2n
∣∣∣{x ∈ Fn2 , F (x) ⋄ F (x ⋄∆in) = ∆out

}∣∣∣ .
We also consider the associated set of solutions Z⋄-diff

F (∆in,∆out) that we define
by:

Z⋄-diff
F (∆in,∆out) :=

{
x ∈ Fn2 , F (x) ⋄ F (x ⋄∆in) = ∆out

}
.

By Proposition 4.12, there exists G : Fn2 → Fn2 such that:

∀a ∈ Fn2 , G ◦ TG−1(a) ◦G−1 = Ta.

The set Z⋄-diff
F (∆in,∆out) can then be equivalently defined by:

Z⋄-diff
F (∆in,∆out) :=

{
x ∈ Fn2 , F (x) ⋄ F (x ⋄∆in) = ∆out

}
= {x ∈ Fn2 , T∆out ◦ F (x) = F ◦ T∆in(x)}

=
{
x ∈ Fn2 , G−1 ◦ TG(∆out) ◦G ◦ F (x) = F ◦G−1 ◦ TG(∆in) ◦G(x)

}
= Zcomm

F

(
TG

−1

G(∆in), T
G−1

G(∆out)

)
.

Combined with Proposition 4.6, we obtain the following proposition.
3In [CBS19], this quantity is denoted by p⋄

(∆in,∆out),F . We choose our notation for uniformity
along this manuscript.
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Theorem 4.14 (⋄-differential, conjugation & commutation). Let (Fn2 , ⋄) be an
Abelian group such that T := {x 7→ x ⋄ c,∀c ∈ Fn2} is 2-elementary and regular. Let
G : Fn2 → Fn2 be such that: ∀a ∈ Fn2 , G ◦ TG−1(a) ◦G−1 = Ta. Then, it holds that:

Z⋄-diff
F (∆in,∆out) = Zcomm

F

(
TG

−1

G(∆in), T
G−1

G(∆out)

)
= G−1

(
Zdiff
FG

(
G(∆in), G(∆out)

))
.

(4.26)

In other words, Theorem 4.14 states that studying the ⋄-differential properties
of F is equivalent to either studying the differential properties of its conjugate FG
or the commutation with commutants among the group TG

−1 .
Stated otherwise, the two methodologies from [CBS19, CCI24a, CCI24b] and

from [Bau+23] coincide: despite the clear difference of flavors, they both study the
differential properties of a conjugate cipher EG = G ◦ F (R−1)

k ◦ . . . ◦ F (0)
k ◦G−1 by

leveraging weaknesses of the conjugate round functions (F (r)
k )G for any r. We also

note that both approaches benefit from the study of the other.
In order to use this dictionary in both ways, we clarify that such a change of

variables G is in practice easy to build.

Lemma 4.15 (Characterization of G). Let (Fn2 , ⋄) be an Abelian group such that
T := {x 7→ x ⋄ c,∀c ∈ Fn2} is 2-elementary and regular. Let G : Fn2 → Fn2 . Then G
satisfies ∀a ∈ Fn2 , G ◦ TG−1(a) ◦G−1 = Ta if and only if G is a group isomorphism
from (Fn2 , ⋄) to (Fn2 ,+).

Proof. The mapping G satisfies the first condition if and only if it holds that:

∀ x, y ∈ Fn2 , x ⋄ y = Ty(x) = G−1 ◦ TG(y) ◦G(x).

This is naturally equivalent to:

∀ x, y ∈ Fn2 , G(x ⋄ y) = TG(y)(G(x)) = G(x) +G(y).

As noted in the proof of Proposition 4.10, (Fn2 , ⋄) is actually a vector space over
Fn2 . We can then fix a basis (b0, . . . , bn−1) such that any element x ∈ Fn2 can be
uniquely decomposed as x = y0b0 ⋄ y1b1 ⋄ . . . ⋄ yn−1bn−1, with yi ∈ F2 for all i. By
Lemma 4.15, G must then satisfy:

∀x ∈ Fn2 , G(x) =
n−1∑
i=0

yiG(bi).

Building such a G is therefore equivalent to selecting a basis (B0, . . . , Bn−1) of
(Fn2 ,+), defining G(bi) = Bi for any i, and expanding the definition by “linearity”.
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4.4.4 Discussions on the weak-key space

With the link drawn in the previous subsections, we can compare the approach of
Section 4.3 with the one of [CBS19, CCI24a, CCI24b], and especially the introduced
notions of weak keys.

4.4.4.a Weak-key space of [CBS19]

The authors of [CBS19] introduced a weak-key space that is denoted by W ⋄ and
defined by:

W ⋄ := {k ∈ Fn2 , Tk = Tk} .

Remark 4.16. The set W ⋄ is defined by W ⋄ = {k ∈ Fn2 , Tk ∈ T } in [CCS21]. Both
definitions coincide because T is regular, so the condition Tk ∈ T necessarily
implies that Tk and Tk must coincide because Tk(0) = k = Tk(0). ▷

From the conjugate point-of-view, W ⋄ can be described as:

W ⋄ = {k ∈ Fn2 , Tk = Tk}

=
{
k ∈ Fn2 , Tk = G−1 ◦ TG(k) ◦G

}
=
{
k ∈ Fn2 , TGk = TG(k)

}
.

In other words, W ⋄ is the set of k such that the conjugate TGk is still a constant
addition, with a possibly different constant. But, because of Lemma 2.27, a function
F : Fn2 → Fn2 is affine with L as linear part if and only if it satisfies:

∀∆in,∆out ∈ Fn2 , P
[
∆in F−→ ∆out

]
=
{

1 if ∆in = L(∆out)
0 otherwise ,

We can thus redefine W ⋄ as in the following lemma.

Lemma 4.17 (W ⋄ as a weak-key space). Let (Fn2 , ⋄) be an Abelian group such that
T := {x 7→ x ⋄ c,∀c ∈ Fn2} is 2-elementary and regular. Let G : Fn2 → Fn2 be such
that: ∀a ∈ Fn2 , G ◦ TG−1(a) ◦G−1 = Ta. Then,

W ⋄ =
{
k ∈ Fn2 , ∀ ∆in,∆out ∈ Fn2 , P

[
∆in TG

k−−→ ∆out
]

= 1∆in(∆out)
}
,

where 1x(y) = 1 if x = y and 0 otherwise.

The description of W ⋄ drawn in Lemma 4.17 explains the fact that it is indeed a
weak-key space: whenever, k belongs to W ⋄, any differential transition through TGk
is deterministic. Stated otherwise, such a transition only depends on the differences
and is independent of the actual values of the considered pairs.

While Lemma 4.17 clearly outlines the importance of the set W ⋄ in such a
study, its structure can be further clarified. This is the purpose of Lemma 4.19,
which relies on the notion of linear structures.
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Definition 4.18 (Linear structure). Let F : Fn2 → Fn2 . Let ∆ ∈ Fn2 . The
difference ∆ is said to be a linear structure of F if the derivative D∆F is a
constant function. The set of linear structures of F is denoted by LS (F ), that is:

LS (F ) := {∆ ∈ Fn2 , ∀ x ∈ Fn2 , D∆F (x) = F (0) + F (∆)} .

▷

Lemma 4.19 (W ⋄ as linear space of G). Let (Fn2 , ⋄) be an Abelian group such that
T := {x 7→ x ⋄ c,∀c ∈ Fn2} is 2-elementary and regular. Let G : Fn2 → Fn2 be such
that: ∀a ∈ Fn2 , G ◦ TG−1(a) ◦G−1 = Ta. Then, W ⋄ = LS (G).

Proof. Starting from the first definition of W ⋄, we observe that:

W ⋄ = {k ∈ Fn2 , Tk = Tk}

=
{
k ∈ Fn2 , Tk = G−1 ◦ TG(k) ◦G

}
=
{
k ∈ Fn2 , G ◦ Tk = TG(k) ◦G

}
=
{
k ∈ Fn2 ,

∣∣∣Zcomm
G (Tk, TG(k))

∣∣∣ = 2n
}

=
{
k ∈ Fn2 ,

∣∣∣Zdiff
G (k,G (k))

∣∣∣ = 2n
}

= LS (G) ,

where we use the first item of Proposition 4.6 for the fifth equality. The last equality
holds because the value of a constant derivative DkG is necessarily G(k) +G(0)
but we have by construction that G(0) = 0.

In light of the following results, the notion of linear structure is relatively
well-understood and gives new insights on this set of weak keys.

Lemma 4.20 (Standard properties of linear structures). Let F : Fn2 → Fn2 . Then:

1. LS (F ) is a linear space and the restriction of F to LS (F ) is affine.

2. If F is bijective then LS
(
F−1) = F (0) + F (LS (F )) and in particular

dim(LS (F )) = dim(LS
(
F−1)).

3. [Lai95, Theorem 3] Let r := dim(LS (F )). Then F is linearly equivalent to a
function G : Fn2 → Fn2 defined by:

G : (x0, . . . , xn−1) 7→ L(x0, . . . , xr−1) + F̃ (xr, . . . , xn−1),

where L : Fr2 → Fn2 is linear and F̃ : Fn−r
2 → Fn2 satisfies LS

(
F̃
)

= {0}.

The proofs of the previous statements are given for the sake of completeness.
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Proof. Adapted from [Lai95, Theorem 3]. Let x, y ∈ LS (F ). Let z ∈ Fn2 . Then:

F (z + x+ y) + F (x+ y) = F (z + x) + F (y) + F (0) + F (x+ y)
= F (z) + F (x) + F (y) + F (x+ y)
= F (z) + F (x) + F (y) + F (x) + F (y) + F (0)
= F (z) + F (0),

where we successively use, the facts that y ∈ LS (F ), then x ∈ LS (F ), and again
y ∈ LS (F ). In other words, x + y belongs to LS (F ), so we deduce that LS (F )
is a linear space. Furthermore we observe that for any x, y ∈ LS (F ), we have
F (x+ y) = F (x) + F (y) + F (0) (by using the fact that either x or y belongs to
LS (F )), which means that F is indeed affine on LS (F ).

Regarding the second item, ∆in ∈ Fn2 belongs to LS (F ) if and only if F ◦
T∆in = T∆out ◦ F where ∆out = F (0) + F (∆in). It is therefore equivalent to
F−1 ◦ T∆out = T∆in ◦ F−1 and therefore to the fact that ∆out ∈ LS

(
F−1) and

thus F (0) + F (LS (F )) ⊂ LS
(
F−1). For the same reason, we have F−1(0) +

F−1(LS
(
F−1)) ⊂ LS (F ). This implies that |LS (F )| =

∣∣LS
(
F−1)∣∣, the inclusion

F (0) + F (LS (F )) ⊂ LS
(
F−1) is then an equality.

Let us now consider a basis (a0, . . . , ar−1) of LS (F ) and complete it into a
basis of Fn2 that we denote by (a0, . . . , an−1). Let A be the linear bijection defined
by A(ξ(i)) = ai for any i ∈ J0, n− 1K. Let x = (x0, . . . , xn−1) ∈ Fn2 . Then it holds
that:

F ◦A(x0, . . . , xn−1) = F ◦A
(
n−1∑
i=0

xiξ
(i)
)

= F

(
n−1∑
i=0

xiai

)

= F

(
r−1∑
i=0

xiai

)
+ F

n−1∑
j=r

xjaj

+ F (0)

=
r−1∑
i=0

xi(F (ai) + F (0)) + F

n−1∑
j=r

xjaj

 ,
where we successively use the linearity of A, the fact that ∑r−1

i=0 xiai is a linear
structure of F , and the fact that F + F (0) is linear over LS (F ). Let us define L
and F̃ by:

L : (y0, . . . , yr−1) 7→
r−1∑
i=0

yi(F (ai) + F (0)), and

F̃ : (y0, . . . , yn−r−1) 7→ F

n−r−1∑
j=0

yjaj+r

 .
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The function L is by construction linear. Let c = (c0, . . . , cn−r−1) be a linear
structure of F̃ . Let b = (0, . . . , 0, c0, . . . , cn−r−1) ∈ Fn2 . Then, for any x ∈ Fn2 :

F ◦A(x+ b) = L(x0, . . . xr−1) + F̃ (xr + br, . . . , xn−1 + bn−1)
= L(x0, . . . xr−1) + F̃ (xr, . . . , xn−1) + F̃ (c) + F̃ (0)
= F ◦A(x) + F ◦A(b) + F (0),

or stated otherwise F (Ax+Ab) = F (Ax) + F (Ab) + F (0). But A being bijective
this implies that Ab is a linear structure of F . However, as Ab = ∑n−1

i=r aibi with
ai /∈ LS (F ) for any i ∈ Jr, n− 1K, this implies that bi = 0 for any such i, and
therefore c = 0. The function F̃ thus only has a trivial linear structure.

Corollary 4.21 (Dimension of LS (F )). Let F : Fn2 → Fn2 . If F is non-linear then
dim(LS (F )) ≤ n − 2. Furthermore, for any F , dega(F ) ≤ n − dim(LS (F )). In
particular, if dim(LS (F )) = n− 2, then dega(F ) = 2.

Proof. Let us suppose that F is non-linear and that dim(LS (F )) ∈ {n− 1, n}. If
dim(LS (F )) = n, then LS (F ) is the full space, and by the first item of Lemma 4.20,
F is affine over Fn2 , which contradicts the non-linearity hypothesis. Therefore, we
have dim(LS (F )) = n− 1. But in that case the third item of Lemma 4.20 implies
that F is linearly equivalent to a function G : x 7→ L(x0, . . . , xn−2) + F̃ (xn−1)
such that L is linear. But the function of a single variable F̃ is either constant
or affine. This implies that F is linearly equivalent to an affine function, which
again contradicts the non-linearity of F . The fact that for any F , it holds that
dega(F ) ≤ n − dim(LS (F )) is also a consequence of the third item: F is indeed
equivalent to a function which can only be non-linear in its n− dim(LS (F )) last
variables.

Upper bound on W ⋄ = LS (G). This good understanding of linear structures
can then be applied to our case. Recall that in order to be an interesting change
of variables, G must be non-linear. In light of Corollary 4.21, it then satisfies
dim(LS (G)) ≤ n− 2. In this particular context, this provides the following upper
bound on the number of weak keys for this attack:

dim(W ⋄) ≤ n− 2.

This result, which is stated in [CCS21, Proposition 4.1], can then be seen as a
consequence of the more general result about linear structures.
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The case dim(W ⋄) = dim(LS (G)) = n − 2. By Corollary 4.21, the maximum
number of weak-keys for the attack of Civino, Blondeau & Sala [CBS19] corresponds
in our context to some specific quadratic G. More precisely, let G be a bijection
such that dim(LS (G)) = n−2. Because of the third item of Lemma 4.20, G can be
written as G = H ◦A−1, where A is a linear bijection and H : Fn2 → Fn2 a function
whose components are made only of constant terms, affine terms and the sole
quadratic term x0x1. Note that x0x1 must appear in at least one coordinate, but
not necessarily all of them. In particular, there exists a bijective linear mapping B
such that B ◦H has a single coordinate containing x0x1 while all others are affine.
However, the differential properties of FG and the ones of FB◦G are identical as
FB◦G = B ◦ FG ◦B−1. This implies that the choices of change of variables G for
which the number of weak keys is maximal are similar to the choices we previously
made in Section 4.3.1.b. This in particular applies to the choices made by the
authors of [CBS19, CCI24a, CCI24b] which focused on maximizing the number of
weak-keys.

Note that, because of Lemma 4.20, the specific case dim(LS (G)) = n−2 implies
that dim(LS

(
G−1)) = 2, and due to Corollary 4.21, both G and G−1 are in that

case quadratic.

Lower bound on W ⋄ = LS (G). Civino, Blondeau & Sala [CBS19] actually
choose G with at least one non-trivial linear structure. This is guaranteed whenever
T is a subgroup of the affine group. This is presented in the following proposition
which is a particular case of a result due to Caranti, Dalla Volta & Sala [CDVS05].

Proposition 4.22 (Non-trivial weak-key space [CDVS05]). Let T be a 2-elementary
regular subgroup of the affine group Aff(Fn2 ). Then T ∩ T ̸= {Id}, and thus
W ⋄ = {k ∈ Fn2 , Tk ∈ T ∩ T} ≠ {0}.

Proof. Adapted from [CDVS05]. For any x, because Tx is affine and satisfies
Tx(0) = x = Tx(0), it can be decomposed as Tx = Tx ◦ Lx where Lx is linear.
Because T 2

x = Id, it holds for any z ∈ Fn2 that:

z = Lx(Lx(z) + x) + x = L2
x(z) + Lx(x) + x.

In particular with z = 0, we observe that Lx(x) = x. Therefore, we also get
L2
x = Id. Let x, y ∈ Fn2 . Then:

TxTyTx = TxLxTyTxLx

= TxLxTy+xLx

= TxTLx(y+x)LxLx

= Tx+Lx(y+x)

= TLx(x)+Lx(y+x)

= TLx(y), (4.27)

where we successively use the decomposition of Tx, the fact that TyTx = Ty+x,
the fact that LxTy+x = TLx(y+x)Lx because Lx is linear, then L2

x = Id and finally
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x = Lx(x) and the linearity of Lx again. In particular, we observe that TxTyTx ∈ T
for any x, y ∈ Fn2 . This implies that the function F : T × T → T that is defined by:

F : (Tx, Ty) 7→ TxTyTx,

is actually well-defined. It corresponds to the action by conjugation of T on the
set T as T −1

x = Tx for any x in our case. As for any action of a p-group H on a
set Z, the orbit-stabilizer theorem states that the number of elements that are
H-invariants is equal to |Z| modulo p. In our case, the set Z of T -invariants is
defined by:

Z := {Ty, TxTyTx = Ty∀x ∈ Fn2}

and it must be of even cardinality. As it contains T0 = Id, it must contain at least
a non-trivial element. To conclude, we now show that Z is actually equal to T ∩ T .
Indeed, we have:

Z =
{
Ty, TLx(y) = Ty, ∀ x ∈ Fn2

}
= {Ty, Lx(y) + y = 0, ∀ x ∈ Fn2}
= {Ty, Ly(x) + x = 0, ∀ x ∈ Fn2}
= {Ty, Ly = Id}
= {Ty, Ty = Ty}
= T ∩ T.

The third equality holds because for any x, y ∈ Fn2 , we have:

Lx(y) + y = Tx(y) + y + x = Ty(x) + y + x = Ly(x) + x.

Corollary 4.23. Let G : Fn2 → Fn2 be bijective. Let us suppose that G ◦ Tc ◦G−1 is
affine for any c ∈ Fn2 . Then dim(LS (G)) ≥ 1.

4.4.4.b Comparison with our weak-key space W (∆, ∆)
As shown in Lemma 4.17, whenever a key belongs to W ⋄, the actual key does not
matter anymore as the behavior is deterministic and independent of the key. This
enables us to launch any kind of differential attacks as it is done in the classical
way.

However, contrary to the standard case, the fraction of the keys cannot exceed
one quarter of the key space. In the setting where the change of variable is a
parallel application of a non-linear change of variables of the size of the Sbox, this
fraction is in practice way smaller.

The set W ⋄ is actually a conservative choice of weak-key space in the sense
that it is built so that any differential attack works. On the contrary, if we are
instead interested in a specific attack taking advantage of some specific transition,
we can hope for a bigger set of weak keys. Let ∆in,∆out ∈ Fn2 , and let us consider
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∆in TG
k−−→ ∆out. In that case, we actually want to consider the set W (∆in,∆out) that

is defined by:

W (∆in,∆out) :=
{
k ∈ Fn2 ,P

[
∆in TG

k−−→ ∆out
]

= 1
}

=
{
k ∈ Fn2 , ∀ x ∈ Fn2 , D∆inTGk (x) = ∆out

}
In other words, we would like to consider linear structures shared by multiples
TGk , for which the corresponding constant derivatives are equal. This definition
actually generalizes the set introduced in Eq. (4.10) on page 130. A direct corollary
of Lemma 4.17 is that for a given ∆ ∈ Fn2 we have:

LS (G) ⊂W (∆,∆).

However in practice, the set LS (G) can be a strict subset of W (∆,∆). An

example is given in Section 4.4.5 below. Furthermore, while transitions ∆
TG

k−−→ ∆
with probability 1 imitates the standard differential case for the bitwise addition,
there might also exist ∆in ̸= ∆out such that W (∆in,∆out) ̸= ∅. Therefore,

transitions ∆in TG
k−−→ ∆out with probability 1 can also be considered in a weak-

key setting. This is in particular important in the case where TGk is affine for any
k. In that specific case, W (∆in,∆out) becomes:

W (∆in,∆out) =
{
k ∈ Fn2 , D∆inTGk (0) = ∆out

}
,

because any derivative of any TGk is constant. This also means that for a fixed
∆in ∈ Fn2 , the sets W (∆in,∆out) for all ∆out ∈ Fn2 partition the set of round keys:⊔

∆out∈Fn
2

W (∆in,∆out) = {k ∈ Fn2} = Fn2 .

4.4.5 Complementing some examples

4.4.5.a The previous conjugate of Midori

Let us take a look back at the analysis of the specific conjugate of Midori that is
addressed in Section 4.3. In particular, let us denote by G : F4

2 → F4
2 the function

Ga,g given in Table 4.6. Its ANF is given by:

G(x) =


x0x3 + x0 + x2x3

x0 + x2
x1
x3

 . (4.28)

Because, we are interested in the properties of SG, Theorem 4.14 states that we
can equivalently study the ⋄-differential properties for a specific law ⋄. The group
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of translations of this law ⋄ is T = G−1TG. For this reason, we can look at the
conjugates TG−1

k . Their ANFs, as well as the ANF of ⋄ are given by:

∀x, k ∈ F4
2, x ⋄ k := TG

−1

G(k)(x) =


x0 + k0 + (x0 + x2)k3 + x3(k0 + k2)

x1 + k1
x2 + k2 + (x0 + x2)k3 + x3(k0 + k2)

x3 + k3

 .
(4.29)

From this ANF, we can easily observe that:

W ⋄ =
{
k ∈ F4

2, Tk = Tk
}

=
{
k ∈ F4

2, k3 = 0, k0 = k2
}

= ⟨0x2, 0x5⟩ .

Because of Lemma 4.19, we can determine W ⋄ without this explicit formula for ⋄.
Indeed, it suffices to look at the linear structures of G. From the ANF of G given
in Eq. (4.28), it is clear that:

∀x,∆ ∈ F4
2, D∆G(x) =


∆0 + x3(∆0 + ∆2) + ∆3(x0 + x2) + ∆3(∆0 + ∆2)

∆0 + ∆2
∆1
∆3

 .
The derivative D∆G is therefore constant if and only if ∆0 = ∆2 and ∆3 = 0, and,
as expected, the same set W ⋄ is obtained.

However, recall that while focusing on the specific transition ∆
TG

k−−→ ∆ where
∆ = 0xd = 0b1101, we computed in Eq. (4.12) (and below) that:

W (∆,∆) =
{
k ∈ F4

2, k0 + k2 = 0
}

= ⟨0x2, 0x5, 0x8⟩ .

In particular, W (∆,∆) strictly contains W ⋄ and the differential trail ∇
(F (0)

k
)G

−−−−→

∇ −→ · · ·
(F (R−1)

k
)G

−−−−−−→ ∇ holds with probability 1 if all nibbles of all rounds keys and
round constants belong to W (∆,∆).

Recall that this trail is based on the differential transition ∆ SG

−−→ ∆ that holds
with probability 1. Because of Theorem 4.14, this property can equivalently be
considered as the probability-1 ⋄-differential transition G−1(∆) S,⋄−−→ G−1(∆) for
the law ⋄ given above, or as probability-1 commutation with the affine function
A := TG

−1
∆ where ∆ = 0xd. The ANF of A can easily be deduced from Eq. (4.29)

using k = G−1(∆) = 0xf = 0b1111 and is given below:

A(x) :=


x2 + 1
x1 + 1
x0 + 1
x3 + 1

 . (4.30)
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4.4.5.b The toy ciphers of [CBS19, CCI24a, CCI24b]

The toy cipher of [CBS19]. In [CBS19], a block cipher with a 15-bit state is
proposed to illustrate ⋄-differential cryptanalysis. It has a standard SPN structure
where the Sbox layer is the 5-time parallel application of a single 3-bit Sbox
S : F3

2 → F3
2.

The look-up table of S is given in Table 4.7.

x 0 1 2 3 4 5 6 7
S(x) 0 6 2 1 5 7 4 3

x 0 1 2 3 4 5 6 7
G(x) 0 1 2 3 6 7 5 4

Table 4.7: The Sbox used in [CBS19] and a suitable change of variables G.

In order to study this Sbox, the authors introduced the law ⋄ : F3
2 × F3

2 → F3
2

that is defined by:

∀x, y ∈ F3
2, x ⋄ y :=

 x0 + y0 + x1y2 + x2y1
x1 + y1
x2 + y2

 .
We can computationally verify that this Sbox is APN, however it has a probability-1
⋄-differential ∆in S,⋄−−→ ∆out, where ∆in = 0x6,∆out = 0x4. This can equivalently be
understood as probability-1 commutative property, or as a probability-1 differential
of SG for some G.

We found out by hand that the change of variables G, that is defined by:

∀x ∈ F3
2, G(x) :=

 x0 + x1x2
x1 + x2
x2

 , G−1(x) =

 x0 + x2 + x1x2
x1 + x2
x2

 ,
satisfies the equality x ⋄ y = TG

−1

G(y)(x) for any x, y. Because of Lemma 4.15, any
isomorphism between (F3

2, ⋄) and (F3
2,+) can be chosen instead of G. Nonetheless,

we continue focusing on this arbitrary case. In particular, we consider A and B
that we define by:

A := TG
−1

G(∆in) = x ⋄ 0x6 =

 x0 + x1 + x2
x1 + 1
x2 + 1

 , and

B := TG
−1

G(∆out) = x ⋄ 0x4 =

 x0 + x1
x1

x2 + 1

 .
By Theorem 4.14, it holds that S ◦A = B ◦ S. This can be verified from the

ANF of S that is given below, together with the one of SG:

S(x) :=

 x0x1 + x1x2 + x2
x0 + x1x2 + x1

x0x1 + x0x2 + x0 + x2

 , SG(x) :=

 x0 + x2
x0x1 + x1x2 + x1 + x2
x0x1 + x0 + x1x2

 .
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We also easily observe that the differential 0x5 SG

−−→ 0x6 holds with probability 1.
This is again due to Theorem 4.14, because G(∆in) = 0x5 and G(∆out) = 0x6.

The toy cipher of [CCI24a, CCI24b]. The recent work of Calderini, Civino
& Invernizzi [CCI24a, CCI24b] deals with the resistance against ⋄-differential
cryptanalysis of Sboxes which are optimal with respect to standard differential
cryptanalysis. They in particular show that such Sboxes have no reason to be
optimal for other laws ⋄, and among an affine equivalence class, two distinct Sboxes
can have two distinct uniformities with respect to ⋄.

To illustrate their work, they build an SPN similar to the previous one, this
time with a 16-bit block size that is decomposed into 4 cells of four bits. The used
4-bit Sbox S is given in Table 4.8.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 0 e b 1 7 c 9 6 d 3 4 f 2 8 a 5

Table 4.8: The Sbox used in [CCI24a, CCI24b].

Its differential uniformity is δS = 4, but, for a law ⋄ built in the same way as
before, it has a probability-1 ⋄-differential ∆in S,⋄−−→ ∆out, where ∆in = 0x7,∆out =
0x6. The law is defined4 by:

∀x, y ∈ F4
2, x ⋄ y :=


x0 + y0 + x2y3 + x3y2

x1 + y1
x2 + y2
x3 + y3

 .
This corresponds to a commutation with probability 1 of A = T0x7 and B = T0x6

through S, or a probability-1 differential G(∆in) SG

−−→ G(∆in) for a suitable G. We
can for instance use:

G :=


x0 + x2x3 + x3

x1
x2
x3

 .
4A look-up table can be found in the slides of the presentation of [CCI24b], see https:

//wcc2024.sites.dmi.unipg.it/SLIDES/Invernizzi.pdf.

https://wcc2024.sites.dmi.unipg.it/SLIDES/Invernizzi.pdf
https://wcc2024.sites.dmi.unipg.it/SLIDES/Invernizzi.pdf
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4.5 Concluding remarks

As shown in this chapter, the kit of cryptanalysis techniques which is available
to an adversary is very large, in particular when the balance of a design between
cost, efficiency, and security is biased toward efficiency. Among the attacks against
the recent lightweight designs, invariants attacks are some of the most devastating.
They indeed enable an adversary not only to leverage the simplicity of the round
function, but also the simplicity of the key schedule. In this way, conditions on the
master key can immediately be derived from conditions on the round keys.

While an invariant is simply a Boolean function which is constant on the cycles
of the considered cryptographic function F , its existence can never been ruled out.
In the case of a block cipher E = (Ek : Fn2 → Fn2 ), the question is instead to find
ways of determining not only an invariant for a given Ek, but one which is common
to Ek for many different keys. Furthermore, such an invariant should be easily
evaluated in order to distinguish the cipher from a random permutation. As shown
in Section 4.2.3, the framework of Beyne [Bey18] or the one of Beierle, Canteaut,
& Leander [BCL18] are two reliable ways of finding such invariants.

Study of conjugates, yet another endless work. In particular, the latter
one opened the question of the study of the conjugacy class of a cipher. Indeed,
an invariant of F is (in most of the cases) a linear combination of (1σ)σ∈C where
C is the cycle decomposition of F . However, the cycle type is invariant under
conjugacy, so finding an invariant for F can as well be done by studying any of its
conjugates FG. The authors point out that the study of invariants is equivalent to
the linear cryptanalysis of all conjugates FG. However, the study of conjugates
is not only limited to the linear case: after all, an adversary is free to choose the
system of coordinates which is better suited to their approach. This is the reason
why we mainly focused on applying to conjugate ciphers the other major class
of attacks, that is, differential attacks. With the example of Midori, we proved
that such considerations are as prolific as in the linear case. This is actually a
frightening observation as the differential uniformity or linearity of the conjugates
of an Sbox are never studied by designers. While the actual security against linear
or differential cryptanalysis of an original cipher E is already hard to study, this
opened door to all conjugates seems endless.

Not so worrying after all ? The partial good news is that a random change of
variables G is unlikely to provide a stronger distinguisher than the one obtained
from the sole analysis of E . Indeed, the conjugate linear layer is a priori not
linear anymore and is expected to play the role of a single and very wide Sbox.
Furthermore, while the constant/key addition is supposed to be the easiest layer
to handle in the case of linear or differential cryptanalysis, its conjugate TGc
becomes in general impressively intricate. This sketched analysis seems to restrict
analysis of conjugates to very structured change of variables, which are, for instance,
parallel applications of a cell-size change of variables, and/or to G which are very
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sparse and/or of low degree. Furthermore, in the light of the previous sections,
⋄-differential [CBS19] is equivalent to the differential analysis of conjugate ciphers.
In particular, they do not form two new kinds of attacks, but a single one. From
our point of view, conjugacy remains a more appropriate method to study such
phenomena, as the adjustment of standard methods seems more direct.

Expanding our current security notions. Still it seems necessary to get a
better understanding of the resistance against such attacks, and in particular of
the differential uniformity and linearity of conjugate Sboxes. Even if a smaller
uniformity or linearity cannot be ruled out for conjugates, being aware of such a
property could enable designers to select the linear layer so that it does not behave
well with system of coordinates in which the Sbox is weak.

Key schedule against weak-key attacks. With another approach, having a
denser key schedule can also prevent weak-key attacks. The downsize this time
is that this component, which is generally not the most studied, now deserves a
proper analysis. It is however likely that after a precise analysis of it, weak-key
spaces can still be figured out. For example, it would not be that surprising that
the recent alternative representation of the AES key schedule eventually leads to
ad hoc attacks leveraging it.



Chapter 5

Commutative cryptanalysis and its
application to Midori and Scream

In the previous chapter, the study of commutation relations of the form F ◦A = B◦F
was shown to be a way of studying differential properties of conjugate functions
FG by only focusing on the original function F . In this context, the nature of the
commutants A,B is very constrained as they necessary are involutions without
fixed point. Still, the generalization of such a study to any kind of commutants is
really tempting.

Such a generalization happens to fall under an even more global theoretical
framework presented by Wagner [Wag04] 20 years ago. However, while unifying
cryptanalysis techniques enables us to put things into perspective, it should be done
in such a way that the obtained class can be populated with actual examples of
cryptanalysis. For this reason, and inspired by the example of Midori developed in
Chapter 4, we choose in this chapter to only consider commutative relations where
the commutants are affine bijective mappings. As it is, commutative cryptanalysis
already generalizes differential cryptanalysis in a direction orthogonal to higher-
order differential cryptanalysis that was presented in Chapter 3. Indeed, such a
study is instead focused on the inherent symmetries of a block cipher. This kind of
properties has naturally attracted much attention in the past [Bou+10, LMR15,
Cha+17]. In particular, linear self-similarities [Bou+10, LMR15] have highlighted
many weaknesses of cryptographic constructions, even in contexts where the actual
used Sbox can be ignored. By allowing ourselves to consider affine mappings, we
necessarily explore a slightly more general class in which unknown weaknesses can
be expected to arise. Furthermore, we also target distinguishers that do depend on
the actual used Sbox.

In this chapter, we then start again with the already well-developed case of
Midori, which serves as our first example of commutation relations with affine
commutants. From there, commutative cryptanalysis is introduced and a precise
review of the techniques that fall under this framework is drawn. Then, the
commutation properties of each individual layer of a standard SPN are studied in
detail. In particular, the deterministic case is precisely grasped, while the different
degrees of freedom given by the probabilistic case are presented. Subsequently,
applications are given, the first one being naturally our narrative arc, Midori64.
But we also show that commutative cryptanalysis enables us to discover similar
deterministic distinguishers for Midori128, but also for the block cipher Scream. We
also present experimental results regarding probabilistic commutation which are
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less conclusive, but which indisputably point out an interesting direction. Finally,
we take a step back and again question the nature of the obtained distinguishers
by comparing them to existing frameworks, and in particular to the differential
cryptanalysis. Finally, the chapter is concluded with some perspectives.

This chapter is based on a joint work with Patrick Felke, Gregor Leander,
Patrick Neumann, Léo Perrin & Lukas Stennes that is published at IACR
Transactions on Symmetric Cryptology, 2022(4) [Bau+23], and on a on-going work
with same coauthors, together with Christof Beierle.
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5.1 A broad yet applicable framework

5.1.1 Generalizing our previous example

In the previous chapter, the idea of studying commutation relations of the form
B ◦ F = F ◦ A through a cryptographic function F : Fn2 → Fn2 emerged from
the analysis of conjugate ciphers. From now on, we only consider a block cipher
E = (Ek : Fn2

∼−→ Fn2 ), and not its conjugates anymore. The objective of this section
is to develop the analysis of the commutative properties of a block cipher by, again,
relying on its iterated structure. For now on, we focus on the deterministic case;
the probabilistic one is addressed in Section 5.3. Our goal is to detect the existence
of two functions A,B : Fn2 → Fn2 such that for many keys k ∈ Fκ2 , it holds that:

B ◦ Ek = Ek ◦A. (5.1)

Rather than generalizing at all costs, we prefer limiting ourselves to a
manageable setting from which actual attacks can be mounted. This setting
is extrapolated from the only known example at this point.

Example 5.1 (The commutant of Vert). In the previous section, we showed that
the differential ∇ → ∇ holds with probability 1 through the conjugates of all
round functions of Midori under weak-key assumptions. From Proposition 4.6, this
implies that A := T G−1

∇ commutes with any F (r)
k , that is:

∀ r ∈ J0, R− 1K , A ◦ F (r)
k = F

(r)
k ◦ A.

From this property for the individual rounds, the same behaviour is deduced for
the whole cipher as:

Ek ◦ A = F
(r)
k ◦ . . . ◦ F (1)

k ◦ F (0)
k ◦ A (5.2)

= F
(r)
k ◦ . . . ◦ F (1)

k ◦
(
F

(0)
k ◦ A

)
= F

(r)
k ◦ . . . ◦ F (1)

k ◦
(
A ◦ F (0)

k

)
= F

(r)
k ◦ . . . ◦

(
F

(1)
k ◦ A

)
◦ F (0)

k

= F
(r)
k ◦ . . . ◦

(
A ◦ F (1)

k

)
◦ F (0)

k

= · · ·
= A ◦ Ek.

Furthermore, we already noticed that A is an involution (with no fixed point), and
in particular a bijective mapping. We also observed in Eq. (4.30), that A is the
parallel application of the affine mapping A whose ANF is recalled in Eq. (5.3).

A(x0, x1, x2, x3) =


x2 + 1
x1 + 1
x0 + 1
x3 + 1

 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



x0
x1
x2
x3

+


1
1
1
1

 (5.3)
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▷

Based on Example 5.1, we therefore only focus on commutants that are affine
bijective mappings. Among this class, the ones that are parallel applications of a
single affine bijective mapping, as for example A, will play a crucial role. We show in
Section 5.1.2 that this restricted setting is already broad-enough to encompass many
existing cryptanalysis techniques. It is also small-enough to develop a theory from
which concrete applications can be found in practice. Note that the deterministic
case is on paper well-known. Indeed, we are in that case searching for instanciated
ciphers Ek that are affine-equivalent to themselves. In the following, given an affine
mapping A : Fn2 → Fn2 , we denote by LA its linear part LA := A + A(0) and by
cA ∈ Fn2 its constant term, i.e. cA := A(0).

Finally, we widen the scope of Eq. (5.2), by not only considering a single
commutant A. Instead, we allow a sequence of commutants (A(0), . . . ,A(R)) to
satisfy, for many keys k ∈ Fκ2 :

∀ r ∈ J0, R− 1K ,A(r+1) ◦ F (r)
k = F

(r)
k ◦ A(r). (5.4)

Such a property is a sufficient condition to find a pair of commutants for the
whole cipher as it implies, in a similar manner to Eq. (5.2), thatA(R)◦Ek = Ek◦A(0).
Such a sequence (A(0), . . . ,A(R)) is naturally called a commutative trail and Eq. (5.4)
is denoted by:

A(0) F
(0)
k−−→ A(1) −→ · · ·

F
(R−1)
k−−−−→ A(R). (5.5)

5.1.2 A particular case of commutative diagram cryptanalysis

Before going further in the analysis of commutative cryptanalysis, it should be
noted that the idea of studying equations of the form Eq. (5.1), in the deterministic
or probabilistic case, is not new. The most prominent example is of course the
case of differential cryptanalysis, in which case the commutants A,B are of the
form A = T∆in and B = T∆out for some ∆in,∆out ∈ Fn2 . Constant addition being a
particular case of bijective affine mapping, differential cryptanalysis is therefore a
specific instantiation of commutative cryptanalysis.

Eq. (5.1) has also been studied much more generically 20 years ago by
Wagner [Wag04]. The author indeed introduced a cryptanalysis technique based
on commutative diagrams of the form:

Fn2 Fn2

X Y

Ek

ρin ρout

Ẽk

,

where X,Y can be any set and Ẽk : X → Y any suitable function. This framework
is so general that it can embed almost any kind of attacks against block ciphers.
For instance, linear cryptanalysis corresponds to the case where X = Y = F2,
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ρin, ρout : Fn2 → F2 are linear Boolean functions and Ẽk = Id. Commutative
cryptanalysis, as we introduced it above, corresponds to the choice of X = Y = Fn2 ,
with ρin = A, ρout = B affine and bijective, and Ẽk = Ek.

This implies that our framework is a very specific case of Wagner’s one. We again
stress that this is on purpose. Indeed, while commutative diagram cryptanalysis is
a very elegant manner to approach a large class of cryptanalysis techniques, it has,
to the best of our knowledge, never been instantiated using this methodology. The
only examples that are known, i.e. almost all attacks against block ciphers, have
been designed as very particular instances, with their very specific methodologies,
and never by using the general framework. Stated otherwise, commutative diagram
cryptanalysis was never used to discover any new interesting class of attacks.
Furthermore, we are, as of today, far from giving security arguments against
commutative diagram attacks in their general form.

In the light of this example, we show in the following section that commutation
with affine bijective mappings is really close to some already known attacks, as it
slightly generalizes them. This is the main reason why it can be effectively handled
in Section 5.3, and populated with new examples in Section 5.4.

5.2 Related work

5.2.1 Differential cryptanalysis and some variants

As already explained above, a classical differential attack corresponds to the case
of commutants of the form A(r) := T∆(r) : x 7→ x+ ∆(r), for any r. In that case, a
commutative trail exactly corresponds to a classical differential trail. Some other
generalizations of differential attacks fall also under the framework of commutative
cryptanalysis.

Rotational(-XOR). Let ρ be the (cyclic) rotation of a word by one bit to the
left. The concept of rotational distinguisher [KN10] consists in finding a pair of
rotations ρi and ρj such that ρi ◦F = F ◦ρj to distinguish a cryptographic function
from a random one. Thus, this corresponds to the case where the commutants are
rotations.

More recently, rotational cryptanalysis was generalized into rotational-XOR
(RX) cryptanalysis [AL16]. In that case, the adversary is allowed to consider
rotations that are possibly composed with constant additions. More precisely, the
goal is to find (a, a′, b, b′) and ρi such that F (x+ a) + a′ = F

(
ρi(x) + b

)
+ b′ holds

with a high probability. Equivalently, if ∆in := ρi(a) + b and ∆out := a′ + b′, this
means that the following equality should hold for many y:

F (y) + F
(
ρi(y) + ∆in

)
= ∆out,

where y ← x+ a is used as change of variables. This is then a particular case of
commutative property B ◦ F ≈ F ◦A, where B = T∆out , and A = T∆in ◦ ρi.

In both attacks, such patterns are iteratively built; this again corresponds to a
commutative trail.
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c-differential. The concept of c-differential is introduced in [Ell+20]. It
generalizes differentials in the following way.

Definition 5.2 (c-derivative [Ell+20]). Let p be a prime number and n,m positive
integers. Let Fpn (resp. Fpm) be the field with pn (resp. pm) elements. Given a p-ary
(n,m)-function F : Fpn → Fpm , and c ∈ Fpm , the (multiplicative) c-derivative of F
with respect to a ∈ Fpn is the function cDaF defined by cDaF (x) = F (x+a)−cF (x),
for all x ∈ Fpn .
For a fixed c ∈ Fpm let d be the maximal number of solutions of cDaF (x) = b,
where the maximum is taken over b ∈ Fpm , a ∈ Fpn (a ∈ F∗

pn , if c = 1). Then d is
called the c-differential uniformity of F . ▷

When p = 2, the definition of cDaF can thus be reformulated as:

cDaF = F ◦ Ta +Mc ◦ F,

where Mc := x 7→ cx. Stated otherwise, the c-derivative with respect to a estimates
how much Ta and Mc commute through F . While c-differential uniformity has
been extensively studied on its own, e.g. in [Ell+20, Ell+21, Mes+21, HPS22,
Stă+22], we are not aware of any cryptanalysis leveraging it at this stage.

5.2.2 Self-similarity, linear commutants & invariants

The case of linear maps commuting with the round function of a cipher, or of a
hash function, has already been addressed many times [Bou+10, LMR15, Cha+17].
It corresponds to the case where for any r, the commutant A(r) is linear rather than
affine. As explained in [LMR15, Lemma 2], the existence of a linear mapping A that
commutes with all unkeyed round functions sometimes leads to a self-similarity.

Definition 5.3 (Self-similarity [BB02, Bou+10]). The block cipher E = (Ek : Fn2
∼−→

Fn2 )k∈Fκ
2

admits a self-similarity relation if there exist efficiently computable
bijections Gin, Gout : Fn2

∼−→ Fn2 , and Gkey : Fκ2
∼−→ Fκ2 such that:

∀ k ∈ Fκ2 , Gout ◦ Ek = EGkey(k) ◦Gin.

▷

As already mentioned in [Bou+10], a self-similarity property always leads to
multiple interpretations. This can be used:

• either as a related-key distinguisher with probability 1 which holds for any
key,

• or as a weak-key distinguisher with probability 1 which holds for self-similar
keys, i.e. a key k that satisfies k = Gkey(k),

• but also as a complementation property, as the one of DES, which reduces
the effective key size by 1 bit.
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In the weak-key setting, this implies that for any weak key k, Ek satisfies
Gout = Ek ◦ Gin ◦ E−1

k , or, stated otherwise, that Gin and Gout are conjugate.
Because of Proposition 4.4, they have as many fixed points. We denote by Fix(F ) :=
{x ∈ Fn2 , F (x) = x} the set of fixed points of any mapping F : Fn2 → Fn2 . As a direct
corollary of the following lemma, a self-similarity for which Gin = Gout always
implies the existence of a (possibly-empty) invariant spaces.

Lemma 5.4 (Iterated commutants and fixed points). Let F,G,H : Fn2 → Fn2 , with
F bijective. Let us suppose that F ◦G = H ◦ F . Let i ∈ N. Then:

F ◦Gi = H i ◦ F and F (Fix(Gi)) = Fix(H i).

Proof. The first result comes from an immediate induction reasoning. Indeed, if
F ◦Gi = H i ◦ F holds, this implies that:

F ◦Gi+1 = F ◦G ◦Gi = H ◦ F ◦Gi = H ◦H i ◦ F = H i+1 ◦ F.

Secondly, let x ∈ Fix(G). Then F (x) = F ◦G(x) = H ◦F (x). In other words, F (x)
is a fixed point of H and F (Fix(G)) ⊆ Fix(H). The equality for i = 1 follows from
the fact that |Fix(G)| = |Fix(H)|, since G and H are conjugates, while the general
result is obtained with the same reasoning on the commutants Gi, H i.

We come back more deeply to the relationships between commutative
cryptanalysis, self-similarities and invariants in Section 5.5.1.

In Definition 5.3, Gin, Gout, Gkey are arbitrary bijections, but in practical
situations, they are linear (and now affine). Among the exceptions to this
observation is the self-similarity of XTEA leveraged by Bouillaguet, Dunkelman,
Leurent & Fouque [Bou+10]. In the following, we focus on some linear commutants
and self-similarities exhibited in the previous works.

Cryptanalysis of Robin, iSCREAM and Zorro. In the work by Leander,
Minaud & Rønjom [LMR15], and in more depth in the thesis by Minaud [Min16],
the considered linear maps correspond to the so-called “Sbox independent setting”.
Indeed, they act as a permutation of the cells1 and therefore commute with any
Sbox layer. Such linear commutants therefore unveil how much symmetries in the
overall construction of a primitive can be dangerous. Most of the known linear
commutants are in fact related to symmetries of the linear layer and therefore
independent of the actual Sbox. Among the exceptions to this observation is the
self-similarity of PURE depicted in [Bou+10] which takes into account the fact
that the Sbox is a power mapping.

The approach we take in Section 5.3 is rather complementary: our affine
commutants are derived from a commutant A that satisfies A ◦ S = S ◦ A and
which is then Sbox-dependent. On the other hand, handling the linear layer is done
at almost no cost by considering the parallel application of A on all, or almost all,
cells.

1The definition in [LMR15] is actually more general than this one, to cope with partial Sbox
layers where the Sbox is only applied to some of the cells. Yet, we do not consider this case in
this thesis.
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Cryptanalysis of NORX v2.0. While we are mainly focused on distinguishing
properties, it should be noted that linear commutants have also been used in much
more sophisticated attacks. The cryptanalysis of NORX v2.0 by Chaigneau, Fuhr,
Gilbert, Jean & Reinhard [Cha+17] is among the most prominent examples. It
consists in a ciphertext-only forgery attack on full NORX v2.0 whose cornerstone is
a linear commutant. Indeed, the permutation F , that is applied to a square state,
commutes with the rotation ρ of the state by one column to the left. The fact that
ρ◦F = F ◦ρ is obtained by following a trail through two half-rounds as ρ commutes
with the subcomponents Gcol, Gdiag of F . It then holds that ρi ◦ F = F ◦ ρi for
any i, because of Lemma 5.4.

5.2.3 Differential backdoor over a two-round toy cipher

More recently, Beierle, Felke, Leander, Neumann & Stennes [Bei+23] presented a
cipher that, for some weak keys, exhibits a probability-one differential over two
rounds. This cipher corresponds to a differential version of the backdoored cipher
Boomslang which was proposed in [Bei+22]. The Sbox layer S consists of the
3-time parallel application of a 5-bit Sbox S. The probability-one differential over
two rounds was voluntarily hidden by making sure that it does not consist of a
single differential trail.

In fact, it can be understood as a probability-one commutative trail. More
precisely, there exist an affine map A and a difference ∆ for which it holds that :

S ◦ T∆ = A ◦ S and S ◦A = T∆ ◦ S.

The full Sbox layer S therefore admits the same kind of property:

S ◦ T∇ = A ◦ S and S ◦ A = T∇ ◦ S,

where ∇ = (∆,∆,∆) and A = A×A×A.
Furthermore, A commutes with the linear layer L : F15

2 → F15
2 , i.e., A◦L = L◦A.

Finally, with an arbitrary key k(0) and a weak key k(1), the aforementioned
properties are combined to obtain an iterative probability-one commutative trail
over two rounds, that is, over: L ◦ S ◦ Tk(0) ◦ L ◦ S ◦ Tk(0) :

T∇
T

k(0)−−−→ T∇
S−→ A L−→ A

T
k(1)−−−→ A S−→ T∇

L−→ T∇.

The notion of weak keys for commutative cryptanalysis is addressed in Sec-
tion 5.3.1.a.
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5.3 Commutation with a round function
The easiest way to find commutants for any iterative construction is to find
compatible ones for each building block, and then chain those to form a trail, as
depicted in Eqs. (5.2) and (5.5). We thus investigate each layer of a traditional
SPN block cipher separately.

5.3.1 Commutation with a constant addition

5.3.1.a The general case

In the following, c ∈ Fn2 is a constant, and A,B : Fn2 → Fn2 are two affine bijections.
The round key (or round constant) addition has a non-trivial interaction with
commutation. We indeed need to distinguish two quantities:

1. for a fixed triplet (c, A,B), the probability of A Tc−→ B, or equivalently the
cardinality of Zcomm

Tc
(A,B), and;

2. for a fixed pair (A,B), the number of constants c ∈ Fn2 , for which∣∣∣Zcomm
Tc

(A,B)
∣∣∣ is non-zero (or greater or equal to some value).

The first quantity indicates whether commutation holds or not in a fixed-key
setting, while the second one measures the size of a set of weak keys. Both are
addressed in the following proposition and its corollary.

Proposition 5.5. Let c ∈ Fn2 and A,B : Fn2 → Fn2 be affine bijections. Then:

∣∣Zcomm
Tc

(A,B)
∣∣ =

{
0 if c+ LB(c) /∈ Im(A+B),
2n−rk(LA+LB) otherwise.

Equivalently, A Tc−→ B holds with either probability 0 or 2−rk(LA+LB).

Proof. We consider the number of solutions of the following equation:

B ◦ Tc(x) = Tc ◦A(x) ⇐⇒ (A+B)(x) = c+ LB(c). (5.6)

This is an affine system of equations. It is then necessary and sufficient that
c + LB(c) ∈ Im(A + B) for this system to have solutions. When c + LB(c) ∈
Im(A+ B), the number of solutions is equal to the cardinality of ker(LA + LB),
namely 2n−rk(LA+LB).

In the light of Proposition 5.5, we introduce the following definition.

Definition 5.6 (Strong and p-weak keys). Let A,B be affine bijections of Fn2 . Let
c ∈ Fn2 . We say that c is p-weak (with respect to A,B) if A Tc−→ B holds with
probability p or equivalenlty if

∣∣∣Zcomm
Tc

(A,B)
∣∣∣ = p · 2n. If p = 0, we simply say that

c is strong. ▷
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The higher the value of p is, the weaker is the considered key or constant. As
a direct corollary of Proposition 5.5, the number of strong and weak keys can be
computed.

Corollary 5.7. Let A,B : Fn2 → Fn2 be affine bijections. Then, with respect to
(A,B), there only exist strong or 2−rk(LA+LB)-weak keys. Furthermore the number
of 2−rk(LA+LB)-weak keys is given by:

|Im(Id + LB) ∩ Im(A+B)| × |ker(Id + LB)| .

Proof. Because of Eq. (5.6), the set of weak keys W can be expressed as:

W = {c ∈ Fn2 , c+ LB(c) ∈ Im(A+B)}
=

⊔
y∈Im(Id+LB)∩Im(A+B)

{c ∈ Fn2 , (Id + LB)(c) = y}

=
⊔

y∈Im(Id+LB)∩Im(A+B)
(Id + LB)−1({y})

But for any y ∈ Im(Id + LB) ∩ Im(A+B) the preimage (Id + LB)−1({y}) has
the same cardinality as (Id + LB)−1({0}) = ker(Id + LB).

5.3.1.b The case where LA = LB

As we will see, the case where LA = LB is of particular interest. We therefore
adapt Corollary 5.7 to this specific case.

Corollary 5.8. Let A,B : Fn2 → Fn2 be affine bijections such that LA = LB. Then
a constant c ∈ Fn2 is 1-weak if (Id + LB)(c) = cA + cB, and strong otherwise.

The first example of such a situation is given by a differential through constant
addition.

Example 5.9 (The differential case). Let us suppose that A = T∆in and B = T∆out .
In that case, LA = LB = Id and any key is either strong or 1-weak, i.e. the weakest
possible from a security standpoint. Furthermore, as Id + LB = 0, if cA + cB = 0,
i.e. if ∆in = ∆out, then all keys are 1-weak. Otherwise, all keys are strong. This is
consistent with the usual interpretation: for any c ∈ Fn2 , the differential probability
∆in Tc−→ ∆out holds with probability 1 if ∆in = ∆out and 0 otherwise. Weakness
and strength for commutation therefore generalize the differential case. ▷

However, Corollary 5.8 actually masks part of the actual situation. Indeed, we
easily observe by hand that for any c, x ∈ Fn2 it holds that:

Tc ◦A(x) = LA(x) + c+ cA = A
(
x+ L−1

A (c)
)

= A ◦ TL−1
A (c)(x). (5.7)

So we immediately deduce that the set of 1-weak keys for A Tk−→ A is precisely the
set

{
k ∈ Fn2 , k = L−1

A (k)
}

= Fix(L−1
A ) = Fix(LA). In the more general case where
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LB = LA, we can write A as A = B ◦ TL−1
A (cA+cB) and we therefore obtain for any

c ∈ Fn2 :

Tc ◦A = A ◦ TL−1
A (c) = B ◦ TL−1

A (cA+cB) ◦ TL−1
A (c) = B ◦ TL−1

A (cA+cB+c).

Again, we immediately deduce that the set of 1-weak keys for A Tk−→ B with
LA = LB is the set

{
k ∈ Fn2 , k = L−1

A (cA + cB + k)
}

= (Id + LA)−1({cA + cB}).
However, a deeper look at Eq. (5.7) shows that this equation actually points

out a related-key property: given a pair of related keys (c, LA(c)), the encryption
of any related pair of plaintexts (x,A(x)) is again, a related pair (Tc(x), A(Tc(x))).
This is detailed in the following proposition.

Proposition 5.10 (Related-key distinguisher with probability one). Let E =
(Ek : Fn2

∼−→ Fn2 )k∈(Fn
2 )κ be a key-alternating round cipher whose round functions

are defined by F (r)
k := Tk(r) ◦ G(r), where G(r) : Fn2

∼−→ Fn2 and r ∈ J0, R− 1K. Let
KS: (Fn2 )κ → (Fn2 )R be the associated key schedule. Let A : Fn2 → Fn2 be an affine
bijection and Gkey : (Fn2 )κ → (Fn2 )κ a bijection such that:

• ∀r ∈ J0, R− 1K , A ◦G(r) = G(r) ◦A, and

• ∀k ∈ (Fn2 )κ, KS(Gkey(k)) =
(
LA(k(0)), . . . , LA(k(R−1))

)
.

Then it holds that:
∀k ∈ Fκ2 , A ◦ Ek = EGkey(k) ◦A.

As a particular case, if k ∈ Fκ2 satisfies k = Gkey(k), then:

A ◦ Ek = Ek ◦A.

Proof. Let x ∈ Fn2 , and k ∈ Fκ2 . It is sufficient to prove that for any r ∈ J0, R− 1K,
it holds that:

A ◦ F (r)
k (x) = F

(r)
Gkey(k) ◦A(x).

Indeed, the output of round r being the input of round r + 1, the general result is
deduced by an immediate inductive reasoning. Let then r ∈ J0, R− 1K. We observe
that, for any x ∈ Fn2 , it holds that:

F
(r)
Gkey(k) ◦A(x) = TLA(k(r)) ◦G

(r) ◦A(x)

= TLA(k(r)) ◦A ◦G
(r)(x)

= LA
(
G(r)(x)

)
+ LA

(
k(r)

)
+ cA

= LA
(
G(r)(x) + k(r)

)
+ cA

= A
(
G(r)(x) + k(r)

)
= A ◦ F (r)

k (x).
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This interpretation is not present in our published paper [Bau+23]. It was later
drawn to our attention by Bonnetain [Bon23] to whom the author of this thesis is
grateful. With the benefit of hindsight, this result is only a slight generalization of
[LMR15, Lemma 2].
Remark 5.11. The actual definition of such a function Gkey depends on the key
schedule algorithm. However, in practice, Gkey is heavily based on LA. An example
where Gkey is the parallel application of LA is given in Section 5.4.1.a. ▷

As in the linear case that is handled in [LMR15], Proposition 5.10 implies that a

commutative trail A
F

(0)
k−−→ A −→ · · ·

F
(R−1)
k−−−−→ A can produce related-key or weak-key

distinguishers with probability one. In order to satisfy the first assumption of
Proposition 5.10, we continue by analyzing the unkeyed layers.

5.3.2 Commutation with an Sbox layer

5.3.2.a The case of a single Sbox

When looking at the Sbox level, finding (all) affine permutations A,B that satisfy
B ◦ S = S ◦A is a particular case of the well-known problem of affine equivalence.
Indeed, this can equivalently be rewritten as B ◦ S ◦A−1 = S or S = B−1 ◦ S ◦A,
and both equations imply that the considered Sbox S is affine equivalent to itself.

Hence, a general algorithm that solves for any S, S′ : Fm2
∼−→ Fm2 the problem of

determining (if it exists) a pair (A,B) such that A ◦ S ◦B = S′ can be adapted to
our need. Among them, the algorithm of Dinur [Din18] works only if the algebraic
degrees of S and S′ are equal to dega(S) = dega(S′) = m− 1. The algorithm of
Biryukov, De Cannière, Braeken & Preneel [Bir+03] is less time efficient but has
the advantage to work for any pair of permutations, regardless of the degree. Its
principle can be easily described. The images of A and B are guessed step by step
and then propagated, either by linearity (if A(x) and A(y) are known then it must
hold that A(x) +A(y) = LA(x+ y)), or by using the relation A ◦ S ◦B = S′. Any
time that a contradiction appears, the algorithm backtracks and starts with a new
guess, until the first correct pair, if it exists, is returned.

By rather letting the algorithm exhaustively list all pairs of affine permutations,
we can effectively recover the list of all (A,B) that satisfy A ◦ S ◦ B =
S′. This works in practice for Sboxes of small size, i.e. m ≤ 8. An
implementation by Perrin of this algorithm is available in sboxU [Bau+24b] as the
self_affine_equivalent_mappings function.

While a random permutation (of sufficient size) is not expected to be (non-
trivially) affine equivalent to itself [Hou06], the Sboxes used in practice are usually
highly structured, either because they correspond to a simple Boolean circuit for
an efficient implementation, or because they have a strong mathematical structure,
for instance, because they are affine-equivalent to a monomial over a finite field.
Moreover, all known APN permutations admit in their CCZ-class a bijection that
is linearly equivalent to itself. It is even conjectured by Beierle, Brinkmann &
Leander [BBL21, Conjecture 1] that this should always hold. For 4-bit Sboxes,
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we checked all equivalence classes and found that 137 out of all 302 classes are
non-trivially affine self-equivalent.

5.3.2.b The case of a full Sbox layer

Let us now consider the whole Sbox layer S. If S consists of Sboxes S with
non-trivial linearity or differential uniformity then [RP20, Corollary 1] implies that
the only affine permutations A,B such that S ◦ A = B ◦ S are necessarily of the
form:

A = P ◦ (A(0) × . . .×A(s−1)), B = P ′ ◦ (B(0) × . . .×B(s−1));

where P,P ′ are permutations of cells, and A(i), B(i) : Fm2 → Fm2 are affine bijections
that satisfy S ◦ A(i) = B(i) ◦ S for any i. In other words, finding A and B can
be reduced to finding A and B such that S ◦ A = B ◦ S and combining them
accordingly. By considering the trivial case where A(i) = B(i) = Id for all i, this
also includes all permutations of cells as obvious commutants of the Sbox layer.

5.3.2.c The probabilistic case

For now on, we only mentioned deterministic commutation through the Sbox,
but we are also interested in cases where B ◦ S ≈ S ◦ A. Finding such a pair
(A,B) of affine bijections is already mentioned in the work by Biryukov, De
Cannière, Braeken & Preneel [Bir+03, Section 4.3] as the almost affine equivalence
problem. They suggest to tweak their algorithm in such a way that it allows
the user a margin of error: as long as B ◦ S ◦ A−1 and S match for almost all
values, the algorithm should not backtrack. This way, the obtained pairs satisfy
B ◦S ≈ S ◦A. Again, an implementation by Perrin is available in sboxU [Bau+24b]
as the self_affine_equivalent_mappings_approx function.

The probabilistic problem for the full layer S is even more intricate and we
did not address it. In our experiments presented in Section 5.4, we only consider
parallel applications of almost-commuting mappings A(i), B(i) of the size of the
Sbox.

5.3.3 Commuting with a linear layer

5.3.3.a The general case

Finally, it remains to study the case of commutation with a linear layer. We are
therefore interested in the number of solutions of the following equation, where
L : Fn2 → Fn2 is linear and A,B : Fn2 → Fn2 affine:

L ◦A(x) = B ◦ L(x) ⇐⇒ (L ◦ LA + LB ◦ L) (x) = L(cA) + cB. (5.8)

This number of solutions, i.e. the cardinality of Zcomm
L (A,B), is again the

number of solutions of an affine system. It therefore holds that:

|Zcomm
L (A,B)| =

{
0 if L(cA) + cB /∈ Im(L ◦ LA + LB ◦ L),
2n−rk(L◦LA+LB◦L) otherwise.
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Computing the probability of this commutation property therefore sums up to
linear algebra and to the computation of the dimension of the kernel of L ◦ LA +
LB ◦ L.

5.3.3.b The deterministic case

If we require the commutation to happen with probability one, then it must hold
that rk(L ◦ LA + LB ◦ L) = 0, i.e. Im(L ◦ LA + LB ◦ L) = {0}, or stated otherwise
that L ◦ LA = LB ◦ L. This also implies that L(cA) + cB ∈ {0} and therefore
L(cA) = cB. Reciprocally, if both conditions are satisfied, then for any x ∈ Fn2 , we
have:

L ◦A(x) = L(LA(x) + cA) = L(LA(x)) + L(cA) = LB(L(x)) + cB = B ◦ L(x).

We deduce the following lemma.

Lemma 5.12 (Commutation with a linear layer). Let L : Fn2 → Fn2 be linear and
A,B : Fn2 → Fn2 affine functions. Then:

B ◦ L = L ◦A ⇐⇒ LB ◦ L = L ◦ LA and L(cA) = cB.

If additionally, A and B are parallel applications of affine mappings of the size
of the Sbox, then LA and LB are block diagonal matrices. We can therefore express
the condition LB ◦ L = L ◦ LA as commutation conditions on the submatrices.

Lemma 5.13 (Block diagonal commutants). Let n = m × s. Let L be a block
matrices of size s× s whose blocks are of size m×m, i.e. L := (Lij)i,j∈J0,s−1K with
Lij ∈ Mm(F2). Let A,B be two block diagonal matrices that are decomposed as
follows:

A =


A(0) 0 0 0

0 A(1) 0 0
0 0 . . . 0
0 0 0 A(s−1)

 , B =


B(0) 0 0 0

0 B(1) 0 0
0 0 . . . 0
0 0 0 B(s−1)

 ;

with A(i), B(i) ∈Mm(F2) for any i. Then:

B ◦ L = L ◦ A ⇐⇒ ∀ i, j ∈ J0, s− 1K , B(i)Lij = LijA
(j). (5.9)

Proof. Let us denote the blocks of A and B by A = (Aij)i,j∈J0,s−1K and B =
(Bij)i,j∈J0,s−1K. From the matrix multiplication formula, we immediately get that
B ◦ L = L ◦ A if and only if:

∀i, j ∈ J0, s− 1K ,
s−1∑
k=0

BikLkj =
s−1∑
k=0

LikAkj .

But the only term which is non-zero in the first sum (resp. in the second one) is
BiiLij = B(i)Lij (resp. LijAjj = LijA

(j)). In other words, the equality B◦L = L◦A
holds if and only if for any i, j, B(i)Lij = LijA

(j).
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Therefore, if A and B are parallel applications of affine mappings of the size
of the Sbox, then by combining Lemmas 5.12 and 5.13, the commutation of A,B
with a linear layer L sums up to verifying commutation relations for each block
of the size of the Sbox, and a single evaluation of L. This can thus be handled
very easily, for instance using the algorithms described in Section 5.3.2. We can
also restrict our search space to affine mappings that commute with probability
one with the Sbox layer. These mappings, that are described in Section 5.3.2.b,
are very structured. This structure can be used to filter and effectively search
for commutants through the linear layer. This is described in detail in [Bau+23,
Section 5].

5.3.3.c Linear layers with blocks in {0, Id}
The very particular case where the investigated linear layer L is only made of either
0 or Id blocks of size m×m is important in the following. Indeed, in that case,
Eq. (5.9) can be rewritten as:

B ◦ L = L ◦ A ⇐⇒ ∀ i, j, Lij ̸= 0, B(i) = A(j).

In particular, this implies that such a linear layer L always satisfies A ◦ L = L ◦ A
when A is the parallel application of any single linear mapping of the size of the
Sbox. In case where A is the parallel application of a single affine mapping, the
commutation relation holds if and only if the condition L(cA) = cA is satisfied for
the constant cA.

As simple as this example might seem, it is actually very enlightening, as a lot
of linear layers from the literature are built in this way. This is the case of binary
MixColumns layers as in Midori and many other ciphers, but also of the linear layers
of LS designs [Gro+15a]. One should thus be careful when defining a cipher using
a self-affine-equivalent Sbox that satisfies A ◦ S = S ◦A for some affine bijection
A : Fm2 → Fm2 , together with a binary linear layer. This is the case of Vert and
Scream whose analyses are detailed in the following section.

5.4 Applications
The main tools to build a commutative trail by a layer-by-layer analysis are
now settled. This section describes some instantiations of this framework. We
first address the most direct ones, which are commutative trails which hold with
probability 1. Then only, we describe probabilistic ones for which theory and
experimentation seem to be less consistent.
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5.4.1 Deterministic applications

5.4.1.a Midori64

We naturally start by looking at Midori64, and more precisely at the distinguisher
presented in Section 4.3.3 that can be interpreted as a commutative trail with
probability 1 in the light of Section 4.4 and Example 5.1.

The affine bijective mapping A : F4
2 → F4

2 that is described in Eq. (5.3) commutes
with the Sbox S of Midori. It is returned in a matter of seconds by the function
self_affine_equivalent_mappings function of sboxU [Bau+24b] applied to S.

Let us denote by A : F64
2 → F64

2 its 16-time parallel application. Because of
Section 5.3.2.b, we get A ◦ S = S ◦ A.

Regarding the linear layers, it naturally holds that A ◦ P = P ◦ A for any
permutation of cells P, and in particular for P ∈ {SC,SR}. Regarding the
MixColumns layer, we first notice using Eq. (4.1) that M : (F4

2)4 → (F4
2)4 can

be represented as a binary block matrix whose blocks are either 0 ∈ M4(F2) or
Id ∈M4(F2). We also easily observe that for any c ∈ F4

2, it holds that:

M(c, c, c, c) = (c+ c+ c, c+ c+ c, c+ c+ c, c+ c+ c) = (c, c, c, c).

Because of Section 5.3.3.c, this implies that M commutes with the 4-time parallel
application of any affine mapping over F4

2, and in particular, we obtain:

M ◦ (A×A×A×A) = (A×A×A×A) ◦M.

We naturally deduce that the 4-time parallel application of M commutes with the
16-time parallel application of A, or in other words that A ◦MC = MC ◦ A.

All in all, A commutes with a round of Midori without constant (and key)
addition that remains to be studied.

As discussed in Section 5.3.1.b, A commutes with probability 1 with a constant
addition Tc with c ∈ F4

2 if and only if c is a fixed point of LA. Thanks to Eq. (5.3),
we observe that:

Id + LA =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 . (5.10)

Its kernel is then of dimension 4−dim(Im(Id+LA)) = 4−1 = 3, and we observe that
(0, 1, 0, 0), (0, 0, 0, 1) and (1, 0, 1, 0) are independent and all belong to ker(Id + LA).
Therefore, ker(Id +LA) = ⟨0x2, 0x5, 0x8⟩. Each nibble of a constant C ∈ F64

2 must
then belong to ⟨0x2, 0x5, 0x8⟩ for C to be considered weak. This does not hold
for the original Midori64 as 1 /∈ ⟨0x2, 0x5, 0x8⟩. We nonetheless conclude that the
mapping A commutes with the unkeyed round function of any member of Vertc,
with c ∈ ⟨0x2, 0x5, 0x8⟩.

Finally, we observe that applying Gkey := LA×LA : (F64
2 )2 → (F64

2 )2 to a master
key k ∈ (F64

2 )2 sums up to applying LA to each of the round keys. We are then
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precisely in the scenario of Proposition 5.10 and we can then conclude that for any
block cipher E = (Ek : Fn2

∼−→ Fn2 ) among the families Vertc with c ∈ ⟨0x2, 0x5, 0x8⟩,
it holds that:

∀ k ∈ F128
2 , A ◦ Ek = EGkey(k) ◦ A.

The weak-key distinguisher of Section 4.3.3 is not only rediscovered, it can
also be reinterpreted as a related-key one which holds for any key, or as a
complementation property which reduces the effective size of the key by 1 bit.

Other commutants for Midori64. We can also be interested in the existence
of other such distinguishers. By testing the Sbox S with sboxU [Bau+24b], the
function self_affine_equivalent_mappings returns not only the pair (A,A),
but also the pairs (B,C) and (C,B) where B,C : F4

2 → F4
2 are defined by:

B(x) =


x2

x1 + 1
x0

x0 + x2 + x3 + 1

 =


0 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1



x0
x1
x2
x3

+


0
1
0
1

 , and

C(x) =


x0 + 1
x1

x2 + 1
x0 + x2 + x3

 =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 1 1



x0
x1
x2
x3

+


1
0
1
0

 .

This implies that the following relations hold with probability 1:

B
S−→ C and C

S−→ B.

In the general case, such a pair of commutations is not expected, but always
happens in the case of an involutive Sbox. Indeed, in that case:

S ◦B = C ◦ S ⇐⇒ B ◦ S−1 = S−1 ◦ C ⇐⇒ B ◦ S = S ◦ C,

where the first equivalence holds for any bijective Sbox and the second one for any
involutive Sbox.

Among the notable properties of these specific B and C, we observe that they
commute one with the other and that they both are involutive:

B ◦ C = C ◦B = A and B2 = C2 = Id.

However we also note that Fix(LA) = Fix(LB) = Fix(LC). This implies
that the set of weak constants or weak keys corresponding to the alternating
commutative trail B → C → B → C → · · · → B is exactly the same as the one of
the commutative trail A → · · · → A that is described above.
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5.4.1.b Midori128

Due to the strong similarities between Midori64 and Midori128, it is tempting to
also apply the commutative framework to the version with a bigger state.

Let us recall from Section 4.1.3 that Midori128 use four different Sboxes SSbi,
i ∈ J0, 3K. For any i, the Sbox SSbi is applied four times in parallel on the i-th row
of the state. But as depicted in Figure 4.4, each of them is a conjugate of the form
SSLi where SS is the parallel application of two 4-bit Sboxes and Li : F8

2 → F8
2

is a bit permutation, i.e. the matrix of Li is a binary permutation matrix. By
construction, it is clear that SS commutes with the linear bijection A : F8

2 → F8
2

that swaps the most significant half and the least significant one. Indeed SS is a
parallel application of nibble-wise Sboxes and A is the only non-trivial permutation
of two nibbles. What is most striking is that this property is also shared by each
Li. Indeed, let us denote by σi : J0, 7K ∼−→ J0, 7K the bijections such that for any
x ∈ F8

2:
Li(x0, . . . , x7) = (xσi(0), . . . , xσi(7)).

From Figure 4.4, we observe that σ0, σ1, σ2, σ3 are defined by:

σ0 = (1 5)(3 7), σ1 = (0 5 2 3)(1 6 7 4),
σ2 = (0 2)(1 3 5 7)(4 6), σ3 = (0 7 2 1)(3 6 5 4).

Similarly if we denote by ρ the bijection defined by ρ = (0 4)(1 5)(2 6)(3 7), then
for any x we have:

A(x0, . . . , x7) = (xρ(0), . . . , xρ(7)).

We furthermore observe that ρ ◦ σi ◦ ρ−1 = σi for any i ∈ J0, 3K and this implies
that A ◦ Li = Li ◦ A, and therefore A ◦ SSbi = SSbi ◦ A. All in all, we conclude
that the 16-time parallel application of A, that we denote by A commutes with
the full Sbox layer.

As shown above, MC commutes with the 16-time parallel application of any
affine mapping and in particular with A. Any permutation of cells naturally
commutes with A. Finally, we observe that Fix(LA) =

{
(x, x), x ∈ F4

2
}
⊂ F8

2.
However, none of the bytes of the round constants of Midori128 lie in Fix(LA), but
this is by construction the case of the round constants of any member of Grünc,
that is defined in Section 4.1.3, as soon as c ∈ Fix(LA). From the sixteen 4-bit
conditions, we finally derive a set of 2128−4×16 = 264 weak keys for the weak-key
distinguisher.
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5.4.1.c Scream
Scream [Gro+15b] is a 128-bit-state and 128-bit-key tweakable block cipher in the
LS-design family. Its 128-bit state can be viewed as an 8× 16 matrix. The Sbox
layer consists in applying a unique 8-bit Sbox in parallel to each column, while the
linear layer consists in applying a unique 16-bit linear permutation (called Lbox)
to each row. At each round, round constants are added to the first row of the state,
the key is added to the state (and the tweak, that we consider to be equal to 0
here, is added on the first 4 rows). For further details, we refer to the document
submitted to the CAESAR competition [Cae13].

By testing self-affine equivalence, we find out that the used Sbox S is indeed
equivalent to itself and it satisfies A ◦ S = S ◦ A for the 8-bit affine bijection
A : F8

2 → F8
2, that is defined by:

A := x 7→



1 . . . . . . .
. 1 . . . . . .
. . 1 . . . . .
. . . 1 . . . .
. 1 1 1 1 . . .
. . . . . 1 . .
. . . 1 . . 1 .
. 1 . 1 . . . 1


·



x0
x1
x2
x3
x4
x5
x6
x7


+



1
.
.
.
.
1
.
.


,

where a dot stands for 0 for an easier reading.
We further observe that Fix(LA) = ⟨0x01, 0x10, 0x20, 0x40, 0x80⟩. As the

round constants are added on the least significant row, this means that each of
their bytes belongs to {0x00, 0x01}. But this is a subset of Fix (LA), so each of
the round-constant additions commutes with the 8-time parallel application of A,
that we denote again by A.

It remains to study the linear layer L using Lemma 5.12. We look at F128
2 as

(F8
2)16 so that each copy of F8

2 corresponds to a cell on which the Sbox is applied.
This way, L is decomposed as an 16 × 16 matrix whose blocks are of size 8 × 8.
Because L consists in the parallel application of a linear bijection on the rows
while the Sboxes are applied column-wise, each block of L is either the block 0 or
Id. As observed in Section 5.3.3.c, such a linear layer commutes with the parallel
application of any single linear function, and in particular with LA. Furthermore,
cA = 0b00100001, so by looking at cA as a 8× 16 matrix, it is composed of two
all-1 rows and six all-0 rows. But one can easily verify that the all-1 vector, and
obviously the all-0 one, are fixed points of the Lbox of Scream. Indeed the matrix
of the Lbox is given in [Gro+15b, Figure 1] and we observe that all of its rows
have an odd Hamming weight. Therefore, A commutes with any component of the
unkeyed round function. Finally, because the key schedule sums up to the addition
of the master key at each round, Proposition 5.10 can be applied in the same way
as before with Gkey = LA.

Unlike our attacks against Vert and Grün , the obtained self-similarity, and
the corresponding related-key and weak-key distinguishers hold for the original
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primitive, and not a modified instance. While this self-similarity is linear, it has,
to the best of our knowledge never been mentioned elsewhere. In all likelihood, the
main reason is that previous methods such as the one by Leander, Minaud & Rønjom
[LMR15] focus on symmetries that do not depend on the Sbox, while the one just
presented is dependent on the actual Sbox. In terms of weak-key distinguisher,
the set of weak keys that is derived from the self-similarity is a strict subset of
the one obtained in [TLS19]: their non-linear invariant works whenever each byte
of the key belongs to

{
x ∈ F8

2, x1 = x2 = 0
}
, while, in the weak-key setting, our

distinguisher holds when each byte belongs to
{
x ∈ F8

2, x1 = x2 = x3 = 0
}
, and

therefore for 2128−3×16 = 280 weak keys.

5.4.2 Probabilistic applications

5.4.2.a Probabilistic trails through the linear layer

As shown by the previous examples and by Proposition 5.10, the weak-key space
related to the obtained self-similarities is the set Fix(Gkey). In our cases, this
function Gkey (and the number of its fixed points) is always closely-related to A
and Fix(LA). It is then very tempting to modify A in order to increase the number
of its fixed points. In the case where A is the parallel application of A : Fm2 → Fm2 ,
as Fix(LA) =×s−1

i=0 Fix(LA), the most natural way is to replace some applications
of A by applications of the identity mapping. With the standard vocabulary used
for differential attacks, this amounts to decrease the number of active Sboxes and
it has the effect of lowering the constraints on the key and thus of increasing the
number of weak keys. Switching from A to such a partial affine bijection Ã has no
effect on commutation with the Sbox layer as Ã S−→ Ã still holds with probability 1
if A satisfies A S−→ A with probability 1. However, such a change does not guarantee
that Ã L−→ Ã should also hold with probability 1 through the linear layer L. In
particular, while the permutation of cells was never taken into account, it now
requires a dedicated study.

We illustrate these first probabilistic commutative properties by focusing only
on the family VertSR. This choice is motivated by the fact that ShuffleCells was by
design chosen to have fewer symmetries than the ShiftRows of the AES, and is in
practice harder to study.

Probabilistic commutation with M . Let i ∈ J0, 15K and let us denote its
binary decomposition by i = ∑3

ℓ=0 iℓ2ℓ, with iℓ ∈ {0, 1}. Let A : Fm2 → Fm2 be an
affine mapping. In the following, we denote by A0 := Id and A1 = A and define
the partial layer Ã×i as:

Ã×i := Ai0 ×Ai1 ×Ai2 ×Ai3 . (5.11)

We study the probabilistic transition Ã×i M−→ Ã×j for any i, j ∈ J0, 15K. To do
so, we look at Eq. (5.8) which can in that case be expressed as:



5.4. Applications 175


. 1j0(i1)N 1j0(i2)N 1j0(i3)N

1j1(i0)N . 1j1(i2)N 1j1(i3)N
1j2(i0)N 1j2(i1)N . 1j2(i3)N
1j3(i0)N 1j2(i1)N 1j3(i3)N .


︸ ︷︷ ︸

B(i,j)

x = cA

M

i0
i1
i2
i3

+


j0
j1
j2
j3


 ,

where N := LA + Id. Again, if the right-hand side of the previous equation is
not in the image of B(i, j), then Ã×i M−→ Ã×j holds with probability 0. Otherwise,
the cardinality of Zcomm

M (Ã×i, Ã×j) is the same as the cardinality of ker(B(i, j)),
which can be deduced from the one of its image that is given in Table 5.1.

i
j

1 2 4 8 3 5 6 9 a c 7 b d e f

1 2 2 2 2 3 3 3 3 3 3 4 4 4 2 3
2 2 2 2 2 3 3 3 3 3 3 4 4 2 4 3
4 2 2 2 2 3 3 3 3 3 3 4 2 4 4 3
8 2 2 2 2 3 3 3 3 3 3 2 4 4 4 3
3 3 3 3 3 2 4 4 4 4 4 3 3 3 3 2
5 3 3 3 3 4 2 4 4 4 4 3 3 3 3 2
6 3 3 3 3 4 4 2 4 4 4 3 3 3 3 2
9 3 3 3 3 4 4 4 2 4 4 3 3 3 3 2
a 3 3 3 3 4 4 4 4 2 4 3 3 3 3 2
c 3 3 3 3 4 4 4 4 4 2 3 3 3 3 2
7 4 4 4 2 3 3 3 3 3 3 2 2 2 2 1
b 4 4 2 4 3 3 3 3 3 3 2 2 2 2 1
d 4 2 4 4 3 3 3 3 3 3 2 2 2 2 1
e 2 4 4 4 3 3 3 3 3 3 2 2 2 2 1
f 3 3 3 3 2 2 2 2 2 2 1 1 1 1 0

Table 5.1: Dimension of Im(B(i, j)). All entries must be multiplied by dim(Im(N)).
When written in bold, the commutation holds for all cA, otherwise, we need
cA ∈ Im(N).

Commutation of a partial layer with SR. In order to choose appropriate
values for i and j, we look at commutation through the ShiftRows operation.
Following the cell numbering given in Figure 4.1, ShiftRows lets unchanged (among
others) the cells of indices 0 and 8, and exchanges the values of the cells of indices
2 and 10.

As a consequence, if we consider Ã that applies the identity mapping everywhere
except on nibbles with index 0, 2, 8 and 10 where the same mapping A is applied,
then Ã SR−→ Ã holds with probability 1. By generalizing the block matrix notation
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to affine mappings, the previously defined Ã can be described as:

Ã =


A . A .
. . . .
A . A .
. . . .

, (5.12)

where a dot stands for the identity mapping Id : F4
2 → F4

2. This “square” activity
pattern is not new, and as for instance already been used in an attack against
Prince [Can+15].

We can generalize such a commutation with probability 1 with the ShiftRows
operation by considering two disjoint sets ZId, ZA ⊂ J0, 15K that partition J0, 15K.
If Id (resp. A) is applied to any cell with index i ∈ ZId (resp. i ∈ ZA), and if ZId
(resp. ZA) is a union of supports of cycles of SR, then commutation between Ã
and SR holds with probability 1.

However the pattern described in Eq. (5.12) has the advantage to apply the
identity mapping on columns 1 and 3. This implies that the probability of Ã MC−−→ Ã
for such a mapping Ã only depends on the probability of the commutative trail
(A× Id×A× Id) M−→ (A× Id×A× Id): it is actually the square of it.

Probabilistic commutative trail for Vert. In order to compute an actual
probability of the trail over one round, we must choose a specific mapping A.
We continue using the one described in Eq. (5.3) that satisfies A S−→ A with
probability 1, and naturally implies that Ã S−→ Ã also holds with probability 1.

Then, in order to study the transition (A× Id×A× Id) M−→ (A× Id×A× Id),
we examine the value at coordinate (0x5, 0x5) of Table 5.1, because Ã×5 = A×
Id × A × Id according to the notation introduced in Eq. (5.11). As observed in
Eq. (5.10), in this specific case N = LA + Id has an image set of dimension 1, and
thus Im(B(i, j)) has dimension 2. Therefore, Ã MC−−→ Ã occurs with probability
(2−2)2 = 2−4 because of the two active columns, and Ã MC◦SR◦S−−−−−−→ Ã holds with the
same probability. Note that this probability holds without any heuristic argument.
Indeed, for any x ∈ F64

2 , Ã ◦MC ◦ SR ◦ S(x) = MC ◦ SR ◦ S ◦ Ã(x) if and only if
Ã ◦MC(y) = MC ◦ Ã(y) where y = SR ◦ S(x).

Regarding key and constant additions, for any C ∈ (F4
2)16, the commutation

Ã TC−−→ Ã holds with probability 1 if and only if the nibbles C0, C2, C8, C10 all
belong to Fix(LA). In particular, for any c ∈ Fix(LA), all round constants of
VertcSR are weak. With four 1-bit conditions on each half of the master key k, each
round key is also weak.

Thus, assuming independence of the rounds, we expect VertcSR, with c ∈ Fix(LA),

to have a commutative trail Ã
F

(0)
k−−→ Ã −→ · · ·

F
(R−1)
k−−−−→ Ã that holds with

probability 2−4R, where R is the number of full rounds, that is, the rounds
including MC. This probabilistic behaviour is counter-balanced by the size of the
space of 2−4R-weak keys which is now significantly bigger with 2128−2×4 = 2120

keys.
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Remark 5.14. The estimated probability is the one for the trail Ã
F

(0)
k−−→ Ã −→

· · ·
F

(R−1)
k−−−−→ Ã. As in the differential case, it gives a lower bound on the probability

of the commutation Ã Ek−−→ Ã, which is in practice the only probability that can be
estimated by an adversary with access given to plaintexts and ciphertexts. ▷

Experimental Results. These high probabilities enable us to experimentally
test our distinguishers for round-reduced versions. The two main experiments are
described below. The first one studies the probability of Ã Ek−−→ Ã, but also of

Ã
F

(0)
k−−→ Ã −→ · · ·

F
(R−1)
k−−−−→ Ã thanks to the full access given as experimenters. These

experiments were made using the genuine key schedule of Midori.

Experiment 5.15 (Random weak key, random plaintext). We pick uniformly at
random some pairs (k, x) made of a weak key and a plaintext. For such a pair, we
verify whether Ã ◦ Ek(x) ?= Ek ◦ Ã(x) holds or not. This enables us to estimate
the averaged probability of the commutation over all weak keys. We also verify
whether or not the following equations are satisfied by (k, x):

∀i ∈ {0, · · · , R− 1}, F
(i)
k ◦ · · · ◦ F

(0)
k ◦ Ã(x) = Ã ◦ F (i)

k ◦ · · · ◦ F
(0)
k (x).

This enables us to estimate the averaged probability of the trail over all weak
keys. ▷

Example 5.15 was conducted for round-reduced versions of Vert2
SC and Vert0

SC.
Each time, the draw of a pair (x, k) was repeated 236 times. We thus expected an

average number of solutions for the trail Ã
F

(0)
k−−→ Ã −→ · · ·

F
(R−1)
k−−−−→ Ã of 236−4(R−1)

for the R-round version, as the last round only consists of a single Sbox layer. Our
results are depicted in Figure 5.1. As we can see on this figure, the behaviour

3 4 5 6 7 8
Round r

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(E
A(

r)
TA

(r)
)/

TA
(r)

trail w/ weak constants
hull w/ weak constants
trail w/ null constants
hull w/ null constants

Figure 5.1: Evolution of the deviation between experimental (EA) and theoretical
(TA) averages throughout the rounds.

of the experimental average is more intricate as one could first think. In the
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weak-constant setting and as the number of rounds increases, the experimental
average probability of the trail seems to slowly decrease compared to the theoretical
average. However, the experimental average over weak keys for the probability
of Ã Ek−−→ Ã stays really close to the theoretical average for the trail. This seems
to indicate the not-so-surprising fact that the round independence hypothesis is
probably too strong. However, as a lower bound on the probability of Ã Ek−−→ Ã, the
probability of 2−4R is satisfactory. Compared to the differential case, it seems that
the “dominance” of the trail slowly vanishes, while the clustering effect becomes
stronger and compensates this drop.

The distinctive case of the zero constants is also pointed out. Indeed, the zero
constants form a particular class of weak constants as 0 ∈ Fix(LA). It corresponds
to the case where no addition of round constant occurs at all. In that case, our

results indicate that the probability of the trail Ã
F

(0)
k−−→ Ã −→ · · ·

F
(R−1)
k−−−−→ Ã is

underestimated. It may be possible to explain this fact by looking at the cipher
reduced to 2R full rounds, which in that case, can be expressed as the R-time
composition of the function F (0)

k ◦F
(1)
k . Such successive iterations of the exact same

round function may be the reason why the probability differs from the average
behavior.

We also studied scenarios where multiple plaintexts are encrypted using the
same weak keys.

Experiment 5.16 (Fixed weak key, random plaintexts). We pick uniformly at
random a weak key k and a set of plaintexts X and count the number of x ∈ X,
for which:

Ã ◦ Ek(x) = Ek(Ã(x))

is satisfied and the number of x for which all equations:

∀ i ∈ {0, · · · , R− 1}, F
(i)
k ◦ · · · ◦ F

(0)
k ◦ Ã(x) = Ã ◦ F (i)

k ◦ · · · ◦ F
(0)
k (x)

are satisfied. ▷

For a fixed weak key, we drew 24(R−1)+6 plaintexts, hoping for an average of 26

plaintexts following the trail. We repeated the experiment for 10000 weak keys,
except for R = 7 for which we used 6000 weak keys. Our results are depicted in
Figure 5.2.

Naturally, Example 5.16 goes in the same direction as Example 5.15: as the
number of rounds increases, the experimental average for the trail moves away
from the theoretical one while the average for Ã Ek−−→ Ã stays much closer. What
really appears in Figure 5.2, is the fact that the average probability for the trail

Ã
F

(0)
k−−→ Ã −→ · · ·

F
(R−1)
k−−−−→ Ã over weak keys is not as representative as we could

expect. Indeed, the probability p = 2−4r seems appropriate for R = 3, however
as R grows it seems that weak keys are rather p′-weak keys where p′ can take
a palette of values. For the average probability of Ã Ek−−→ Ã taken over weak
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Figure 5.2: Fixed-key study: Estimation of the p-weakness through the numbers
of solutions

(
x, Ã(x)

)
following the trail/hull. The expected average is 26 for every

number of rounds.

keys, the distribution of p′ seems to flatten as R grows and tends to a uniform
distribution over [0, 1]. In particular, it is unclear why about half of the tested
weak keys appears to be actually strong for R ≥ 4, while some others are weaker
than expected.

As just shown, the basic model seems to work well-enough to estimate the
average probability for Ã Ek−−→ Ã and thus the effectiveness of this probabilistic

distinguisher. However, it fails at explaining precisely the trail Ã
F

(0)
k−−→ Ã −→

· · ·
F

(R−1)
k−−−−→ Ã. Explaining the observed clustering, and understanding the sub-

classes among the weak keys are two of the many open questions raised by our
experimentation.
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5.4.3 Probabilistic trails through the Sbox layer

As shown in the previous section, it is possible to build probabilistic distinguishers
in the weak-key setting based on commutative cryptanalysis. While we focused
before on commuting in a probabilistic way through the linear layer, it is possible
to also consider probabilistic transition through the Sbox layer. When both
are probabilistic, the results are a priori less impressive than results based on
deterministic transitions over the Sbox layer. However, the probabilistic case points
out some very interesting open problems. Indeed, while a designer can quickly
rule out transitions A S−→ B that hold with probability 1 by choosing an Sbox
which is not self-affine equivalent, assessing almost self-affine equivalence is still a
time-consuming task, especially for 8-bit Sboxes. Furthermore, it is also interesting
to understand how the independence hypothesis behaves when both transitions are
probabilistic.

In the case of the 4-bit Sbox of Midori, we are able to algorithmically find a pair
of mappings (B,C) such that both B

S−→ C and C
S−→ B hold with probability 12

16 .
The pair (B,C) is defined by:

B(x) :=


x0

x1 + 1
x2 + 1
x0 + x3

 , and C(x) :=


x0 + x2 + x3 + 1

x1 + x3
x3
x2


While the used notation is the same in Section 5.4.1.a, both pairs are distinct and
should not be confused. Here, we easily observe that LB has 8 fixed points, while
LC has 4 fixed points, which implies that the weak-key space is smaller than the
one considered in Section 5.4.2.a.

We can reuse our previous probabilistic trail and replace the deterministic
transitions through S by probabilistic ones. In that case, the probability of going
through the Sbox layer is estimated as 24 log2( 12

16 ) as 4 Sboxes are active. The
probability of going through a full round should thus be 24(log2( 12

16 )−1), and the
theoretical average is computed as 24(log2( 12

16 )−1)R+4 log2( 12
16 ), because of the final

round where the linear layer is omitted.
However, there is a significant divergence between our initial estimate and our

experimental results and the observed probability of commuting is higher than
expected. To get a better picture, we exhaustively computed the probability of
having B̃ ◦M ◦ S = M ◦ S ◦ C̃, and vice-versa where B̃ := B × Id × B × Id and
C̃ := C× Id×C× Id. The two transitions happen with probability 2−5.6, and 2−8.8

respectively. The first one is consistent with our estimate, while the second one is
not as we instead expected 2−9.6. This is a first step toward the understanding of
the dependencies. Dependencies between rounds should also be expected.
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5.5 Taking a step back from commutative cryptanalysis
Now that the study of commutation with affine commutants has been clearly
established and illustrated, it is time to take a step back from it. To do so, we start
by coming back to the distinguishers with probability one presented in Section 5.4.1,
and in particular to their relationships with other classes of attacks.

5.5.1 Self-similarities and invariant subspaces

As already mentioned, because of Proposition 5.10, the distinguishers with
probability 1 that we exhibited for variants of Midori64, Midori128 and for the
original Scream are all affine self-similiarities. As self-similarities, they can all
be interpreted either as related-key distinguishers, weak-key distinguishers, or
a complementation property which reduces the effective size of the key by one
bit. But because all of these self-similarities are actually coming from an iterated

trail A
F

(0)
k−−→ A −→ · · ·

F
(R−1)
k−−−−→ A which holds with probability 1 for some A, they

also imply the existence of invariant spaces. Indeed, because of Lemma 5.4, if
A ◦ F = F ◦ A for some bijection F , it holds that:

∀ i ∈ N, F (Fix(Ai)) = Fix(Ai),

and as such any Fix(Ai) is an invariant space (under weak key assumptions) for
the round function and therefore for the whole cipher.

In the case of Midori64, the mapping A that is described in Eq. (5.3) and from
which A is derived, is an involution without fixed points. This implies that the
invariant spaces described above are either empty if i = 0 or the full space if i ≥ 1,
both of which cannot be used as a distinguishing property. This is also the case
for the commutant used in Section 5.4.1.c to build the self-similarity of Scream.

Regarding Midori128, the mapping A that is considered in Section 5.4.1.b is
involutive, which means that considering i ≥ 2 is meaningless. However A has in
that case a space of fixed points V of dimension 4. This implies that V 16 is an
invariant space for the round function and the whole cipher. It corresponds exactly
to the set of weak-keys as A is linear in that case so A = LA and the equality
between the set of fixed points naturally follows.

Actually, this points out a slight difference between affine and linear self-
similarities. In both cases, the self-similarity can always be interpreted as a
weak-key distinguisher because Fix(LA) is a vector subspace, and as such, is never
empty. Furthermore, in the linear case because LA = A, it always implies that
Fix(LA) = Fix(A) is not empty, and therefore a non-trivial invariant subspace
always exists, as long as A ≠ Id. In the affine case however, the set Fix(A) is
either empty or an affine subspace and implies a non-trivial invariant subspace
only if Fix(A) is not empty.
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5.5.2 Differential interpretation

The case of Midori64. Another way of looking at the previous distinguishers is
to consider them from a differential perspective. After all, we are studying on the
one hand, x(0) ∈ Fn2 and its intermediate values x(r) after r rounds of encryption
under a key k ∈ Fκ2 , for all r ∈ J0, R− 1K, and on the other hand y(0) := A

(
x(0)

)
and its intermediate values y(r) after r rounds of encryption under the key LA(k).
So we can instead study their differences ∆(r) := x(r) + y(r) for any r ∈ J0, R− 1K.
Each of them is therefore of the form z +A(z) = (Id +A)(z) for some z ∈ Fn2 . We
then start by looking at the image set of Id +A.

In the case of Midori64, the mapping A given in Eq. (5.3) satisfies the following
properties:

∀x ∈ ⟨0x2, 0x5, 0x8⟩ , x+A(x) = 0xf, and (5.13)
∀x ∈ 0x1 + ⟨0x2, 0x5, 0x8⟩ , x+A(x) = 0xa.

This can indeed be immediately deduced from Eq. (5.10). We define the following
two sets V and U as :

V := ⟨0x2, 0x5, 0x8⟩ , U := {0xa, 0xf} .

By observing that V ∪ (0x1 + V ) = F4
2, we deduce that Im(Id +A) = U .

As a consequence of these properties, for any ∆ ∈ U16, and for any x ∈ Fn2 the
value x+ ∆ as probability of 2−16 to be equal to A(x). Stated otherwise, a pair
(x, x+ ∆) coincides with the pair (x,A(x)) with probability 2−16. If this happens,
and according to our commutative trail, each intermediate difference ∆(r) belongs
to Im(Id +A) = U16. We have then established that there exist 216 related-key
truncated differentials which each holds with a probability of at least 2−16, with
no heuristic argument.

To be more precise, we state this result as the following proposition and give a
more detailed proof.

Proposition 5.17 (Related-key truncated differentials for Vert). Let E =
(Ek : F64

2
∼−→ F64

2 )k∈F128
2

be a member of Vertc with c ∈ V . Let ∆ ∈ U16. Let
k ∈ F128

2 . Let Gkey be defined as in Section 5.4.1.a and let Zdiff(∆, U16) be the
following set of solutions:

Zdiff(∆, U16) :=
{
x ∈ F64

2 , Ek(x) + EGkey(k)(x+ ∆) ∈ U16
}
.

Then: ∣∣∣Zdiff(∆, U16)
∣∣∣ ≥ 248.

Equivalently, the truncated differential ∆ −→ U16 holds in the related-key model, for
any key and with probability at least 2−16.

Proof. Let us consider the sets Y and Yi for i ∈ J0, 15K defined by:

Y := (Id +A)−1({∆}), Yi := (Id +A)−1({∆i}),



5.5. Taking a step back from commutative cryptanalysis 183

so that Y can be decomposed as Y =×15
i=0 Yi. The set Zdiff(∆, U16) can of course

be partitioned as:

Zdiff(∆, U16) =
(
Zdiff(∆, U16) ∩ Y

) ⊔ (
Zdiff(∆, U16) \ Y

)
.

By construction, x ∈ Y if and only if x+A(x) = ∆, i.e. if and only if x+∆ = A(x).
This implies that:

Zdiff(∆, U16) ∩ Y =
{
x ∈ Y,Ek(x) + EGkey(k)(A(x)) ∈ U16

}
.

But for any x ∈ Fn2 , EGkey(k)(A(x)) = A(Ek(x)), so we get:

Zdiff(∆, U16) ∩ Y =
{
x ∈ Y, (Id +A)(Ek(x)) ∈ U16

}
.

However, U16 is by definition the image of Id + A, so we finally deduce that
Zdiff(∆, U16)∩ Y = Y . Finally, according to Eq. (5.13), any Yi is either equal to V
or 0x1 + V , and therefore its cardinality is always 23. We thus deduce that the
cardinality of Y is equal to |Y | = (23)16 = 248 and finally conclude that:∣∣∣Zdiff(∆, U16)

∣∣∣ ≥ ∣∣∣Zdiff(∆, U16) ∩ Y
∣∣∣ = |Y | = 248.

Therefore the related-key truncated differential ∆in −→ U16 holds with
probability at least 248−64 = 2−16.

This property is astonishing by the fact that its probability is very high, but
also because this lower bound is independent of the number of rounds and holds
therefore for versions with any number of rounds.

A direct corollary regarding differentials and not truncated differentials can
also be stated.

Corollary 5.18 (Related-key differentials for Vert). Let E = (Ek : F64
2

∼−→
F64

2 )k∈F128
2

be a member of Vertc with c ∈ V . Let ∆in ∈ U16. Let k ∈ F128
2 .

Let Gkey be defined as in Section 5.4.1.a. Then there exists ∆out ∈ U16 such that:∣∣∣{x ∈ F64
2 , Ek(x) + EGkey(k)(x+ ∆) = ∆out

}∣∣∣ ≥ 232.

Equivalently, there exists ∆out ∈ U16 such that ∆in −→ ∆out holds in the related-key
model, for any key and with probability at least 2−32.

Proof. According to the proof of Proposition 5.17, the 248 pairs (x, x+ ∆in), for
x ∈ Y lead to one of the 216 output difference in U16. A pigeonhole argument then
states that at least one ∆out ∈ U16 is reached by at least 232 input pairs.

If we suppose that the values (Id + A)(Ek(x)) with x ∈ Y are uniformly
distributed within U16, then we can expect all differentials ∆in −→ ∆out with
∆in,∆out ∈ U16 to hold with probability 2−32 in the related-key model. While the
two previous results are proven, this one is only stated as an assumption, supported
by non-exhaustive experiments.
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Assumption 5.19. In the context described in Proposition 5.17, we expect any
differential ∆in −→ ∆out with ∆in,∆out ∈ U16 to hold in the related-key model and
for any key, with a probability close to 2−32.

Remark 5.20. Proposition 5.17, Corollary 5.18, and Assumption 5.19 can all
naturally be adapted to weak-key distinguishers with the same probabilities, for
the class of 296 weak keys in V 32. ▷

The discrepancy between the expected differential behavior obtained via wide-
trail arguments by the designers and our result is illustrated in Figure 5.3.
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Wide trail arguments [BBISHA15]
Min. diff. proba. Vert(SC)
Min. diff. proba. Vert(SR)
Expected probabilities [This paper]
Standard diff. for 296 weak-keys,  Vert(SC) [Sec 6.1.3]
Truncated diff. for 296 weak-keys, Vert(SC) [Sec 6.1.3]
Commutative trail for 2120 weak-keys, Vert(SR,2) [Sec 6.2.2] 

Figure 5.3: Comparison between the differential cryptanalysis of [Ban+15] and
our results.

Finally, let us note that these lower bounds are only computed by considering
plaintext pairs of the form (x, x+ ∆in) with x ∈ Y . For such a pair, we already
noted that the same arguments prove that any intermediate difference ∆(r) also
belongs to U16. Because 0 does not belong to U , this means that for any i ∈ J0, 15K,
∆(r)

i is not zero. Stated otherwise, each pair (x, x + ∆in) with x ∈ Y follows a
differential trail which activates all Sboxes at each round.

In the weak-key setting, this phenomenon goes against well-established ideas.
First, it is another example of how much the behavior for a fixed weak-key can
deviate from the average one. Furthermore, it also proves that differentials and
differentials trails activating a lot of Sboxes should be taken more into consideration.
While the average (taken over independent and uniformly random round keys)
probability of a trail is very small in these cases, our example either highlights how
much the behavior of a trail for a weak key can deviate from the mean, and/or how
much the clustering effect can be devastating. Indeed, for such a high probability
for a differential ∆in Ek−−→ ∆out to happen, either some trails have a high probability
or a lot of them contribute together, but at least one of these two events must hold.

It remains an open problem to actually understand if these phenomena are
actually due to a clustering effect of many trails with small probabilities, or to
the dominance of a few trails with high probability. In any case, this is even
more remarkable because this holds for any number of rounds. Thinking that an
increased number of rounds only leads to a stronger security is again proven wrong.
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Finally, all of this is stated about a slightly-modified version of a cipher which
was designed with differential resistance in mind. This once again proves how much
the indubitably most studied class of attacks still remains under a cloud.

The cases of Scream and Midori128. The same actually happens for the
original Scream. Indeed, with A defined in Section 5.4.1.c, the set Im(Id +A) =: U
is an affine space of dimension 3 and thus of cardinality 8. In that case, for a fixed
∆ ∈ U16, a random pair (x, x + ∆) has a probability of at least 8−16 = 2−48 to
coincide with (x,A (x)); the corresponding truncated differential ∆→ U thus holds
with probability at least 2−48, independently of the number of rounds. Because
0 /∈ U16, we are again assured that the contribution of 2−48 to the overall probability
only comes from input pairs which follow trails that activate all Sboxes at all rounds.

In the case of Midori128 that is addressed in Section 5.4.1.b, or more precisely the
case of Grün , Im(Id +A) is a linear space of dimension 4 and thus of cardinality 16,
which leads to truncated differentials with probability at least 2−64. However in
that case, as Im(Id+A) is linear and not affine, 0 belongs to it, so the trail followed
by a pair (x, x+ ∆in) with x ∈ Y can have inactive Sboxes.

5.5.3 Ongoing studies

Finally, we mention two subjects that are still under study at the time of writing
and that will be discussed in an ongoing work.

Affine uniformity. In the published paper [Bau+23], we drew the shape of a
security notion related to commutative cryptanalysis, and especially to the study of
Sboxes. This notion, that we call affine uniformity, imitates the role of differential
uniformity in a differential study as a quantity needed to be minimized. However,
contrary to the differential case, the considered class contains commutants with
different cycle decompositions. In particular, such commutants can have a different
number of fixed points. The numbers of fixed points of both A and B actually have
an impact on the probability that a random function F : Fn2 → Fn2 and a random
x ∈ Fn2 satisfy:

B ◦ F (x) = F ◦A(x).

In particular, it affects the computation of the distinguishing advantage of the
distinguisher, that is, the absolute difference between the expected commutative
probability for the studied cryptographic function F and the probability taken
over all permutations. Therefore, the distinguishing advantage can only serve as a
comparative point only between pairs (A0, B0) and (A1, B1) such that |Fix(A0)| =
|Fix(A1)| and |Fix(B0)| = |Fix(B1)|. In the standard differential case, such a
comparison is possible because all non-trivial translations have no fixed point.

The existence of relations between the cardinality of Zcomm
F (A,B) and the

differential uniformity of F is also an open question that we are currently studying.



186 Chapter 5. Commutative cryptanalysis, application to Midori and Scream

Key-averaged behavior. Furthermore, in order to complete the already-
presented study, we are also currently looking at the average behavior of a
commutative distinguisher over all possible keys. As a matter of fact, the
obtained bounds show that, with independent whitening keys, a commutative
(non-differential) distinguisher cannot do better in average (over all round keys)
than a differential distinguisher. In other words, a commutative distinguisher can
only be stronger than a differential one in a weak-key or related-key model.

5.6 Concluding remarks

Because of the closeness between the subjects addressed in this chapter and the
previous one, we only add a few concluding remarks.

Commutative cryptanalysis as a general framework. It was shown in this
chapter that the analysis of commutation relations, when restricted to the affine
bijective case, gives rise to a rich theory which encapsulates a lot of previous
techniques going from differential cryptanalysis (of conjugates) to linear self-
similarities. This theory can also be effectively put in practice. Alone, it enabled us
to find by a different mean the distinguisher of Vert that is presented in Chapter 4.
A similar one for the block cipher Scream was also found. In that case, the
distinguisher can also be interpreted as a probability-1 differential for a conjugate,
because the commutant is indeed an affine involution without fixed points. Thus,
to the very least, commutative cryptanalysis enables us an effective study of the
differential properties of the conjugates FG of function F , by only relying on
inherent properties of F . Furthermore, for a modified version of Midori128, our
framework exhibits a linear commutant, which, this time, is not a fixed-point-free
involution.

A strictly larger scope? However, it remains an open question to know whether
some affine commutants that are not linear nor fixed-point-free involutions can
be found for a real-life cipher. This would give to commutative cryptanalysis a
strictly larger scope than the one obtained by the union of linear commutants and
differential analysis (of conjugates).

The probabilistic case. This is not the only open problem left with this study.
The probabilistic examples given in Section 5.4.2, and especially their analysis
remains unsatisfactory. They at least show the complexity of the probabilistic
handling of commutative relations. In the light of the differential case that is deeply
studied for decades, this is not so surprising. Nonetheless, a more profound study of
probabilistic behaviors is needed. Such a study could first be done for fixed-point-
free involutions. This would, at the same time, lead to a better understanding
of the theories of the present and previous chapters. Furthermore, it would give
examples of probabilistic differential behaviors for conjugates that we did not
address previously. We could think that the differential point-of-view may help to
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get a better grasp to these phenomenon, but in the linear case, the toy example
given by Beierle, Canteaut & Leander [BCL18] and the analysis of it made by
Beyne [Bey21], seem to indicate that this intuition might not be true. In any case,
all these directions would benefit from further investigations.

Differential interpretation of commutative distinguishers. Finally, as
already mentioned at the end of Section 5.5.2, the differential interpretation of such
commutative distinguishers, and in particular the unexpected truncated differentials
that they point out definitely deserve more attention.





Chapter 6

Linear self-equivalences among known
infinite APN families

This chapter is dedicated to the theoretical study of APN functions. As presented
in Definition 2.26, APN functions are the functions which guarantee an optimal
resistance to differential cryptanalysis. Since the definition was introduced in the
early 90’s [NK93], tremendous and various efforts have been made in order to better
grasp these optimal objects. As of today, they still remain clouded in mystery.

As an example, only a few generic constructions of such functions are known,
and connections between them are not well understood. Among them, the simpler
APN monomials that are presented in Table 6.1 were the first infinite families to
be discovered. Interestingly, the first proofs of APNness were actually derived from
other fields of discrete mathematics, such as coding or sequence theories [CU57,
Gol68, Nih72, JW93]. For quite some time, APN power mappings were believed to
be the only APN functions (up to equivalence). This hypothesis was rejected around
2006, when a first isolated function [EKP06], and later a first family [BCP06] that
are inequivalent to monomials were found.

However, a very important question, known as the big APN problem, still
remains open. The problem is to determine whether or not there exist bijective
APN functions in even dimension n strictly larger than 6. The first version of
this problem also captured the case n = 6. But, Browning, Dillon, McQuistan &
Wolfe [Bro+10] presented a positive answer in 2009 for this specific case. As of today,
the so-called Dillon permutation remains the only example (up to equivalence)
of APN bijection in even dimension. Its construction relies on a CCZ-equivalent
function of degree 2 known as the Kim mapping [Bro+10] which is among the class
representatives in the Banff list [Dil09]. This construction is now better understood

ID Exponent Conditions Ref.
Gold 2i + 1 gcd(i, n) = 1, 1 ≤ i ≤ n−1

2 [Gol68, Nyb94, BD94]
Kasami 22i − 2i + 1 gcd(i, n) = 1, 1 ≤ i ≤ n−1

2 [Kas71, JW93, Dob99b]
Welch 2k + 3 n = 2k + 1 [Dob99b]

Niho 2k + 2r − 1
n = 2k + 1

r =
{

k/2 if k even
(3k + 1)/2 if k odd

[Nih72, Dob99a]

Inverse 22k − 1 n = 2k + 1 [CU57, Nyb94, BD94]
Dobbertin 24k + 23k + 22k + 2k − 1 n = 5k [Dob01]

Table 6.1: Known APN power functions over F2n .
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Figure 6.1: A few milestones in the study of APN functions.

thanks to the advances in the understanding of the CCZ-equivalence [CP19], and
of this very specific case [PUB16]. However, the peculiarities of the Kim mapping
or of the Dillon permutation are less understood.

In the last 15 years, there have been many attempts to generalize Dillon’s
construction by considering the CCZ-equivalence classes of simpler APN functions,
typically of quadratic APN functions. We actually know a single instance (up to
equivalence) which is neither equivalent to a monomial nor to a quadratic function.1

But looking at the properties of all known infinite families of APN functions,
we have found that, despite very different representations, a vast majority of them
share the same very particular structure: when they are defined over F2n , a lot
of them actually rely on the decomposition of F∗

2n as a union of multiplicative
cosets γF∗

2k of a subfield F2k ⊂ F2n . More precisely, they behave as a fixed power
mapping, on each of the multiplicative cosets. This property was first exhibited for
the Kim mapping. Indeed, the Kim mapping is defined by the following univariate
form:

κ : F64 → F64 x 7→ x3 + x10 + ux24,

where u is a root of the primitive polynomial X6 + X4 + X3 + X + 1. It was
already noticed in [Bro+10] that it can be rewritten as κ(x) = x3P (x7) (where
P (x) = ux3 + x + 1). It follows that the Kim mapping behaves as the power
mapping x 7→ x3 over the subfield F23 (of cardinality 7 + 1). As a more general
consequence, because x 7→ x3 is a bijection over F23 , the Kim mapping satisfies for
any γ ∈ F26 , κ(γF23) = κ(γ)F23 , which is called the subspace property [Bro+10].

While most infinite APN families share a particular structure related to the
multiplicative cosets of a subgroup of F∗

2n , it is surprising that this was never
explicitly exhibited and studied a systematic manner. This is probably due to
the different representations (univariate or multivariate) used for proving that
these functions are APN, which make think that they are of different nature.
The new point of view that we introduce in this chapter then provides a way to

1This function operates on 6 bits and is known as the Brinckmann-Leander-Edel-Pott APN
cube as it was independently discovered by the first two [BL08] and last two [EP09] authors.
Whether other APN functions exist outside the CCZ-equivalence classes of monomials or of
quadratic functions still remains an open question.
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unify many previous methodologies and definitions, while exhibiting new examples.
In particular, our approach is related to the more general notion of linear self-
equivalence [BBL21, BL22, BIK23, KKK23]. As a side effect, our work reinforces
the following conjecture from [BBL21, Conjecture 1]: any APN permutation has a
linearly self-equivalent CCZ-representative.

Before getting to the heart of the matter, we start by presenting the main
definitions in Section 6.1. In particular, we begin from the well-known notion
of homogeneity, which generalizes a property of power mappings to functions of
the form F : Fℓ2k → F2k . This property is involved in the definitions (or more
precisely, in equivalent characterizations that we detail later) of the cyclotomic and
biprojectiveness properties. They are respectively defined for functions of the form
F : F2n → F2n and of the form F : Fℓ2k → Fℓ2k where n = ℓk. For this reason, it is
hard to compare these notions, but also to relate them to properties of Boolean
functions of the form F : Fn2 → Fn2 . Our goal is then to provide a unified point of
view by relying on linear self-equivalence. A first step toward this objective is to
precisely distinguish the cyclotomic property from the subspace property, which
have been until now often mixed up.

In Section 6.2, we start our unification process by studying in detail the linear
self-equivalences of cyclotomic or ℓ-variate projective mappings. To do so, we
consider the linear mappings A,B involved in a linear self-equivalence relation
B ◦ F ◦ A = F of a function F , and we analyze the respective similarity class
of A and B. The main tool at hand is a well-known canonical form of matrices
based on the so-called elementary divisors. Because similarity can be studied up
to isomorphisms of vector spaces, it provides a point of view well-suited to the
study of functions defined over Fn2 , F2n or even Fℓ2k with n = ℓk. This way, we
derive three main theorems, namely Theorems 6.33, 6.37 and 6.40, which not only
give a clearer view of cyclotomic mappings and ℓ-variate projective mappings, but
also provide definitions which do not depend on any specific input/output space
(Fn2 ,F2n ,Fℓ2k) nor any specific bases.

In Section 6.3, we study the known infinite families of APN functions. The
whole section is dedicated to a single main result (Theorem 6.43) which states that
all members of almost all of these families are linearly equivalent (and in particular
CCZ-equivalent) to a cyclotomic or ℓ-variate projective mapping. Stated otherwise,
despite their different initial representations (either univariate or multivariate),
almost all of these families can be represented by particular linearly self-equivalent
mappings. After commenting this result, its complete proof is provided.

The interest of linearly self-equivalent mappings being established in Section 6.3,
we continue in Section 6.4 to study their properties. In particular, we show how
much linear self-equivalence can reflect on other properties of a function. The Walsh
spectrum, differential spectrum, but also in the case of quadratic APN functions,
the ortho-derivative and its associated spectra, inherit from such symmetries. Thus,
we can show how to disprove the existence of a linearly self-equivalent representative
among a given equivalence class, be it a CCZ-, EA-, or linear class.

The two last sections are focused on more specific cases. In Section 6.5, after
recalling some known facts about their Walsh spectra, we provide more detail about
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APN cyclotomic mappings, and in particular derive some necessary conditions to
be APN. We also provide explicit formula for quadratic cyclotomic and ℓ-variate
projective mappings. In Section 6.6, we come back to the first example of APN
cyclotomic mapping: the Kim mapping. We analyze its Walsh zeroes in order to
understand better the fact that it is CCZ equivalent to a bijection. We conclude
by regrouping the main open questions that are spread out all along the chapter.

This chapter is based on a joint work with Anne Canteaut & Léo Perrin
that is under submission. A preliminary version was presented at the Thirteenth
International Workshop on Coding and Cryptography (WCC 2024) [BCP24].
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6.1 Cyclotomic mappings, bi-projective mappings,
linearly self-equivalent mappings, and subspace
property

6.1.1 Preliminaries

In this section, we recap and introduce some notation. Contrary to the other
chapters of this manuscript, our variables are indexed starting for 1, and not from
0. This is intended to lighten the notation.

Let k, ℓ ≥ 1. Recall from Proposition 2.6 that any function F : Fℓ2k → F2k

admits a unique interpolating polynomial, which is the unique polynomial P ∈
F2k [X1, · · · , Xℓ] which satisfies:

F (x1, · · · , xℓ) = P (x1, · · · , xℓ) ∀ x1, · · · , xℓ ∈ F2k ;

and which has degree di ≤ 2k−1 in each Xi. Given u = (u1, · · · , uℓ) ∈
q
0, 2k − 1

yℓ,
we denote Xu := ∏ℓ

i=1X
ui
i .Given two sets X,Y , we denote by F(X,Y ) the set of

functions from X to Y .
The domain and codomain of a vectorial Boolean function F : Fn2 → Fm2 can

always be identified with other F2-spaces. Indeed, an F2-space isomorphism
can always be built between two n-dimensional F2-spaces. In that case rather
than focusing on F : Fn2 → Fm2 , we can instead look at π1 ◦ F ◦ π−1

2 , where
π1 : Fn2 → V1 and π2 : Fm2 → V2, where π1, π2 are F2-space isomorphims. If not
stated otherwise, isomorphism always refers to a F2-linear bijection, i.e. a F2-vector
space isomorphism.Handling several representations of the same functions will be
a key point in our work for providing a unified point of view on several structural
properties of vectorial functions.

In order to study and classify vectorial Boolean functions in an effective manner,
we rely on the equivalence relations defined in Section 2.4 on page 57.

However, these equivalence relations are suited to compare functions defined
from Fn2 to itself, but not functions two functions F : Fℓ2k → Fℓ2k and G : Fℓ′2k′ → Fℓ′2k′

when (ℓ, k) ̸= (ℓ′, k′). To do so, we define the linear equivalence class of a function
as follows.

Definition 6.1 (Linear equivalence class). Let n = ℓk and F be a function from
Fℓ2k to itself. Then, the linear-equivalence class of F is the subset of F(Fn2 ,Fn2 )
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defined by: {
π1 ◦ F ◦ π−1

2 , s.t π1, π2 : Fℓ2k → Fn2 are isomorphisms
}
.

▷

By definition, the linear equivalence class of any function is always a subset of
F(Fn2 ,Fn2 ), which enables us to compare the linear-equivalence classes of functions
defined over possibly different domains. This notation has the big advantage that
for any isomorphisms ψ1, ψ2 : Fℓ2k → Fℓ′2k′ and any function F : Fℓ2k → Fℓ2k , the
linear-equivalence classes of F and ψ1 ◦ F ◦ ψ−1

2 coincide. Stated otherwise, the
linear equivalence class of a function is independent of the choice of bases in input
and output, but also independent of the actual input or output spaces. This could
be further generalized to functions F : Fℓ2k → Fℓ′2k′ where (ℓ, k) ̸= (ℓ′, k′), but in our
context the domain and codomain will always be equal.

6.1.2 Homogeneity

In this section, we identify connections between various concepts that were still,
to the best of our knowledge, unknown. They involve a lot of different properties
that appear in different contexts, using different terminologies. These properties
are also defined as properties of different objects (or representations), such as
Boolean functions F : Fn2 → Fn2 , univariate functions F : F2n → F2n , or multivariate
functions F : Fℓ2k → Fℓ2k . In most of these properties, homogeneous functions are
involved, one way or another.

Definition 6.2 (Homogeneous function with exponent d). Let k, ℓ, d ≥ 1 be
positive integers such that d < 2k. Let F be a function from Fℓ2k to F2k . The
function F is said to be homogeneous of exponent d if it satisfies:

∀(x1, · · · , xℓ) ∈ Fℓ2k , ∀φ ∈ F2k , F (x1φ, · · · , xℓφ) = φdF (x1, · · · , xℓ). (6.1)

▷

Remark 6.3. The functions defined in Definition 6.2 are sometimes known as
homogeneous functions of degree d. However in our context, “degree” can already
refer to the univariate, multivariate or algebraic degree of a function. We then
prefer using “exponent” instead. ▷

Lemma 6.4. Let F : Fℓ2k → F2k and d < 2k. Then, F is homogeneous of exponent d
if and only if its interpolating polynomial P = ∑

u∈J0,2k−1Kℓ auX
u satisfies:

∀u ∈
r

0, 2k − 1
zℓ

s.t.
ℓ∑
i=1

ui ̸≡ d mod (2k − 1), au = 0.
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Proof. For any u ∈
q
0, 2k − 1

yℓ, let us denote by Σ(u) the integer sum defined by
Σ(u) := ∑ℓ

i=1 ui. Let φ ∈ F2k . Let us introduce the following functions:

G : (x1, · · · , xℓ) 7→ F (x1φ, · · · , xℓφ), H : (x1, · · · , xℓ) 7→ φdF (x1, · · · , xℓ).

Then G admits P (X1φ, · · · , Xℓφ) as interpolating polynomial and H admits φdP
as interpolating polynomial. By uniqueness of the interpolating polynomial, we
deduce that the two polynomials are equal: ∀u, auφΣ(u) = auφ

d. Choosing for φ a
primitive element of F2k , we get that, for any au ̸= 0, φΣ(u) = φd; in other words
Σ(u) ≡ d mod 2k − 1. Conversely, given any φ and any u with Σ(u) ≡ d mod 2k − 1,
we observe that ∏ℓ

i=1(xiφ)ui = φΣ(u)∏ℓ
i=1 x

ui
i = φd

∏ℓ
i=1 x

ui
i , which immediately

implies the result.

Example 6.5. When ℓ = 1, homogeneous functions are exactly the monomials
functions of the form x 7→ cxd, c ∈ F2k . ▷

Example 6.6. Any homogeneous polynomial P ∈ F2k [X1, · · · , Xℓ] of degree d
defines a homogeneous function F : (F2n)ℓ → F2n of exponent d for any extension
F2n of F2k . However, the converse does not hold. For instance, X5

1X
2
2X

3
3 +X1X2X3

is not a homogeneous polynomial but still defines a homogeneous function F : F3
8 →

F8 of exponent 3 because 5 + 2 + 3 ≡ 10 ≡ 3 mod 7. ▷

6.1.3 Cyclotomic mappings

This section is devoted to a particular subclass of functions from F2n to itself,
named cyclotomic mappings. After studying the main properties of this family,
we will show that cyclotomic mappings over F2n with respect to F∗

2k , where k is a
divisor of n, are characterized by a multivariate representation with homogeneous
coordinates. We will see in Section 6.3, that these mappings play a major role in
the known infinite families of APN functions.

Definition 6.7 (Cyclotomic mapping [Wan07]). Let n ≥ 1 and let G ⊂ F∗
2n be

a multiplicative subgroup. A mapping F : F2n → F2n is a cyclotomic mapping of
exponent d with respect to G if F (0) = 0 and:

∀ λ ∈ F2n , ∃ cλ ∈ F2n , ∀ x ∈ G, F (λx) = cλx
d.

▷

Remark 6.8. For such a mapping, the original terminology introduced in [Wan07] is
“cyclotomic mapping of order d and index 2n−1

|G| ”. However, we prefer the wording
of Definition 6.7 because “order” can also refer to the order of the group or of the
function F , while “index” is also often overloaded. ▷

Example 6.9. When n is even, the cyclotomic mappings of exponent 0 with
respect to the subgroup G = F∗

4, which is of order 3, coincide with the so-called
canonical triplicate functions studied in [BIK23, KKK23]. More generally, when d
divides 2n − 1, the cyclotomic mappings of exponent 0 with respect to the group
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G of cardinality |G| = d coincide with the so-called d-divisible mappings studied
in [KKK23], that is, functions that can be written as x 7→ P (xd), for some P . ▷

Definition 6.7 equivalently means that F acts on each coset of the subgroup G
as the fixed monomial function x 7→ xd, up to a multiplicative constant. This is
emphasized by the following equivalent definitions.

Lemma 6.10 (Equivalent definitions). Let F : F2n → F2n with F (0) = 0 and let
G ⊂ F∗

2n be a subgroup of F∗
2n. Then, F is a cyclotomic mapping of exponent d

with respect to G if and only if one of the following equivalent conditions holds:

(i) ∀λ ∈ F2n , ∃ cλ ∈ F2n ,∀ x ∈ G, F (λx) = cλx
d.

(ii) ∀λ ∈ F2n , ∀ x ∈ G, F (λx) = F (λ)xd.

(iii) For any system Γ of representatives of F∗
2n/G,

∀γ ∈ Γ,∀ x ∈ G, F (γx) = F (γ)xd.

Proof. (i) ⇔ (ii): The fact that (i) implies (ii) is obtained by choosing x = 1,
which leads to cλ = F (λ) for any λ ∈ F∗

2n . We then deduce that the first two
definitions are equivalent.

(ii) ⇔ (iii): We only have to show that (iii) implies (ii): any λ ∈ F∗
2n can be

written λ = γy for some γ ∈ Γ and y ∈ G. Then, we deduce from (iii) that,
for any x ∈ G:

F (λx) = F (γxy) = F (γ)xdyd = F (γy)xd = F (λ)xd .

Example 6.11. Let F2k be a subfield of F2n . Because of the second characterization
given in Lemma 6.10, we observe for instance that the trace TrF2n/F2k

relative to
F2k , as well as any F2k -linearized polynomial, are cyclotomic mappings of exponent
1 with respect to F∗

2k . The case d = 1,G = F∗
2k is a special case of Definition 6.7

corresponding to the former and more restrictive definition of cyclotomic mappings
given in [NW05]. ▷

Any function F : F2n → F2n such that F (0) = 0 is actually a cyclotomic
mapping with respect to {1}. Therefore, we restrict ourselves to the non-trivial
case where G ̸= {1}. Furthermore, any cyclotomic mapping with respect to G is
also a cyclotomic mapping with respect to any subgroup of G. We will then usually
focus on the largest possible subgroup. We also notice that we can always consider
d < |G| by replacing d by its remainder modulo |G|.

It is also worth noting that, when the exponent d of a cyclotomic mapping F
with respect to G is not coprime with the size of G, then F is constant on each
coset of the subgroup of order t = gcd(|G|, d). This is detailed in the following
definition and proposition.
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Definition 6.12 (Almost t-to-1 mapping [KKK23]). Let F : F2n → F2n and t
be a divisor of 2n − 1. The function F is almost t-to-1 if there exists a unique
y0 ∈ Im(F ) such that:∣∣∣F−1({y0})

∣∣∣ = 1, and ∀ y ∈ Im(F ) \ {y0} ,
∣∣∣F−1({y})

∣∣∣ = t.

▷

Proposition 6.13. Let G ⊂ F∗
2n be a multiplicative subgroup of F∗

2n and let
F : F2n → F2n be a cyclotomic mapping of exponent d with respect to G such that
t = gcd(d, |G|) > 1. Then, F is constant on each coset of the subgroup G′ ⊂ G of
size t. Equivalently, F is cyclotomic of exponent 0 with respect to G′. Most notably,
if F takes distinct non-zero values on each coset of G′, then F is almost t-to-1.

Proof. Since t is a divisor of |G|, there exists a subgroup G′ ⊂ G of size t. Then,
for any λ ∈ F2n and any x ∈ G′:

F (λx) = F (λ)xd = F (λ)

since d is a multiple of |G′|.

Cyclotomic mappings can also be characterized by their univariate representa-
tion, as stated in the following well-known lemma.

Lemma 6.14 (Univariate characterization). [Wan07, Lemma 1][Göl15, p.264]
Let G be a multiplicative subgroup of F∗

2n and F : F2n → F2n with interpolating
polynomial P = ∑2n−1

i=0 aiX
i. The mapping F is a cyclotomic mapping of exponent

d with respect to G if and only if one of the following equivalent conditions is
satisfied:

(i) there exists Q ∈ F2n [X] such that P (X) = XdQ(X |G|),

(ii) for any i ∈ J0, 2n − 1K such that i ̸≡ d mod |G|, ai = 0.

Proof. The two conditions are obviously equivalent. Let s = |G| and 2n − 1 = ts.
Let α be a primitive element of F∗

2n , so that αt generates G.

( ⇐= ) Let λ = αi and x = αtj ∈ G. Then:

F (λx) = P (αi+tj) = αd(i+tj)Q(αs(i+tj))
= (αtj)dαdiQ(αsi) = (αtj)dP (αi) = xdF (λ),

where the third equality is derived from αst = 1.

( =⇒ ) Conversely, let x ∈ G. From Lemma 6.10, we get for any λ ∈ F2n :
2n−1∑
i=0

aiλ
ixi = P (λx) = P (λ)xd =

2n−1∑
i=0

aix
dλi,

so that ∑2n−1
i=0 ai(xd+xi)Xi is the null polynomial. Therefore if ai ̸= 0, using

a generator x of G, we get xd−i = 1 and thus i ≡ d mod |G|.
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The polynomials described in Lemma 6.14 are sometimes known as Wan-Lidl
polynomials [WL91] and have been extensively studied, and especially in the
bijective case [AW07, BPW23, CC23, Lai07, WL91, Wan17].

Example 6.15. A binomial mapping over F2n , x 7→ xi + axj with i < j, is a
cyclotomic mapping with respect to a nontrivial subgroup G ⊂ F∗

2n if and only
if gcd(j − i, 2n − 1) > 1. Indeed, from Lemma 6.14, this equivalently means
that there exists a nontrivial subgroup G ⊂ F∗

2n such that i ≡ j mod |G|. The
largest subgroup G for which the property holds is then the subgroup of order
gcd(j − i, 2n − 1). ▷

Example 6.16. The Kim-type mappings defined2 in [CL21] and also studied
in [Li+21, Car15, Göl23], correspond to the mappings over F22k with interpolating
polynomials:

X3·2k + a1X
2k+1+1 + a2X

2k+2 + a3X
3, a1, a2, a3 ∈ F22k .

Since all involved exponents are equal to 3 modulo (2k − 1), these mappings are
cyclotomic mappings of exponent 3 with respect to F∗

2k . As we will show later
in Proposition 6.82, the interpolating polynomials of all quadratic cyclotomic
mappings defined over F22k and of exponent 3 with respect to F∗

2k can be written
as:

a0X
3·2k + a1X

2k+1+1 + a2X
2k+2 + a3X

3, a0, a1, a2, a3 ∈ F22k .

▷

6.1.4 Cyclotomic mappings with respect to a subfield

Among all multiplicative subgroups, groups of units of subfields play a particular
role. For the sake of simplicity, cyclotomic mappings with respect to the group
of units of a subfield will be called cyclotomic mappings with respect to a subfield.
For any subfield F2k ⊂ F2n , F2n can be seen as an F2k -space of dimension ℓ := n

k .
In that case, a function F : F2n → F2n can also be seen as a multivariate function,
which leads to a multivariate characterization of cyclotomy.

Lemma 6.17 (Multivariate characterization). Let n = ℓk. Let π : F2n → Fℓ2k be
an F2k-linear bijection. Let F : F2n → F2n and for all i ∈ J1, ℓK, let Fi : Fℓ2k → F2k

denote the coordinates of π ◦F ◦π−1. Then, F is a cyclotomic mapping of exponent
d < 2k with respect to F2k if and only if, for any i ∈ J1, ℓK, Fi is a homogeneous
function of exponent d.

Proof. Let (b1, · · · , bℓ) be the F2k -basis of F2n corresponding to π, i.e. the unique
basis such that π(bi) is the element of Fℓ2k having all its coordinates equal to 0

2The terminology “Kim-type” originates from Chase and Lisoněk [CL21], while Carlet suggests
“generalized Kim” for such functions which are also APN [Car15].
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except the i-th one, which is equal to 1. Then, the ℓ-variate coordinates F1, . . . , Fℓ
of π ◦ F ◦ π−1 satisfy:

F (λ) =
ℓ∑
i=1

Fi(λ1, · · · , λℓ)bi, where λ =:
ℓ∑
i=1

λibi , with λi ∈ F2k for any i.

( =⇒ ) By hypothesis, F satisfies: ∀λ ∈ F2n ∀φ ∈ F2k , F (λφ) = F (λ)φd, where
equality also holds for φ = 0. Because φ ∈ F2k , we have λφ = ∑ℓ

i=1(λiφ)bi.
For any i ∈ J1, ℓK, this then implies that:

∀(λ1, · · · , λℓ) ∈ Fℓ2k ∀φ ∈ F2k Fi(λ1φ, · · · , λℓφ) = φdFi(λ1, · · · , λℓ);

or equivalently that all Fi are homogeneous functions of degree d.

( ⇐= ) Conversely, we observe that, for any φ ∈ F2k :

F (λφ) =
ℓ∑
i=1

Fi(π(λφ))bi =
ℓ∑
i=1

φdFi(π(λ))bi = φd
ℓ∑
i=1

Fi(π(λ))bi = φdF (λ),

where we use for the second equality the F2k -linearity of π, and the
homogeneity of Fi.

In that case, Lemma 6.17 provides an easy way to identify cyclotomic
mappings through their multivariate polynomial representations. The previous
characterizations of cyclotomic mapping with respect to a subfield are then
summarized in the following theorem.

Theorem 6.18 (Cyclotomic mappings with respect to subfields). Let n, ℓ, k, d
be positive integers such that n = ℓk with k > 1 and d < 2k. Let F : F2n → F2n

with interpolating polynomial P = ∑2n−1
i=0 aiX

i. Let F = (F1, · · · , Fℓ) be any
ℓ-variate representation of F where the i-th coordinate Fi : Fℓ2k → F2k has Pi =∑
u∈J0,2k−1Kℓ au,iX

u as interpolating polynomial. The following statements are
equivalent:

• F is a cyclotomic mapping of exponent d with respect to F2k ,

• ∀ λ ∈ F2n , ∃ cλ ∈ F2n , ∀ φ ∈ F2k , F (λφ) = cλφ
d,

• ∀ λ ∈ F2n , ∀ φ ∈ F2k , F (λφ) = F (λ)φd,

• For any system Γ of representatives of F∗
2n/F∗

2k , ∀γ ∈ Γ, ∀ φ ∈ F2k , F (γφ) =
F (γ)φd,

• ∃ Q ∈ F2n [X], P = XdQ(X2k−1),

• ∀ i ∈ J0, 2n − 1K, such that i ̸≡ d mod 2k − 1, ai = 0,
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• ∀ i ∈ J1, ℓK, Fi is a homogeneous function of exponent d,

• ∀ i ∈ J1, ℓK , ∀ φ, x1, · · · , xℓ ∈ F2k , F (x1φ, · · · , xℓφ) = φdF (x1, · · · , xℓ),

• ∀ i ∈ J1, ℓK , ∀ u ∈
q
0, 2k − 1

yℓ, such that ∑ℓ
i=1 ui ̸≡ d mod 2k − 1, au,i = 0.

As detailed in the following definition and proposition, the so-called (q, q)-
biprojective mappings are particular cases of cyclotomic mappings.

Definition 6.19 (Biprojective mapping [Göl22, Göl23]). Let k, q, q′, r, r′ be positive
integers such that k > 1, q = 2r, q′ = 2r′ and r, r′ < k. A function F : F2

2k → F2
2k

with bivariate representation F (x, y) = (F1(x, y), F2(x, y)) is a (q, q′)-biprojective
mapping if F1 and F2 have interpolating polynomials of the following forms:

F1(x, y) = axq+1 + bxqy + cxyq + dyq+1,

F2(x, y) = exq
′+1 + fxq

′
y + gxyq

′ + hyq
′+1,

with a, b, c, d, e, f, g, h ∈ F2k . ▷

Proposition 6.20 (Cyclotomic mappings and (q, q)-biprojective mappings [Göl23]).
Let q = 2r. Then any (q, q)-biprojective mapping F : F2k × F2k → F2k × F2k can be
expressed as π ◦G ◦ π−1, where G is a cyclotomic mapping of exponent q + 1 with
respect to F2k and π : F2n → F2

2k is an F2k-linear bijection.

Proof. This is a direct corollary of the multivariate characterization of cyclotomic
mappings. Indeed, we observe that any (q, q)-biprojective mapping F has
homogeneous components of exponent q + 1. By choosing an F2k -basis (b1, b2) of
F22k , we can build the function G : F22k → F22k defined by:

∀x, y ∈ F2k , G(b1x+ b2y) = b1F1(x, y) + b2F2(x, y).

By construction, the function G is cyclotomic of exponent q+1. With the mapping π
defined by π(b1x+ b2y) = (x, y) for all x, y, we obtain: F = π ◦G ◦ π−1.

Most notably, the previous proposition points out that the class of (2, 2)-
biprojective functions coincides with the family of quadratic cyclotomic mappings
of exponent 3 with respect to F2

n
2 mentioned in Example 6.16. Moreover, for

q = 2r > 2, the (q, q)-biprojective functions correspond to the quadratic cyclotomic
mappings of exponent (2r + 1) with respect to F2

n
2 , where quadratic refers to the

algebraic degree of F . Most notably, this family includes as a subclass the so-called
(closed) generalized butterflies introduced in [PUB16], studied in [CDP17, FFW17,
Li+18, CPT19], and defined by F (x, y) = (F1(x, y), F1(y, x)) with F1(x, y) =
(x+ αy)2r+1 + βy2r+1.
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6.1.5 Linearly self-equivalent mappings

When they are seen as functions from Fn2 to Fn2 , cyclotomic mappings correspond
to a particular subclass of linearly self-equivalent mappings. This class of mappings
has been extensively studied by Beierle, Brinkmann and Leander [BBL21, BL22] in
order to find new APN mappings. In particular, they observed that all known APN
permutations are CCZ-equivalent to a linearly self-equivalent APN permutation
and conjecture in [BBL21, Conjecture 1] that this property always holds.

In the following, given F2-linear bijections Ai with i ∈ J1, ℓK from an F2-space
V to itself, we denote by diag(A1, . . . , Aℓ) : V ℓ → V ℓ the mapping defined by:

∀(x1, . . . , xℓ) ∈ V ℓ, diag(A1, . . . , Aℓ)(x1, . . . , xℓ) := (A1(x1), . . . , Aℓ(xℓ)).

We also denote by Mα,n the multiplication mapping x 7→ xα defined from F2n to
itself.

Definition 6.21 (LE-automorphism group). [CP19, BBL21] Let n = ℓk, k > 1.
The automorphism group of a function F : Fℓ2k → Fℓ2k is the set Aut(F ) of all F2-
affine bijections σ from

(
Fℓ2k

)2
to itself such that {(x, F (x)), x ∈ Fℓ2k} is invariant

under σ.
The LE-automorphism group of F is the subgroup AutLE(F ) of Aut(F )

composed of all automorphisms of the form diag(A,B) for some F2-linear bijections
A,B : Fℓ2k → Fℓ2k . ▷

Definition 6.22 (Linearly self-equivalent mappings). [BBL21] A function F :
Fℓ2k → Fℓ2k is said to be linearly self-equivalent if AutLE(F ) is non-trivial, i.e., there
exist two F2-linear bijections A,B : Fℓ2k → Fℓ2k with A ̸= Id or B ̸= Id such that
B ◦ F ◦A = F . ▷

Example 6.23. A cyclotomic mapping F : F2n → F2n of exponent d over a
subgroup G satisfies for any α ∈ G:

Mα−d,n ◦ F ◦Mα,n = F.

A (q, q′)-biprojective function G : (F2k)2 → (F2k)2 satisfies for any β ∈ F2k :

diag(Mβq+1,k,Mβq′+1,k) ◦G = G ◦ diag(Mβ,k,Mβ,k).

Both are therefore linearly self-equivalent mappings. ▷

As in the case of Definition 6.1, this definition of linear self-equivalence is
compatible with any change of basis, and any change of domain. Indeed, let
F : Fℓ2k → Fℓ2k . Then it holds that, for all F2-linear bijections π1, π2 : Fℓ2k → Fℓ′2k′ ,

diag(A,B) ∈ AutLE(F ) ⇐⇒ Bπ−1
1 π1Fπ

−1
2 π2A

−1 = F (6.2)
⇐⇒ (π1Bπ

−1
1 )(π1Fπ

−1
2 )(π2A

−1π−1
2 ) = π1Fπ

−1
2

⇐⇒ diag
(
π2Aπ

−1
2 , π1Bπ

−1
1

)
∈ AutLE

(
π1Fπ

−1
2

)
.
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As a consequence of this formula, and as pointed out in [BBL21], classifying
linearly self-equivalent mappings up to linear equivalence can leverage any similarity
invariant of GLn(F2), like the rational canonical form. We continue in this direction
in Section 6.2.

Beforehand, we present another somehow-related property known as the
subspace property, which is sometimes mistaken with cyclotomy.

6.1.6 Subspace property

The Kim mapping exhibited in [Bro+10] is a cyclotomic mapping of exponent
3 with respect to F8. Instead of this particular structure, Dillon et al. [Bro+10]
highlight a more general property called the subspace property. In the following, we
generalize it to any subgroup G ⊂ F∗

2n while it was originally defined in [Bro+10]
for n even and G = F∗

2
n
2

only.

Definition 6.24 (Subspace property [Bro+10]). Let F : F2n → F2n and G ⊂ F∗
2n

be a multiplicative subgroup of F∗
2n . A mapping F satisfies the G-subspace property

if, for all λ ∈ F2n , F (λG) = F (λ)G. ▷

Because 0G = {0}, the definition implies that F ({0}) = F (0)G, which
necessarily means that F (0) = 0 for the cardinalities to be equal. A particular
subclass of mappings satisfying the subspace property is formed by some so-called
generalized cyclotomic mappings, which correspond to a generalization of the notion
of cyclotomic mappings given in Definition 6.7. Indeed, while a cyclotomic mapping
with respect to G acts as the same monomial mapping (up to a constant) over all
cosets of G, we may consider possibly different monomials for the different cosets,
as in the following definition.

Definition 6.25 (Generalized cyclotomic mapping [BW22]). Let G be a subgroup
of F∗

2n . A mapping F : F2n → F2n is called a generalized cyclotomic mapping with
respect to G if F (0) = 0 and ∀λ ∈ F2n , ∃ dλ ∈ N, ∀ x ∈ G, F (λx) = F (λ)xdλ . ▷

If F (λ) ̸= 0, the value of dλ mod |G| only depends on the coset of λ. Indeed, it
holds that for any y, x ∈ G:

F (λy)xdλy = F (λyx) = F (λ)ydλxdλ = F (λy)xdλ .

Therefore, as in Lemma 6.10, an equivalent condition is that, for any γ in a system
of representatives of F∗

2n/G, there exists dγ ∈ N such that:

∀x ∈ G, F (γx) = F (γ)xdγ .

Generalized cyclotomic mappings with respect to G then form a subclass of
the mappings satisfying the G-subspace property if their exponents are coprime
with |G|.

Lemma 6.26. Let G be a subgroup of F∗
2n and Γ be a system of representatives of

F∗
2n/G. A generalized cyclotomic mapping of exponents dγ , γ ∈ Γ with respect to G

satisfies the G-subspace property if and only if gcd(dγ , |G|) = 1 for all γ ∈ Γ.



6.1. Cyclotomic mappings, bi-projective mappings, linearly self-equivalent
mappings, and subspace property 203

Proof. Let F be a generalized cyclotomic mapping with respect to G. By definition,
for any λ ∈ F2n , we have:

F (λG) = {F (λx), x ∈ G}
= {xdλF (λ), x ∈ G}
= {xdγF (λ), x ∈ G}

where γ ∈ Γ is such that λ ∈ γG. It follows that F (λG) = F (λ)G if and only
x 7→ xdγ is bijective over G, or equivalently dγ is coprime with |G|.

Most notably, this points out that the subspace property as defined by Göloğlu
in [Göl15], and which actually corresponds to the definition of cyclotomic mapping
of exponent (2r + 1) with respect to the subfield F2n/2 for any r ≥ 1, does not
coincide with the original subspace property recalled in Definition 6.24. Indeed, such
cyclotomic mappings satisfy the F∗

2n/2-subspace property if and only if n
2 gcd(r,n/2)

is odd. This is not the case for instance of the APN mappings satisfying Göloğlu’s
subspace property when n is a multiple of 4, since the APN condition (see
Proposition 6.76) implies that r is coprime with n/2 and contradicts Lemma 6.26.

Therefore, we want to further clarify the differences between the subspace
property and the properties of (generalized) cyclotomic mappings. To this aim,
we now characterize, among all mappings satisfying the G-subspace property, the
ones corresponding to generalized cyclotomic mappings with respect to G. This
characterization first requires the following proposition.

Proposition 6.27. Let F : F2n → F2n with F (0) = 0, let G ⊂ F∗
2n be a subgroup

of F2n and Γ be a system of representatives of F∗
2n/G. Then, F has the G-subspace

property if and only if one of the following equivalent conditions is satisfied:

(i) ∀λ ∈ F2n, F (λG) = F (λ)G.

(ii) ∀γ ∈ Γ, F (γG) = F (γ)G.

(iii) ∀λ ∈ F2n, there exists a bijection Gλ : G → G such that, ∀x ∈ G, F (λx) =
F (λ)Gλ(x).

(iv) ∀γ ∈ Γ, there exists a bijection Gγ : G → G such that, ∀x ∈ G, F (γx) =
F (γ)Gγ(x).

Proof. (i) ⇐⇒ (ii): We only have to prove that (ii) implies (i). Let λ ∈ F2n .
Then, there exists γ ∈ Γ such that λ = γx. Then, F (λ) ∈ F (γ)G. We then
deduce that:

F (λG) = F (γG) = F (γ)G = F (λ)G .

(i) ⇐⇒ (iii): Let λ ∈ F2n such that F (λ) ̸= 0. We consider the mapping
Gλ : G→ F2n defined by:

Gλ(x) = F (λx)
F (λ) .
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Then, Im(Gλ) = G if and only if F (λG) = F (λ)G. Moreover, when F (λ) = 0,
F (λG) = {0}, which means that F (λx) = F (λ)Gλ(x) for any bijection
Gλ : G→ G. Therefore, we derive that (i) and (iii) (resp. (ii) and (iv)) are
equivalent.

It is worth noticing that, when F (λ) ̸= 0, all the functions Gλ : G → G in
the previous definitions satisfy Gλ(1) = 1, and the same can be assumed when
F (λ) = 0.

An interesting case corresponds to the situation where all functions Gλ are
identical when λ varies in a coset of G. This situation characterizes the generalized
cyclotomic mappings with respect to G within the family of all functions satisfying
the G-subspace property.

Theorem 6.28. Let G be a subgroup of F∗
2n and Γ be a system of representatives

of F∗
2n/G. Let F : F2n → F2n be a mapping satisfying the G-subspace property,

i.e., for all λ ∈ F2n, there exists a bijection Gλ : G → G such that, ∀x ∈ G,
F (λx) = F (λ)Gλ(x). Then, for all γ ∈ Γ and all λ ∈ γG, Gλ = Gγ if and only
if F is a generalized cyclotomic mapping with respect to G of exponents dλ with
gcd(dλ, |G|) = 1.

Proof. ( =⇒ ) Let us first prove that, for any F satisfying the G-subspace property,
we have that, for any γ ∈ Γ with F (γ) ̸= 0, for all φ, x ∈ G, Gγ(φx) =
Gγ(φ)Gγφ(x). By definition it holds that:

Gγ(φx) = F (γφx)
F (γ) .

Moreover, F (γφ) ̸= 0 since F (γφ) ∈ F (γ)G, with F (γ) ̸= 0. This leads to:

Gγ(φ)Gγφ(x) = F (γφ)
F (γ) ×

F (γφx)
F (γφ) = F (γφx)

F (γ) = Gγ(φx) .

By hypothesis, we know that Gγφ(x) = Gγ(x). We then deduce that, for
all φ, x ∈ G, Gγ(φx) = Gγ(φ)Gγ(x) This means Gγ is a multiplicative
permutation of G with Gγ(1) = 1. Let us consider φ ∈ G a given generator of
G. We observe that Gγ(φ) can be written as Gγ(φ) = φdγ for some dγ . It then
implies that Gγ(φd′) = Gγ(φ)d′ = (φdγ )d′ = (φd′)dγ , so that Gγ(x) = xdγ

for any x ∈ G. The function Gγ is therefore a power mapping and dγ is
necessarily coprime with |G| because it is bijective. If F (γ) = 0, then any
bijection Gγ can be used, including a power permutation. We then deduce
that, for any λ ∈ F2n , ∀x ∈ F, F (λx) = F (λ)Gγ(x) = F (λ)xdγ , i.e. F is a
generalized cyclotomic mapping of exponents coprime with G.

( ⇐= ) Conversely, let F be a generalized cyclotomic mapping. Then for any
λ ∈ F2n , Gλ can be defined as Gλ(x) = xdλ for any x ∈ G. The equality
dλ ≡ dγ mod |G| when λ ∈ γG is already mentioned after Definition 6.25.
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Moreover, since the exponent dγ is coprime with |G|, Gλ(x) = xdγ is a
bijection on G.

Theorem 6.28 enables us to have a clearer view of the situation. As a cyclotomic
mapping with exponent coprime with 2 n

2 − 1, the Kim mapping appears to be a
very particular case of function satisfying the F∗

2
n
2

-subspace property.
Contrary to cyclotomic mappings or biprojective mappings, the subspace

property does not seem to imply (by definition) any kind of linear self-equivalence.
For instance, let us consider the generalized cyclotomic mapping with respect to
F23 and defined over F26 by:

F (x) =
{
x3 if x ∈ αiF23 for any i ∈ J0, 8K \ {1}
x5 if x ∈ αF23

,

where α is a primitive element with minimal polynomial X6 +X4 +X3 +X + 1.
It can be computationally verified that the automorphism group Aut(F ) is trivial,
and this in particular implies that this is also the case for AutLE(F ).

In the following, we rather continue studying linear self-equivalence. How-
ever, generalized cyclotomic mappings will still be mentioned in a few results
in Section 6.5.2, when the generalization from the cyclotomic case is immediate.

6.2 Classification of some families of linearly self-
equivalent mappings

This section is dedicated to a unified study of the cyclotomic mappings and
biprojective mappings introduced in the previous section. More precisely, we study
in detail the linear self-equivalences of such mappings. To do so, we consider the
linear mappings A,B involved in a linear self-equivalence relation B ◦ F ◦A = F
of a function F , and we analyze the respective similarity class of A and B. First,
we will recall some properties of the canonical form of linear bijections.

6.2.1 Canonical forms of linear mappings

The family of companion matrices plays an important role when representing
matrices up to similarity equivalence.

Definition 6.29 (Companion matrix). Let P (X) = Xn +∑n−1
i=0 piX

i be a monic
polynomial in F2[X]. Its companion matrix is the n× n matrix defined by:

C(P ) =



0 0 · · · 0 p0

1 0
... p1

0 1 . . . ...
... . . . 0 pn−2
0 · · · 0 1 pn−1
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▷

In the following, we use the canonical representation of automorphisms based
on elementary divisors and which is sometimes known as the primary rational
canonical form. This is an alternative to the one based on invariant factors (aka
Frobenius normal form) and which is used in [BBL21]. Therefore, by canonical
form, we now refer to the following well-known proposition.

Proposition 6.30 (Canonical form, elementary divisors [Her75, Page 308]). Let V
be an F2-space of dimension n. Let A : V → V be an F2-linear mapping with
minimal polynomial ∏r

i=1 P
ei
i where P1, . . . , Pr are distinct irreducible polynomials

and all ei ≥ 1. Then, there exists an F2-basis of V in which the matrix MA of A is
of the form:

MA =

R1
. . .

Rr

 ,with Ri =


C
(
P
ei,1
i

)
. . .

C
(
P
ei,si
i

)
 ,

where ei = ei,1 ≥ ei,2 ≥ . . . ≥ ei,si for any i. The polynomials P ei,j

i are called the
elementary divisors of A. Such a decomposition is unique, up to a reordering of
the blocks.

The previous theorem is stated for a generic F2-space V and this is on purpose.
Indeed, this enables us to handle the three main cases on which we focus on in a
single stroke: functions from Fn2 to itself, functions from F2n to itself, and functions
from Fℓ2k to itself with n = ℓk.

In the following, we denote by min(A) the minimal polynomial of any F2-linear
endomorphism A. Also, the minimal polynomial of any α ∈ F2n is denoted by
min(α).
Remark 6.31. Despite the name and notation, minimal polynomials of endomor-
phisms and the ones of elements of a finite field do not share all of their properties.
As an example, the minimal polynomial min(α) where α ∈ F2n is always irreducible,
while this is not the case of the minimal polynomial of a matrix. For instance, the
minimal polynomial of an involutive matrix A ̸= Id is X2 + 1 = (X + 1)2. ▷

It is well-known (see for instance [MP13, pp. 311-312]) that, for any irreducible
polynomial P ∈ F2[X] of degree n, and any root α ∈ F2n of P , there exists a
basis of F2n such that the matrix of Mα,n is equal to C(P ). The following lemma
generalizes this property, and will be very useful in our classification.

Lemma 6.32. Let V be an F2-space of dimension n. Let A : V → V be an
F2-linear mapping. Then the following statements are equivalent:

(i) min(A) is irreducible over F2,

(ii) there exists an irreducible polynomial P ∈ F2[X] and an F2-basis in which the
matrix of A is diag(C(P ), C(P ), . . . , C(P )),
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(iii) there exists an irreducible polynomial P ∈ F2[X] of degree d, d | n such that
for any root α ∈ F2n of P , there exists an F2-linear bijection π : V → F2n

which satisfies: π ◦A ◦ π−1 = Mα,n.

Proof. (i) ⇔ (ii): The first equivalence is a direct consequence of Proposition 6.30:
if A has as unique type of block C(P ) for some irreducible P , this is necessarily
its canonical form. Then it must hold that min(A) = P because P is the
only irreducible factor of min(A) and it appears with highest power 1 in the
canonical form. The minimal polynomial min(A) is therefore irreducible (and
min(A) = P ). Conversely, if the minimal polynomial of A is irreducible, then
there can be only one type of block in its canonical form, which is C(min(A)).

(i & ii) =⇒ (iii): Let d be the degree of min(A). Because of the second
characterization, d is the size of the blocks, and it must then divide n.
The polynomial min(A) is then irreducible of degree d, and F2d ⊂ F2n is
thus its splitting field. Let s be such that n = ds. Let α ∈ F2d be a root of
min(A). Let β1, . . . , βs be an F2d-basis of F2n so that any x ∈ F2n can be
uniquely decomposed as x = ∑s

i=1 xiβi, with x1, . . . , xs ∈ F2d . Then for any
x ∈ F2n it holds that:

Mα,n(x) = αx =
s∑
i=1

(αxi)βi =
s∑
i=1

Mα,d(xi)βi.

The multiplication Mα,n is then the application of Mα,d in parallel on each
coset βiF2d . But in the basis (1, α, . . . , αd−1), Mα,d has C(min(A)) as matrix.
This means that Mα,n has diag(C(min(A)), . . . , C(min(A))) as matrix in
the basis (αiβj)i∈J0,d−1K,j∈J1,sK. By hypothesis, this is also the case of A
in some basis (vi,j)i∈J0,d−1K,j∈J1,sK of V . The linear mapping π defined by
π(vi,j) = αiβj for any i, j satisfies the announced property.

(i) ⇐= (iii): Conversely, given P, α and π with the announced property, it holds
that min(A) = min(Mα,n). But for any x ∈ F2n , it holds that:

P (Mα,n)x = P (α)x = 0,

because α is a root of P . Therefore min(Mα,n) | P , but as P is irreducible,
we deduce that min(Mα,n) = P , and thus min(A) = P is irreducible.

6.2.2 LE-automorphism groups of cyclotomic mappings

Using Eq. (6.2) and Lemma 6.32, we can now deduce the following correspondence
between cyclotomic mappings and some linearly self-equivalent mappings.

Theorem 6.33. Let F : Fn2 → Fn2 and let G be a subgroup of F∗
2n. Then, the

following properties are equivalent.
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(i) F belongs to the linear-equivalence class of a cyclotomic mapping with respect
to G.

(ii) There exists diag(A,B) ∈ AutLE(F ) such that minA and minB are irreducible
polynomials and ord(A) = |G| and ord(B) is a divisor of |G|.

Proof. (i) =⇒ (ii) Let α ∈ G be a generator of G. By assumption and by
Eq. (6.2) there exists an integer d and two F2-linear bijections π1, π2 : Fn2 →
F2n such that diag(A,B) ∈ AutLE (F ) where A,B are defined by:

A = π−1
1 ◦Mα,n ◦ π1, B = π−1

2 ◦Mβ,n ◦ π2, (6.3)

with β = αd. By Lemma 6.32, both min(A) and min(B) are irreducible.
Furthermore, A (resp. B) has the same order as Mα,n (resp. Mαd,n) which
is the multiplicative order of α (resp. αd).

(i) ⇐= (ii) Conversely, if min(A),min(B) are irreducible, because of Lemma 6.32,
they can be decomposed as in Eq. (6.3), with α such that ⟨α⟩ = G and
ord(β) | |G|. This implies that β ∈ G and it can then be written as β = αd

for some 0 ≤ d < |G|. Then Eq. (6.2) can be used in the opposite way to
deduce that π2 ◦ F ◦ π−1

1 is cyclotomic with respect to G.

In other words, any function F satisfying the second condition of Theorem 6.33
admits a univariate cyclotomic representation, if the identifications between Fn2
and F2n are properly chosen.

By classifying linearly self-equivalent APN permutations according to the
Frobenius normal forms of their LE-automorphisms, Beierle et al. [BBL21] proved
that any linearly self-equivalent APN permutation in dimension 8 is CCZ-equivalent
to an APN permutation with an automorphism diag(A,B) of one of the following
two types [BBL21, Th. 4]:

1. A = B = diag(C(P ), C(P )) with P (X) = X4 +X3 +X2 +X + 1;

2. A = B = diag(I2, C(Q), C(Q), C(Q)) with Q(X) = X2 + 1.

A direct consequence of Theorem 6.33 is that the functions of the first type
correspond to the functions in the linear-equivalence class of a cyclotomic mapping
of exponent 1 with respect to the subgroup G ⊂ F24 of order 5 since P is an
irreducible polynomial of degree 4 and order 5. The fact that the exponent can
be chosen to be 1 comes from the freedom of choice in the previous proof for α, β
among all elements satisfying ord(α) = ord(A) and ord(β) = ord(B). Here we can
choose α = β.
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6.2.3 LE-automorphism groups of biprojective mappings

We have proved that the linear-equivalence classes of cyclotomic mappings are
characterized by automorphisms diag(A,B) such that the canonical forms of A and
B have all their blocks equal. Now, we focus on the class of functions such that
the primary rational canonical form of B has blocks C(Pi) of the same size but
with possibly different minimal polynomials. This enables us to characterize the
following multivariate generalization of the notion of (q, q′)-biprojective functions
introduced and studied by Göloğlu [Göl22, Göl23].

Definition 6.34 (ℓ-variate projective mappings). Let n = ℓk. Let F : Fℓ2k → Fℓ2k

and let Fi : Fℓ2k → F2k , 1 ≤ i ≤ ℓ, denote its i-th coordinate. Then, F is an
ℓ-variate projective mapping of exponents (d1, . . . , dℓ) with respect to F2k if, for all
i, 1 ≤ i ≤ ℓ, Fi is a homogeneous function of exponent di. ▷

Proposition 6.35. Let ℓ, k, d, r, s be positive integers. Then:

(i) The family of ℓ-variate projective mappings of exponents (d, . . . , d) coincides
with the family of cyclotomic mappings of exponent d with respect to F2k .

(ii) The family of 2-variate projective mappings of exponents (2r + 1, 2s + 1) with
respect to F2k with algebraic degree 2 coincides with the family of (2r, 2s)-
biprojective mappings.

Proof. The first item is proved in Lemma 6.17. The proof of the second item is
postponed to the proof of Proposition 6.85 page 247.

We now characterize the linear-equivalence classes of multivariate projective
mappings by their LE-automorphism group. Before stating the corresponding
theorem, we recall the following well-known fact.

Lemma 6.36 (Degree and order of a minimal polynomial). Let α be an element
of F2n. Then the degree of its minimal polynomial is equal to the multiplicative
order of 2 modulo ord(α).

Proof. By definition, the degree of min(α) is the number of conjugates of α. As
the conjugates can be enumerated as α, α2, α22

. . . , the number of conjugates is
given by the smallest i ≥ 1 such that α2i = α, i.e. the smallest i ≥ 1 such that
2i ≡ 1 mod ord(α). In other words, the degree of min(α) the multiplicative order
of 2 modulo ord(α).

Theorem 6.37. Let n = ℓk and let F : Fn2 → Fn2 . Then, the following properties
are equivalent:

(i) F belongs to the linear-equivalence class of an ℓ-variate projective mapping
of exponents (d1, . . . , dℓ) with respect to F2k , and for any 1 ≤ i ≤ ℓ, the
multiplicative order of 2 modulo (2k − 1)/ gcd(di, 2k − 1) equals k.
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(ii) There exists diag(A,B) ∈ AutLE(F ) such that min(A) is a primitive polynomial
of degree k and min(B) is a product of distinct irreducible polynomials of
degree k.

Proof. (i) =⇒ (ii) By assumption, there exists diag(A,B) ∈ AutLE(F ) such that
A and B have the following forms:

A = π−1
1 ◦ diag(Mα,k, . . . ,Mα,k) ◦ π1,

B = π−1
2 ◦ diag(Mαd1 ,k, . . . ,Mαdℓ ,k) ◦ π2,

where α is a primitive element of F2k . Because of Lemma 6.32, the minimal
polynomial of A is the minimal polynomial of α, and therefore a primitive
polynomial of degree k. Let us denote by Pi the minimal polynomial of
each αdi . By applying Lemma 6.32 to each coordinate of B, we observe
that B has, as matrix representation, a diagonal matrix where the block
C(Pi) appears k

deg(Pi) times (counted with multiplicities if some Pi = Pj for
some i ̸= j). But, by hypothesis and because of Lemma 6.36, the degree
of Pi is equal to k, so each block C(Pi) appears once (again counted with
multiplicity). This then corresponds to the canonical representation of B:
min(B) is therefore the least common multiple of the minimal polynomials
of the blocks, which is equal to the product of the distinct Pi.

(ii) =⇒ (i) Conversely, by Lemma 6.32, any A such that min(A) is primitive
and has degree k is similar to the multiplication by α where α is a generator
of F∗

2k . This defines a mapping π1. Moreover, any B such that min(B) is
a product of distinct irreducible polynomials of degree k has a canonical
representation of the form:

diag(C(P1), C(P2), . . . , C(Pℓ)),

where each Pi is an irreducible divisor of min(B). Each divisor must appear
once, but some can appear several times. Therefore B is similar (for a
mapping π2) to the function diag(Mβ1,k, . . . ,Mβℓ,k) where each βi is a root of
Pi in F2k . Moreover, since α is a generator of F∗

2k , any βi can be written as αdi .
This proves that π2Fπ

−1
1 is a projective mapping of exponents (d1, . . . , dℓ).

Since Pi has degree k, k is the order of 2 modulo (2k−1)
gcd(di,2k−1) by Lemma 6.36.

When (2k − 1) is a prime number, we obtain a simpler characterization of
ℓ-variate projective mappings with respect to F2k , without any restriction on the
exponents d1, . . . , dℓ. We use that the cycle structure of a linear mapping can be
derived from its canonical form, as illustrated by the following lemma.

Lemma 6.38. Let A : Fn2 → Fn2 be an F2-linear mapping. Then, the following
properties are equivalent:
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(i) The cycles of A, σA(x0) = (x0, Ax0, A
2x0, . . .), have the same length for all

nonzero x0 ∈ Fn2 .

(ii) The minimal polynomial of A is a product of distinct irreducible polynomials
of the same order.

(iii) A has diag(C(P1), C(P2), . . . , C(Pℓ)) as canonical form where all Pi are
irreducible polynomials having the same order.

Proof. The equivalence between (ii) and (iii) is a direct consequence of the canonical
form (Proposition 6.30).

(i) =⇒ (ii) It is well-known that, for any divisor Q of the minimal polynomial
of A, there exists some x0 ̸= 0 such that Q is the minimal polynomial of the
sequence σA(x0). We use that the period of a sequence σA(x0) with minimal
polynomial Q = P 2 with P irreducible is 2× ord(P ), while the period of a
sequence σA(x1) with minimal polynomial P is ord(P ), e.g. [LN96, Theorem
8.63]. We then deduce that, if all σA(x), x ̸= 0 have the same period, then
all divisors of the minimal polynomial of A are square-free. Moreover, if the
minimal polynomial of A has two irreducible divisors P1 and P2, then there
exist x1 and x2 such that σA(x1) has period ord(P1) and σA(x2) has period
ord(P2). It follows that all irreducible factors of the minimal polynomial of A
have the same order.

(iii) =⇒ (i) Because P1, . . . , Pℓ are irreducible of same order, they are of the
same degree k by Lemma 6.36, and F2k is a splitting field for all of them. By
hypothesis A is similar to M = diag(Mα1,k, . . . ,Mαℓ,k), where αi is a root of
Pi. The mappings A and M share the same cycle type. But because each
Mαi,k acts independently from the others, we get that:

|σM (x1, . . . , xℓ)| = lcm
(∣∣∣σMα1

(x1)
∣∣∣ , . . . , ∣∣∣σMαℓ

(xℓ)
∣∣∣) .

But for any x, y ∈ F∗
2k and i, j, we get that:∣∣∣σMαi

(x)
∣∣∣ = ord(αi) = ord(αj) =

∣∣∣σMαj
(y)
∣∣∣ .

Therefore, whenever (x1, . . . , xℓ) ̸= (0, . . . , 0), its order is the common order
of the elements αi.

As a consequence, we can characterize the matrices having a prime order by
their minimal polynomials. These matrices play an important role: as shown
in [BBL21, BL22], the classification of linearly self-equivalent functions can be
reduced to the classification of functions having an automorphism in AutLE with
a prime order. It can then be checked from their Frobenius normal forms that
all matrices considered in [BBL21, BL22] have a minimal polynomial of the form
described in the following proposition.
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Proposition 6.39. Let A be an n × n-invertible matrix. Then ord(A) is
an odd prime if and only if the minimal polynomial of A is of the form
(X + 1)P1(X) . . . Pℓ(X) or P1(X) . . . Pℓ(X) where all Pi are distinct irreducible
polynomials of the same prime order p > 2.

Proof. =⇒ If ord(A) is a prime p, then all cycles of A have length 1 or p. Let
k′ denote the dimension of the linear space composed of all fixed points of
A. If k′ = 0, then all cycles σA(x), x ̸= 0 have the same length, implying
from Lemma 6.38, that the minimal polynomial of A is a product of distinct
irreducible polynomials with the same order. Assume now that k′ > 0. Since
ord(A) is odd, the minimal polynomial of A is not divisible by (X+1)2. Then,
A is similar to A′ = diag(Idk′ , C) where C is an (n− k′)× (n− k′)-matrix.
By observing that, for any i, (A′)i is similar to diag(Idk′ , Ci), we deduce that
C has no nonzero fixed points and that all cycles σC(y0) for y0 ̸= 0 have the
same length p. We deduce from Lemma 6.38 that the minimal polynomial
of C can be written as the product of distinct irreducible polynomials of
order p > 2, or equivalently that the minimal polynomial of A has the form
(X + 1)P1(X) . . . Pℓ(X) where all Pi are distinct irreducible polynomials of
order p.

⇐= We only have to consider the case where the minimal polynomial of A
is of the form (X + 1)P1(X) . . . Pℓ(X) where all Pi are distinct irreducible
polynomials of order p > 2, since the other case is a direct consequence
of Lemma 6.38. The canonical form of A is then diag(Idk′ , C(Pi1), . . . , C(Pis))
where the set {Pij , 1 ≤ j ≤ s} coincides with {P1, . . . , Pℓ} with some (possible)
multiplicities. Because all Pi are irreducible and coprime with (X + 1), the
order of A is equal to the least common multiple of the orders of all irreducible
factors of min(A), which is equal to p > 2.

Theorem 6.40. Let F : Fn2 → Fn2 and k > 1 be a divisor of n such that (2k − 1)
is a prime. Assume that the span of Im(F ) has dimension n. Then, the following
properties are equivalent:

(i) F belongs to the linear-equivalence class of an ℓ-variate projective mapping with
respect to F2k .

(ii) There exists diag(A,B) ∈ AutLE(F ) such that min(A) is a primitive polynomial
of degree k.

Proof. (i) =⇒ (ii) The proof is similar to the same result in Theorem 6.37.
Indeed, the hypothesis on the orders di in Theorem 6.37 was used only to
prove the statement about the minimal polynomial of B.

(ii) =⇒ (i) Since there exists diag(A,B) ∈ AutLE(F ) with ord(A) = 2k − 1, the
order of the subgroup of AutLE(F ) generated by diag(A,B) is a multiple
of (2k − 1). Therefore, there exists diag(A′, B′) in this subgroup of order
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(2k − 1). It follows that lcm(ord(A′), ord(B′)) = 2k − 1 which is a prime. We
deduce that either ord(A′) = ord(B′) = 2k − 1, or exactly one matrix among
A′ and B′ has order 1.
If A′ = Idn, then B′ ◦F (x) = F (x) for all x ∈ F2n . It follows that Im(F ) is a
subset of the set of fixed points of B′, which is a vector space of dimension at
most (n− 1) since B′ ̸= Idn. This situation is excluded by the hypotheses. If
B′ = Idn, then F ◦A′(x) = F (x) where A′ is a power of A. Since min(A) is a
primitive polynomial of degree k, there exists an isomorphism π : Fℓ2k → Fn2 ,
n = kℓ, such that A = π ◦Mα,n ◦ π−1. Because (2k − 1) is a prime, αs,
for any s < 2k − 1, is a primitive element of F2k too. This implies that
(π−1 ◦ F ◦ π)Mαs = (π−1 ◦ F ◦ π), i.e., π−1 ◦ F ◦ π is an ℓ-variate projective
mapping of orders (0, 0, . . . , 0) with respect to F2k . Therefore, F belongs to
the linear-equivalence class of an ℓ-variate projective mapping with respect
to F2k . More precisely, it is in the linear class of a cyclotomic mapping of
exponent 0.
If ord(B′) = 2k − 1 and 2k − 1 is an odd prime, then all cycles of B′ have
length 1 or (2k − 1). It follows from Proposition 6.39 that B′ is similar
to B′′ = diag(Idsk, C(P1), C(P2), . . . , C(Pℓ−s)) where all Pi are irreducible
polynomials of the same order, and therefore of the same degree k. Then,
there is a function F ′ linearly equivalent to F such that B′′◦F ′◦A′′ = F ′ where
A′′ = diag(C(P ), . . . , C(P )) and P a primitive polynomial of degree k. This
implies that there exists an isomorphism π : Fℓ2k → Fn2 such that π ◦ F ′ ◦ π−1

is an ℓ-variate projective mapping of orders (d1, . . . , dℓ) with respect to F2k

where the first s orders are zero and the other ones are determined by the
roots of Pi, 1 ≤ i ≤ ℓ− s.

Just as in the case of Theorem 6.33, Theorem 6.40 enables us to determine
the nature of a function F : Fn2 → Fn2 , from the nature of its LE automorphisms.
Note that the condition on the dimension of ⟨Im(F )⟩ is always satisfied by APN
functions when n > 2.

Lemma 6.41 (Dimension of ⟨Im(F )⟩ for APN functions). Let n > 2 and let
F : Fn2 → Fn2 be an APN function. Then dim(⟨Im(F )⟩) = n.

Proof. Let us suppose that dim(⟨Im(F )⟩) ≤ n− 1. In that case, and up to linear
equivalence, F can be seen as a function from Fn2 to Fn−1

2 . Because F is APN,
for any ∆in ∈ Fn2 ,∆out ∈ Fn−1

2 , the equation F (x + ∆in) + F (x) = ∆out must
have 0 or 2 solutions x. A pigeonhole argument proves that this number is equal
to 2 for all (∆in,∆out). Therefore, F is perfect non-linear, because 2 = 2n−(n−1).
According to Corollary 2.55, it must hold that 2(n − 1) ≤ n, which is excluded
because n > 2.

Example 6.42 (Classes 51 & 55 of [BL22]). Classes 51 & 55 correspond to classes of
linearly self-equivalent APN mappings over F28 presented in [BL22]. The functions
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in these classes satisfy B ◦F ◦A = F for some (A,B) where A is the multiplication
by an element α of order 3. By Lemma 6.32, the minimal polynomial of A is the
minimal polynomial of α, i.e. X2 +X + 1, which is of degree 2. Because 22− 1 = 3
is prime, Theorem 6.40 states that F is linearly equivalent to a 4-variate projective
mapping with respect to F4. For Class 51, the Frobenius form of B, which is given
in [BL22], is diag(Id2, C(X3 + 1), C(X3 + 1)). By Proposition 6.30, the canonical
form of C(X3 + 1) is diag(C(X + 1), C(X2 + X + 1)), because all irreducible
divisors must appear at highest multiplicity, which is here equal to 1. Because
C(X + 1) is the 1× 1 matrix equal to 1, B is therefore similar to:

diag(Id2, Id2, C(X2 +X + 1), C(X2 +X + 1)).

This matrix is a canonical form, and by uniqueness, the one of B. Class 51 then
corresponds to 4-variate projective mappings of exponent (0, 0, 1, 1) with respect
to F4. Similarly, Class 55 corresponds to 4-variate projective mappings of exponents
(0, 0, 0, 1) with respect to F4. ▷

The previous examples are (for now) sporadic examples of 4-variate APN
functions. A thorough analysis of the examples coming from computational
approaches such as the ones presented in [BL08, BBL21, BL22, YWL14, YP22]
is left as future work. In the following, we focus on the infinite families of APN
functions.

6.3 Linear self-equivalence among known infinite fami-
lies of APN functions

6.3.1 Main theorem

Since we have established the relationships between the different properties
considered when constructing APN functions, we can now analyse most of the
infinite families of quadratic APN functions in light of the structure of their LE-
automorphism groups. Most notably, while these families have been introduced
with different representations (univariate or multivariate), our framework provides
a unified view of these mappings which looked of very different natures at first
glance. The polynomial forms of the families are presented in Tables 6.2 to 6.4.
The constraints on their parameters are given in Chapter A. We prove the following
theorem.

Theorem 6.43 (Infinite APN families and linear self-equivalence). Let us consider
the 19 infinite APN families listed in Tables 6.2 and 6.3. Then:

(i) They all contain in their linear-equivalence classes a linearly self-equivalent
representative.

(ii) More precisely, except for Families (BCL09a/b/c) when n is odd, each family
contains a cyclotomic, or a 2, 3 or 4-variate projective mapping in its linear-
equivalence class.
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(iii) When n is odd, any function of (BCL09a/b/c) is linearly-equivalent to a
function which commutes with the Frobenius automorphism x 7→ x2.

Finally, all (APN) power mappings are cyclotomic and commute with the Frobenius
automorphism.

A lot of subcases were already pointed out in several previous papers such
as [Car11, BBL21, CBC21, Göl22, GK21, BIK23, KKK23]. In particular, and
to the best of our knowledge, Carlet first pointed out in [Car11, Theorem 1] the
relevance of studying functions of the form:

F (x, y) =
(
xy, a1x

2i+2j + b1x
2i
y2j + c1x

2j
y2i + d1y

2i+2j
)

=
(
xy, (a2x

2j−i+1 + b2xy
2j−i + c2x

2j−i
y + d2y

2j−i+1)2i
)
, (6.4)

that is, functions that are linearly equivalent to a (2, 2j−i)-projective mapping.
Carlet also proved in [Car11, Section 4.2.1] that previously known infinite families,
namely the ones given in [Bra+08, BC08], and that are today included in the
(BCV20) family [BCV20], fall within this category. As pointed out by Example 6.9,
the works [GK21, BIK23] present proofs of cyclotomy of exponent 0 with respect
to F4 for a lot of these families. In the following, we generalize them into cyclotomy
or (bi-)projectiveness proofs over larger groups. Unlike these works however, we
make (almost) no distinction between even or odd values for n.

We believe that such a general observation deserves to be in the spotlight. We
therefore prove all the cases and give credit to authors of previous works (that we
know of) in the proof. The proof is postponed to the following section. We first
present a few observations about this result.
Remark 6.44. Theorem 6.43 mentions representatives in the linear equivalence
classes, but all the representatives presented in the proof actually lie in an F2k -linear
equivalence class with k > 1. Furthermore, this is not an exhaustive result, and
some functions of these families have linearly self-equivalent representatives of
several types. Examples of this situation are presented in Remark 6.48. ▷

The following informal corollary of Theorem 6.43 raises many open questions.

Corollary 6.45 ((Informal) Infinite APN families and self-equivalence). Almost
all infinite families of APN functions have linearly self-equivalent representatives in
their linear-equivalence class, whose LE-automorphism group contains (A,B) where
A,B are either F2k-linear with k > 1 with very particular minimal polynomials
characterized in Theorem 6.37, or where both A and B coincide with the Frobenius
automorphism.

This observation is rather surprising. Indeed, from theoretical arguments, what
we (for now) know is that any quadratic function F : Fn2 → Fn2 is always EA
self-equivalent, but a priori not linearly self-equivalent. Indeed, for any ∆ ∈ Fn2 ,
there exists an affine mapping A∆ : Fn2 → Fn2 such that that for any x ∈ Fn2 :

F (x+ ∆) + F (x) = A∆(x).
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ID Functions Obs. Ref.

(CLV22b) (x, y) 7→
(

x3 + xy + xy2 + ay3

x5 + xy + ax2y2 + ax4y + (1 + a)2xy4 + ay5

)
? [CLV22]

(LZLQ22b) (x, y) 7→
(

x3 + xy2 + y3 + xy
x5 + x4y + y5 + xy + x2y2

)
? [Li+22]

(LZLQ22a) L(x)2k+1 + bx2k+1 ? [Li+22]

Table 6.4: Remaining infinite families to classify.

In other words, F satisfies: (
T∆ 0
A∆ Id

)
∈ Aut(F ).

This is for instance proven in [Bra+11b, Proposition 1]. This observation can be
extended to extended-linear self-equivalent if F (0) = 0, see e.g [KZ21, Proposition
2. 2].

Problem 6.46. Does the property described in Corollary 6.45 hold for the three
families in Table 6.4? For the sporadic APN functions such as those in [BL08,
BBL21, BL22, YWL14, YP22]?

We show for instance in Example 6.62 below, that the Brickmann-Leander-
Edel-Pott [BL08, EP09] cubic for n = 6 cannot be represented as a cyclotomic
mapping nor as an ℓ-variate projective mapping. More generally, and in line with
[BBL21, Conjecture 1], we raise the following open problem.

Problem 6.47. Does the CCZ-equivalence class of any APN function contain a
linearly self-equivalent mapping?

Theorem 6.43 then unifies (almost) all the research directions followed to
search for infinite APN families. Answering the question asked in Problem 6.47
would enable us to understand whether these directions are direct generalizations
extrapolated from the monomial case, or whether they correspond to an inherent
property of APN mappings. The specific cases highlighted in Problem 6.46 could
help address this problem or give some clues toward a definite answer.

6.3.2 Proof of Theorem 6.43

This section is dedicated to the proof of Theorem 6.43. We proceed case by case
and start with the most obvious ones.
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Power mapping. A power mapping is a cyclotomic mapping of exponent d with
respect to F2n and it obviously commutes with x 7→ x2.

Multivariate Families. Among the bivariate and trivariate families given in
Table 6.3, we directly observe from their polynomial forms that:

• (G22a) is (2s + 1, 22s + 1)-projective,

• (G22b) is (2s + 1, 23s + 1)-projective,

• (GK21) is (2s + 1, 22+ k
2 + 1)-projective,

• (CLV22a) is (2s + 1, 22s + 1)-projective,

• (LK23a) and (LK23b) are (2s + 1, 2s + 1, 2s + 1)-projective,

all of them being ℓ-variate projective mappings by construction. Note that
Theorem 6.18 shows that (LK23a) and (LK23b) have a representative which
is a cyclotomic mapping of exponent 2s + 1 with respect to F2k in their linear-
equivalence class. Furthermore, the families (ZP13), (T19) and the polynomials
defined by Eq. (6.4) and introduced by Carlet have been proven linearly-equivalent
to biprojective mappings by Göloğlu [Göl22]. More precisely:

• for (ZP13), using the (F2k -linear) mapping L : (x, y) 7→ (x, y2k−i), we find
a linear-equivalent function F ◦ L which is a (2s + 1, 2k−i + 1)-projective
mapping,

• for (T19), using the (F2k -linear) mapping L : (x, y) 7→ (x2k−2s
, y), we find

a linear-equivalent function F ◦ L which is a (2s + 1, 2k−2s + 1)-projective
mapping,

• for the polynomials of Eq. (6.4), using the (F2k -linear) mapping L : (x, y) 7→
(x, y2k−i), we find a linear-equivalent function L ◦F which is a (2, 2i−j + 1)-
projective mapping.

(CBC21). As we can observe the first coordinate of this mapping has monomials
of degree d where d ≡ 2s+1 mod 2 k

2 − 1, but not modulo 2k−1. When substituting
each monomial with x← a+ζb, y ← c+ζd, with ζ ∈ F2k\F2k/2 , and a, b, c, d ∈ F2k/2 ,
we observe that the obtained monomials in a, b, c, d are all of degree 2s + 1, because
a2k/2 = a and the same holds for b, c, d. The same holds for the second coordinate.
Therefore, the functions of (CBC21) are linearly equivalent to (2s+1, 2s+1, 2, 2)-
projective mappings.

Let us now focus on the univariate families.
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(BCL09a/b/c). First of all the families (BCL09a), (BCL09b) (BCL09c) were
for instance identified as canonical triplicates when n is even in [BIK23], and their
image set was studied in [KKK23]. When n is even, they correspond to cyclotomic
mappings. More precisely:

• when n is even, (BCL09a), (BCL09b), (BCL09c) are made of cyclotomic
mappings of exponent 0 with respect to F4, because they can be written as
P (x3),

• when n is odd, it is observed in the original paper [BCL09b, Section II.B]
that, when a takes different values, all the obtained functions within a fixed
family (BCL09a), (BCL09b) or (BCL09c) are linearly-equivalent. We can
actually focus on the case a = 1, by using x 7→ a

1
3x as a change of variables.

In that case, the corresponding function has all its coefficients in F2, and
therefore commutes with the Frobenius automorphism.

(BCL08a/b). Non-trivial linear self-equivalences were identified for Fami-
lies (BCL08a) and (BCL08b) in [BBL21, Examples 2 & 3]. They can be
reinterpreted as proofs of cyclotomy. Indeed, let us look at the difference between
both exponents modulo 2k − 1. We observe that:

(2(3−i)k+s + 2ik)− (2s + 1) ≡ 2s + 1− 2s − 1 ≡ 0 mod 2k − 1.

From Theorem 6.18, Family (BCL08a) is a family of cyclotomic mappings of
exponent 2s + 1 with respect to F2k , where n = 3k. Similarly, we obtain:

(2(4−i)k+s + 2ik)− (2s + 1) ≡ 2s + 1− 2s − 1 ≡ 0 mod 2k − 1.

Therefore, Family (BCL08b) is a family of cyclotomic mappings of exponent 2s + 1
with respect to F2k , where n = 4k.

(BCCCV20) & (BBMM11). If we look at Family (BCCCV20), we observe
that the monomials appearing in the polynomials are:

x22k+1+1, x2k+1+1, x22k+2, x2k+2, and x3 ,

so that its exponents are all equal to 3 modulo 2k − 1. This implies that the family
consists exclusively of cyclotomic mappings of exponent 3 with respect to F2k ,
where n = 3k. Regarding Family (BBMM11), the same applies, but we need to
take into account some of the constraints on the parameters. Since n = 3k, we
can look at cyclotomy with respect to F23 . First, we reduce all the exponents
modulo 23 − 1 and obtain in that case: 2s + 1, 22k + 1, 22k + 1, 2s + 1 because
k + s ≡ 0 mod 3 by construction. Furthermore, again by construction, we have
that gcd(3, k) = 1, which implies k ̸≡ 0 mod 3. From these two constraints, we
deduce that either k ≡ 1 and s ≡ 2, or, k ≡ 2 and s ≡ 1. In any case, it holds
that s ≡ 2k mod 3. This proves that all exponents are equal modulo 23 − 1, and
the family then consists of cyclotomic mappings of exponent 2s′ + 1 ∈ {3, 5} with
respect to F23 where s′ is the remainder of s modulo 3.



6.3. Linear self-equivalence among known infinite families of APN functions 221

(ZKLPT22). This family lies among bivariate families as well. Indeed, by
definition, a /∈ F∗

2k (see Table A.2), so (a, a2k) is an F2k -basis of F2n where n = 2k.
We observe that for any φ ∈ F2k , x ∈ F2n , we then have:

F (φx) = aTrF2n/F2k

(
b(φx)2i+1

)
+ a2kTrF2n/F2k

(
c(φx)2s+1

)
= aφ2i+1TrF2n/F2k

(
bx2i+1

)
+ a2k

φ2s+1TrF2n/F2k

(
cx2s+1

)
,

because φ2i+1, φ2s+1 ∈ F2k . It is then linearly equivalent to a (2i + 1, 2s + 1)-
projective mapping.

(BCV20). Let F be the function defined by F (x) = ax2k+1 + x2s+1 + x2s+k+2k +
bx2k+s+1 + b2k

x2s+2k where n = 2k for some k ≥ 1. Let α ∈ F2n be a primitive
element, and let us consider the F2k -basis (1, α) and its dual basis (β1, βα) which
satisfies:

TrF2n/F2k
(β1·1) = 1,TrF2n/F2k

(β1·α) = 0,TrF2n/F2k
(βα·1) = 0,TrF2n/F2k

(βα·α) = 1.

In particular, we observe that TrF2n/F2k
(βα) = 0, in other words, it holds that

βα = β2k

α , or stated otherwise that βα ∈ F2k . Let γ ∈ F2n , and let us focus on
TrF2n/F2k

(γF ). Let x ∈ F2n . Then it holds that:

TrF2n/F2k
(γF (x)) =γ(ax2k+1 + x2s+1 + x2s+k+2k + bx2k+s+1 + b2k

x2s+2k)+

γ2k(ax2k+1 + x2s+1 + x2s+k+2k + bx2k+s+1 + b2k
x2s+2k)2k

=TrF2n/F2k
(γa)x2k+1 + λx2s+1 + λx2s+k+2k + bλx2s+k+1 + b2k

λx2s+2k
,

where λ = TrF2n/F2k
(γ). This simply comes from the fact that x22k = x. We can

therefore express the two coordinates of F with respect to the F2k -basis (1, α) as :

TrF2n/F2k
(β1F (x)) = TrF2n/F2k

(β1a)x2k+1+x2s+1+x2s+k+2k +bx2s+k+1+b2k
x2s+2k

,

because TrF2n/F2k
(β1) = 1, but also:

TrF2n/F2k
(βαF (x)) = TrF2n/F2k

(βαa)x2k+1,

because TrF2n/F2k
(βα) = 0. Let us introduce the linear bijection L : F2n → F2n

that is defined by:

∀x, y ∈ F, L(x+ αy) =
(
x+

TrF2n/F2k
(β1a)

TrF2n/F2k
(βαa)y

)
+ αy.

By construction, a /∈ F2k (see Table A.1), but as βα ∈ F2k , we deduce that
βαa /∈ F2k , and therefore TrF2n/F2k

(βαa) ̸= 0, so that L is well-defined. We then
observe that:

TrF2n/F2k
(β1 · L ◦ F (x)) = x2s+1 + x2s+k+2k + bx2s+k+1 + b2k

x2s+2k
, and
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TrF2n/F2k
(βα · L ◦ F (x)) = βαTrF2n/F2k

(a)x2k+1.

In particular, the bivariate terms that can appear in the 1-coordinate of L ◦ F
are terms of degree 2s + 1 because all exponents e of its univariate monomials
satisfy e ≡ 2s + 1 mod 2k − 1. Similarly, the bivariate terms that can appear in
the α-coordinate are terms of degree 2. Therefore L ◦F is a (2s + 1, 2) biprojective
APN function.

(BHK20). Let F : F2n → F2n be defined by F (x) = x3 +ax2s+i+2i +a2x2k+1+2k +
x2s+i+k+2i+k where n = 2k for some k ≥ 1. We proceed in a manner similar to the
previous proof, except that we use the fact that a is by definition an element of
order 3, so a2 = a−1, and also that k is odd, see Table A.2. Let γ ∈ F2n , x ∈ F2n .
Then it holds that:

TrF2n/F2k
(γF (x)) = γ(x3 + ax2s+i+2i + a2x2k+1+2k + x2s+i+k+2i+k) +

γ2k(x3 + ax2s+i+2i + a2x2k+1+2k + x2s+i+k+2i+k)2k

= (γ + γ2k
a)x3 + (γa+ γ2k)x2s+i+2i +

(γa−1 + γ2k)x2k+1+2k + (γ + γ2k
a−1)x2s+i+k+2i+k

= (γ + γ2k
a)(x3 + a−1x2k+1+2k) +

(γa+ γ2k)(x2s+i+2i + a−1x2s+i+k+2i+k)

In particular, the terms x3 and x2k+1+2k appear if and only if γ + γ2k
a ̸= 0. Stated

otherwise, if γ ̸= 0, both terms do not appear if and only if γ2k−1 = a−1, i.e. if
and only if γ is a (2k − 1)-th root of a−1. Such a root exists. Indeed, if β is a
primitive element of F∗

2n , then β
2n−1

3 is a generator of F∗
22 and it can be rewritten

as β 2n−1
3 = (β 2k+1

3 )2k−1. In particular, because k is odd, 2k+1
3 is an integer, so

this precisely states that β 2k+1
3 or (β 2k+1

3 )2 is a (2k − 1)-th root of a−1. Similarly,
the terms x2s+i+2i and x2s+i+k+2i+k do not appear in TrF2n/F2k

(γF ) if and only

if γ is a (2k − 1)-th root of a. Finally, (β 2k+1
3 , β

2(2k+1)
3 ) is an F2k -basis of F2n ,

because β
2(2k+1)

3

β
2k+1

3
= β

2k+1
3 ̸∈ F2k . In this basis, the coordinates are homogeneous of

exponent 3 and 2i(2s + 1) respectively, because the monomials in each coordinate
are of degree equal to 3 and 2i(2s + 1) modulo 2k − 1.

This concludes our proof.
Remark 6.48. As already mentioned, some functions in these classes have multiple
linearly self-equivalent representatives of different natures. For example, a single
function can be at the same time linearly-equivalent to a cyclotomic mapping, but
also to a function which commutes with the Frobenius automorphism. It can also
happen that a single representative has two types of linear self-equivalence. For
instance as mentioned in [BCL09b, Section II.B], when n is even Family (BCL09a)
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can be split into two distinct linear classes. Indeed all functions are either linearly-
equivalent to the function with a = 1, or to the one where a is a fixed primitive
element of F2n . In the first case, the representative with a = 1 is cyclotomic, but it
also commutes with the Frobenius automorphism, because3 its coefficients are in
F2. The same also holds when n is even for Families (BCL09b), (BCL09c).

Another example can be derived from (BBMM11). We showed that this class is
composed of cyclotomic mappings of exponent 3 or 5 with respect to F23 . However,
if b = c = 0, then only two terms remain and their exponents are both equal to
2s+ 1 modulo 2k−1. These specific functions are therefore cyclotomic with respect
to F23 , but also with respect to F2k .

Finally, for Family (BCV20), on top of the biprojective property, according
to the results reported in [BIK23, Section 7], the functions were computationally
proven linearly-equivalent to cyclotomic mappings of exponent 0 with respect to
F4, up to dimension 12. ▷

6.4 Properties of mappings having a linearly self-
equivalent mappings

In the previous section, we pointed out the importance of linear self-equivalence,
especially for the study of APN functions. We highlight in this section some
properties which are consequences of the existence of a linearly self-equivalent
mapping within the linear-equivalence class of a function. We first present how
the symmetries inherent to this pattern can be captured by other means than the
polynomial representation.

6.4.1 Image set and Walsh spectrum of linearly self-equivalent
mappings

If a function F : Fn2 → Fn2 is linearly self-equivalent, then its image set is very
constrained. For instance, some properties of F can be derived from the cycle
structures of the involved linear mappings. A first trivial property is the following
one.

Proposition 6.49. Let F : Fn2 → Fn2 and diag(A,B) ∈ AutLE(F ). Then, the
image set of F can be partitioned into cycles of B. Most notably, the image set
of F is invariant under B.

Proof. It holds that: F (Fn2 ) = B ◦ F ◦A−1(Fn2 ) = B(F (Fn2 )), so F (Fn2 ) is invariant
under B. This precisely states that F (Fn2 ) is a disjoint union of cycles of B.

This result does not bring any new information in the case where F is bijective,
but is helpful when F is not bijective, which is the case of most known APN

3The functions commuting with x 7→ x2 are precisely the functions whose coefficients are in
F2. Note that APN functions of this specific form are classified up to dimension 9 in [Yu+20].
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functions. In the following, we highlight how linear self-equivalence can be captured
as a property of the Walsh transform of the function F .

As noted at the end of Section 2.3.4.d, we adapt the definition of the Walsh
transform to functions of the form G : F2n → F2n (resp. H : Fℓ2k → Fℓ2k), so that the
Walsh coefficients can be enumerated using α, β ∈ F2n (resp. α, β ∈ Fℓ2k), instead
of α, β ∈ Fn2 . In that case, it suffices to replace in Definition 2.15 the standard dot
product by a scalar product defined over F2n (resp. Fℓ2k). Over F2n , we can then
consider the scalar product defined by:

∀ x, y ∈ F2n , x · y = TrF2n/F2(xy). (6.5)

Over Fℓ2k , we use the one defined by:

∀ z, t ∈ F2n , z · t = (z1, . . . , zℓ) · (t1, . . . , tℓ) =
ℓ∑
i=1

TrF2k/F2(ziti). (6.6)

We also denote by A∗ the adjoint operator of a linear mapping A, for a given scalar
product, i.e., the linear mapping such that,

x ·A(y) = A∗(x) · y, ∀x, y .

Because the Walsh coefficients of a mapping B ◦F ◦A in the linear-equivalence
class of F are in one-to-one correspondence with the Walsh coefficients of F (see
Proposition 2.64, page 59), this implies that linear self-equivalence is captured by
some spectral symmetries.

Lemma 6.50 (Spectral characterization of linear self-equivalence). Let A,B be
bijective linear mappings from Fn2 to itself. Let F : Fn2 → Fn2 . Then B ◦ F ◦A = F
if and only if:

∀α ∈ Fn2 ,∀β ∈ Fn2 , WF

(
(A−1)∗(α), B∗(β)

)
= WF (α, β).

Proof. The Walsh coefficient of the left-hand side is precisely the Walsh coefficient
of B ◦ F ◦A in (α, β). It is then a consequence of the fact that two functions are
equal if and only if their Walsh transforms are equal.

Corollary 6.51. Let A,B be bijective linear mappings from Fn2 to itself. Let
F : Fn2 → Fn2 be such that B ◦ F ◦ A = F . Let L be the function from Fn2 × Fn2 to
itself that is defined by:

∀ x, y ∈ Fn2 , L(x, y) =
(
(A−1)∗(x), B∗(y)

)
Assume that the lengths of the cycles σL(x0, y0), for all nonzero (x0, y0) ∈ Fn2 × Fn2 ,
are divisible by L. Then each value v in the multiset

{{WF (α, β), s.t. α, β ∈ F2n , (α, β) ̸= (0, 0)}}

appears L · tv times for some tv ≥ 1. In that case, the greatest common divisor of
the numbers of occurrences of the values in the Walsh spectrum is divisible by L.
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Proof. Let (α, β) ∈ Fn2 × Fn2 be such that (α, β) ̸= (0, 0). By assumption, the
multiset {{WF (Li(α, β)), i ∈ J0, L− 1K}} contains the single value WF (α, β) with
multiplicity λL. Indeed, because σL(α, β) is of length λL, this value corresponds to
λL distinct Walsh coefficients. The divisibility is then an immediate consequence
of the fact that the multiset {{WF (α, β), s.t. (α, β) ̸= (0, 0)}} can be partitioned
according to the decomposition of L into cycles with disjoint supports.

Corollary 6.52 (Walsh coefficients of a cyclotomic mapping). Let F : F2n → F2n

be a cyclotomic mapping of exponent d with respect to G ⊂ F∗
2n. Then:

∀α, β ∈ F2n ,∀x ∈ G, WF (α, βxd) = WF (αx−1, β).

Furthermore, the greatest common divisor of the numbers of occurrences of the
values in the Walsh spectrum is divisible by |G|

gcd(d,|G|) for d > 0, and by |G| when
d = 0.

Proof. In the case of a cyclotomic mapping of exponent d with respect to G we
can choose A−1 = Mx,n where x ∈ G and B = Mxd,n. The relation between the
Walsh coefficients is then a direct consequence of Lemma 6.50. Moreover, the cycle
decomposition of (A−1)∗ (resp. of B∗) is the same as the cycle decomposition of A
(resp. of B). Starting from a nonzero element, all cycles of A have length ord(x),
and all cycles of B have length ord(xd). If d ̸= 0, then

ord(xd) = ord(x)
gcd(d, ord(x)) .

Most notably, we deduce the result by choosing for x a generator of G. When
d = 0, all cycles of L =

(
(A−1)∗(x), y

)
have length |G|.

The following corollary can be proved in a similar manner.

Corollary 6.53 (Walsh coefficients of an ℓ-variate projective mapping). Let
F : Fℓ2k → Fℓ2k be an ℓ-variate projective mapping of exponents (d1, . . . , dℓ) with
respect to F2k . Then:

∀α, β ∈ Fℓ2k , ∀x ∈ F∗
2k , WF

(
α,
(
β1x

d1 , . . . , βℓx
dℓ

))
= WF

((
α1x

−1, . . . , αℓx
−1
)
, β
)
.

Furthermore, if there exists x ∈ F∗
2k such that gcd(di, ord(x)) = 1 for all i ∈ J1, ℓK,

then the greatest common divisor of the numbers of occurrences of the values in the
Walsh spectrum is divisible by ord(x).

The symmetries highlighted in Corollary 6.52 appear very clearly in the graphical
representations of the linear approximation table (LAT) of the Kim mapping and of
the Gold power mapping x 7→ x3 over F64 that are depicted in Figures 6.2 and 6.3.
The same property can be stated for the differential distribution table (DDT) of a
linearly self-equivalent mapping.
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Value of WF (α, β): -16 -8 0 8 16

Value of WF (α, β): -16 -8 0 8 16
The Walsh coefficients WF (α, β) are enumerated cosets by cosets, β along the

x-axis and α along the y-axis.

Figure 6.2: LAT of the Kim mapping using two different colormaps.
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Value of WF (α, β): -16 -8 0 8 16

Value of WF (α, β): -16 -8 0 8 16
The Walsh coefficients WF (α, β) are enumerated cosets by cosets, β along the

x-axis and α along the y-axis.

Figure 6.3: LAT of the mapping x 7→ x3 over F64 using two different colormaps.
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Lemma 6.54 (Linear equivalence and DDT). Let A,B : Fn2 → Fn2 be bijective
linear mappings. Let F : Fn2 → Fn2 . If F satisfies B ◦ F ◦A = F , then:

∀α ∈ Fn2 ,∀β ∈ Fn2 , δF (α, β) = δF (A(α), B−1(β)),

where, as defined in Section 2.3.3.b, δF (α, β) = |{x ∈ Fn2 , F (x+ α) + F (x) = β}|.

As in Corollary 6.52, the divisibility of the number of occurrences in the
differential spectrum (with non-zero coefficients) also holds for cyclotomic mappings.
These properties were already used in a cryptographic context in [Jeo+22]. Indeed,
in this paper, the authors use this redundancy among the Walsh and differential
spectra to avoid going through all the coefficients while computing the linearity
and the differential uniformity of the functions they study.

In our case, these properties can be used as a tool to search for signs of existence
of linearly self-equivalent representatives within an equivalence class. Indeed, the
Walsh spectrum is preserved by linear equivalence and the differential and extended
Walsh spectra are preserved by CCZ-equivalence. However, APN functions all
share the same differential spectrum, so this is of low interest. Furthermore, most
of the APN functions in the infinite families that we know also share the same
Walsh spectrum, as recalled in Section 6.5.1.

6.4.2 Ortho-derivatives of linearly self-equivalent mappings

We then see how to capture linear self-equivalence in another way by using the
so-called ortho-derivative of quadratic functions.

Definition 6.55 (Ortho-derivative [CCP22, CCP24]). Let F : Fn2 → Fn2 be a
quadratic function. We say that π : Fn2 → Fn2 is an ortho-derivative for F if, for
any x and ∆ in Fn2 :

π(∆) · (F (x) + F (x+ ∆) + F (0) + F (∆)) = 0

The set of all ortho-derivatives of F is denoted by Π(F ). ▷

Note that Π(F ) is actually a vector space, as the zero function is obviously an
ortho-derivative and it is stable by the addition of functions.

As the Walsh transform, an ortho-derivative depends on a specific scalar product.
Depending on the domain of the function, we continue using the standard dot
product or the ones defined by Eqs. (6.5) and (6.6).

In the case of a quadratic APN function, because the image set of any non-zero
derivative is a hyperplane, there exists a single non-trivial ortho-derivative, that is
π ∈ Π(F ) such that π(0) = 0 and π(a) ̸= 0 for any a ̸= 0. In the following, we refer
to this single non-trivial ortho-derivative as the ortho-derivative of a quadratic
APN function.

The main advantage of the ortho-derivative of a quadratic function is its
behaviour within a given EA-equivalence class.



6.4. Properties of mappings having a linearly self-equivalent mappings 229

Proposition 6.56 (Ortho-derivative and EA class [CCP22, Proposition 36]). Let
F : Fn2 → Fn2 be a quadratic function, A,B : Fn2 → Fn2 be bijective affine mappings,
and C : Fn2 → Fn2 be an affine function. Let πF be an ortho-derivative of F . Let G
and τ be defined by:

G = B ◦ F ◦A+ C, τ = (L∗
B)−1 ◦ πF ◦ LA,

where LA, LB are the linear parts of A,B. Then τ is an ortho-derivative of G, that
is, τ ∈ Π(G). In other words, we have:

Π(G) = (L∗
B)−1Π(F )LA.

Proof. Let ∆ ∈ Fn2 . Then, for any x ∈ Fn2 , it holds that:

0 = π(∆) ·
(
F (x) + F (x+ ∆) + F (0) + F (∆)

)
= π(∆) ·

(
B−1GA−1(x) +B−1GA−1(x+ ∆) +B−1GA−1(0) +B−1GA−1(∆)

)
,

because C(x) + C(x + ∆) + C(0) + C(∆) = 0 due to the fact that C is affine.
Furthermore, because 4B−1(0) = 0, we obtain:

0 = π(∆) ·
(
LB−1GA−1(x) + LB−1GA−1(x+ ∆) + LB−1GA−1(0) + LB−1GA−1(∆)

)
= (L∗

B−1 ◦ π(∆)) ·
(
GA−1(x) +GA−1(x+ ∆) +GA−1(0) +GA−1(∆)

)
.

By using y ← LA−1(x) and ∆′ ← LA−1(∆) as changes of variables, and by
introducing c = A−1(0), we obtain, for any y,∆′:

0 = (L∗
B−1 ◦ π ◦ LA(∆′)) · (G(y + c) +G(y + ∆′ + c) +G(c) +G(∆′ + c))

= (L∗
B−1 ◦ π ◦ LA(∆′)) · (D∆′G(y + c) +D∆′G(c))

= (L∗
B−1 ◦ π ◦ LA(∆′)) · (D∆′G(y) +D∆′G(0)),

where we use for the last equality the fact that D∆′G is affine. This proves that
L∗
B−1 ◦ π ◦ LA is indeed an ortho-derivative of G. The vector space equality is an

immediate consequence of this formula.

Corollary 6.57. Let F be a quadratic APN function. Let G be EA-equivalent
to F . Then their unique non-zero ortho-derivative are linearly equivalent.

Proof. This is a direct consequence of the uniqueness of the non-zero ortho-
derivative for each function F and G.

In our case, this also implies the following easy, but important proposition.

Proposition 6.58. Let F be a quadratic APN function. Let us suppose that
F is linearly self-equivalent: B ◦ F ◦ A = F . Let G be EA-equivalent to F :
G = D ◦ F ◦ E + C. Then:

(i) the ortho-derivative of F is linearly self-equivalent: (B−1)∗ ◦ πF ◦A = πF .
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(ii) the ortho-derivative of G is linearly self-equivalent.

Proof. By a direct application of Proposition 6.56, we obtain (B−1)∗ ◦πF ◦A = πF ,
because A,B are linear and, πG = (L∗

D)−1 ◦ πF ◦ LE , i.e. L∗
D ◦ πG ◦ L

−1
E = πF . By

substituting πF in the formula deduced from self equivalence, we obtain:

(B−1)∗ ◦ L∗
D ◦ πG ◦ L−1

E ◦A = L∗
D ◦ πG ◦ L−1

E ,

or equivalently:(
(L∗

D)−1 ◦ (B−1)∗ ◦ L∗
D

)
◦ πG ◦

(
L−1
E ◦A ◦ LE

)
= πG. (6.7)

In the case of a cyclotomic mapping, or more generally of an ℓ-variate projective
mapping, we obtain the following interpretation of the previous proposition.

Corollary 6.59 (Ortho-derivatives of ℓ-variate projective mappings). Let
F : Fℓ2k → Fℓ2k be a quadratic APN function. Let us suppose that F is an ℓ-variate
projective mapping with exponents (d1, . . . , dℓ). Then πF is an ℓ-variate projective
mapping with exponents (−d1, . . . ,−dℓ), where the exponents are considered modulo
2k − 1. In particular, the ortho-derivative of a quadratic APN cyclotomic mapping
of exponent d is cyclotomic of exponent −d, and the ortho-derivative of the power
mapping x 7→ xd is the power mapping x 7→ x−d.

Proof. First, we observe that for any x, y, z ∈ F2n : TrF2n/F2(x(yz)) =
TrF2n/F2((yx)z), so the multiplication My,n is its own adjoint, for any y ∈ F2n .
When looking at functions F : Fℓ2k → Fℓ2k , and using (x, y) 7→∑ℓ

i=1 TrF2k/F2(xiyi) as
the scalar product, this yields the announced result by using Proposition 6.58.

In particular, both the linear approximation table (LAT) and the difference
distribution table (DDT) of such ortho-derivatives inherit from the symmetries
mentioned in Corollary 6.52 and Lemma 6.54. Contrary to the initial quadratic APN
functions, their ortho-derivatives are neither quadratic, nor APN. In particular,
there is a priori no reason for ortho-derivatives to share the same differential
spectrum or extended Walsh spectrum. In practice, two functions in two distinct
EA-equivalence classes have distinct spectra. This is the reason why these spectra
are used as strong invariants of EA-equivalence class for quadratic APN functions,
for instance in [CCP22, Table VII], [BIK23, Tables 3 & 4], or [BL22, YP22].

In our case, if the divisibility condition mentioned in Corollary 6.52 does not
hold for the ortho-derivative, this proves that the function we consider is not
EA-equivalent to a cyclotomic mapping. On the other hand, as there is no known
reason for such a structure to randomly occur, this could provide a way to detect
the existence of a possible self-equivalent representative.

Example 6.60 (Quadratic APN functions of the Banff list). Among the 13
representatives of quadratic APN functions in 6 variables, as given in the Banff



6.4. Properties of mappings having a linearly self-equivalent mappings 231

list [Dil09], we can exclude the existence of cyclotomic mappings in the EA-
equivalence classes of 9 of them by studying the differential spectra and Walsh
spectra of their ortho-derivatives. Indeed, as shown in Table 6.5, in these 9 cases,
for at least one of the two spectra, the greatest common divisor of the numbers of
occurrences of each value is equal to 1. The four others classes are represented by:

P2 = X3,

P3 = X3 + a11X6 + aX9,

P4 = a7X3 +X5 + a3X9 + g4X10 +X17 + a6X18, and
P5 = X3 +X10 + aX24,

where a is a root of X6 +X4 +X3 +X + 1 and where the GCDs corresponding to
Pi are given on row #i of Table 6.5. Among them, P2 is the cube power mapping,
and P3 is a cyclotomic mapping of exponent 0 with respect to F4, but the GCD
for the Walsh spectrum of its ortho-derivative is 21 and the one for the differential
spectrum is 63, which might suggest a property related to F8 or to the group G
with 21 elements. The representative P4 is not cyclotomic but the GCDs are in
that case equal to 21 and 14, which again suggests a property related to F8. The
polynomial P5 is the Kim mapping, which is cyclotomic of exponent 3 with respect
to F8. ▷

ID GCD for Walsh GCDs for Walsh and differential Number of
spectrum of F spectra of the ortho-derivative πF mappings

#1 42 (1, 1) 7
#2 42 (84, 63) 1
#3 42 (21, 63) 1
#4 42 (21, 14) 1
#5 42 (28, 21) 1
#6 42 (1, 2) 1
#7 1 (2, 1) 1

Table 6.5: Divisibilities of the numbers of occurrences of each value in the Walsh
spectrum of the 6-bit APN functions from the Banff list, and of the Walsh and
differential spectra of their ortho-derivatives.

ID GCD for Walsh GCDs for Walsh and differential Number of
spectrum of F spectra of the ortho-derivative πF mappings

#1 4088 (7, 7) 33
#2 4088 (1, 1) 2

Table 6.6: Divisibilities of the numbers of occurrences of each value in the Walsh
spectrum of the 9-bit APN functions from [BL22], and of the Walsh and differential
spectra of their ortho-derivatives.
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ID GCD for Walsh GCDs for Walsh and differential Number of
spectrum of F spectra of the ortho-derivative πF mappings

BL-1 340 (1, 3) 8667
BL-2 2 (1, 3) 3206
BL-3 340 (1, 6) 403
BL-4 4 (1, 3) 311
BL-5 340 (1, 1) 204
BL-6 2 (1, 1) 45
BL-7 340 (1, 12) 26
BL-8 4 (1, 6) 11
BL-9 4 (1, 1) 11
BL-10 340 (1, 15) 10
BL-11 340 (1, 2) 7
BL-12 1 (1, 3) 4
BL-13 340 (1, 24) 3
BL-14 2 (1, 15) 3
BL-15 2 (1, 6) 3
BL-16 340 (1, 5) 2
BL-17 340 (1, 30) 2
BL-18 340 (5, 15) 2
BL-19 340 (2, 2) 1
BL-20 2 (1, 5) 1
BL-21 4 (2, 3) 1

QAM-1 340 (1, 1) 12201
QAM-2 2 (1, 1) 796
QAM-3 340 (1, 2) 359
QAM-4 340 (1, 3) 160
QAM-5 340 (1, 4) 17
QAM-6 2 (1, 3) 14
QAM-7 4 (1, 1) 14
QAM-8 340 (1, 6) 8
QAM-9 340 (1, 5) 8
QAM-10 340 (1, 12) 3
QAM-11 4 (1, 3) 2
QAM-12 340 (1, 10) 2
QAM-13 340 (85, 510) 1
QAM-14 340 (85, 1020) 1
QAM-15 340 (5, 60) 1
QAM-16 340 (2, 2) 1
QAM-17 340 (1, 24) 1
QAM-18 340 (1, 8) 1
QAM-19 2 (1, 2) 1

Table 6.7: Divisibilities of the numbers of occurrences of each value in the Walsh
spectrum of the 8-bit APN functions from [BL22] (upper half) and [YP22, YWL14]
(lower half), and of the Walsh and differential spectra of their ortho-derivative.
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In light of Theorem 6.43, the previous example shows that (most of) the known
infinite families of quadratic APN functions have very specific properties. This
is also highlighted in Table 6.7 with the 8-bit APN functions found in [BL22,
YP22, YWL14]. In particular, while the functions from [BL22] are all linearly
self-equivalent, none of them, except maybe the two whose GCDs appear on row
BL-18, is EA-equivalent to a non-trivial cyclotomic mapping. On the other hand,
we observe in Table 6.6 that out of the 35 known 9-bit quadratic APN functions
from [BL22], 33 could potentially be EA-equivalent to cyclotomic mappings with
respect to F8.

6.4.3 Searching for linearly self-equivalent mappings within an
EA- or CCZ-equivalence class

We now discuss how we could determine in the general (non-quadratic) case whether
a function is EA-equivalent or CCZ-equivalent to a cyclotomic mapping or to an
ℓ-variate projective mapping.

The following approach is in line with the proof of Proposition 6.58. Let F be
linearly self-equivalent: B ◦ F ◦ A = F . Let G be EA-equivalent to F such that
they satisfy F = D ◦G ◦ E + C. Then it holds that:

B ◦ (D ◦G ◦ E + C) ◦A = D ◦G ◦ E + C,

or equivalently:

B ◦D ◦G ◦ E ◦A = D ◦G ◦ E + C +B ◦ C ◦A.

By composing the output by D−1 and the input by E−1, this is equivalent to:

(D−1 ◦B ◦D) ◦G ◦ (E ◦A ◦ E−1) = G+D−1(C +B ◦ C ◦A) ◦ E−1.

In other words, G is EA self-equivalent. Furthermore D−1 ◦B ◦D is an affine
mapping with L−1

D ◦B◦LD as linear part, and a similar property holds for E◦A◦E−1.
This implies that the minimal polynomials of the involved transformations are
preserved by EA-equivalence. This can again give proofs of the non-existence of
cyclotomic (or ℓ-variate projective) representatives within an EA-equivalence class.

Actually, the same technique can be adapted to the case of CCZ-equivalence.

Proposition 6.61 (CCZ-equivalent functions to a linearly self-equivalent one).
Let F : Fn2 → Fn2 be a linearly self-equivalent mapping satisfying B ◦ F ◦A = F for
some linear bijections A,B. Let G be CCZ-equivalent to F . Then:

(i) G is CCZ self-equivalent.

(ii) There exists an F2-affine bijective mapping A : (Fn2 )2 → (Fn2 )2 with linear
part L such that A(GG) = GG, and L is similar to diag(A,B). Most
notably, diag(A,B) and L have the same canonical form and min(L) =
lcm(min(A),min(B)).
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Proof. From the two hypotheses, it holds that:(
A 0
0 B

)
GF = GF , and A(GG) = GF ,

for some affine bijection A : (Fn2 )2 → (Fn2 )2. By substituting GF by A(GG) in the
first equality, we obtain:(

A 0
0 B

)
◦ A(GG) = A(GG) ⇐⇒ A−1 ◦

(
A 0
0 B

)
◦ A(GG) = GG.

In other words, G is CCZ self-equivalent. Furthermore, the linear part of the
affine mapping A−1 ◦ diag(A,B) ◦ A is L−1 ◦ diag(A,B) ◦ L, which is similar to
diag(A,B). In particular, L and diag(A,B) have the same minimal polynomial,
which is the least common multiple of the ones of A and B.

Contrary to ortho-derivatives which are not defined for functions of degree
more than 2, this method can be applied to any function.

Example 6.62 (Brinckmann-Leander-Edel-Pott APN cubic [BL08, EP09]).
Let us consider the well-known Brinckmann-Leander-Edel-Pott APN cubic for
n = 6 [BL08, EP09]. Then there is neither cyclotomic nor ℓ-variate projective
mapping in its CCZ-equivalence class. Indeed, its 7 non-trivial automorphisms
share the same elementary divisors, which are X+1 with multiplicity 2 and (X+1)2

with multiplicity 5. In particular, if a linearly self-equivalent function exists in its
CCZ-equivalence class, then, according to Proposition 6.61, the canonical form of
diag(A,B) is the same as the one of L. But the canonical form of diag(A,B) is the
concatenation of the ones of A and B. This implies that the canonical form of A
is made of blocks C(X + 1) or C

(
(X + 1)2) with at least one block C

(
(X + 1)2).

Therefore, because of Proposition 6.30, min(A) = (X + 1)2. Thus min(A) is not
irreducible which contradicts the hypotheses of Theorem 6.33 for the cyclotomic
case, and the ones of Theorem 6.40 for the ℓ-variate projective case. Indeed, the
only non-trivial subfields of F26 are F22 and F23 , with both 22− 1 and 23− 1 being
prime. ▷

In particular, this example generalizes the well-known fact that this function
is not CCZ-equivalent to a monomial mapping. Actually, these non-LE
automorphisms correspond to the 7 affine derivatives of the Brinckmann-Leander-
Edel-Pott cubic. By definition, any such automorphism corresponds to a triangular
block matrix with a diagonal made of identity blocks:(

Id 0
L Id

)
+
(

∆in

∆out

)
∈ Aut(F ),

where L is the linear part of the derivative D∆inF and ∆out its constant term. In
particular, the linear part of such an EA automorphism is involutive: its canonical
form is therefore only made of blocks C(X + 1) and C((X + 1)2). The argument
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used in the previous example can therefore be generalized. Indeed, from an EA
automorphism related to an affine derivative of a function F , we can never prove
the existence of a linearly self-equivalent function G in its CCZ-equivalence class,
where G satisfies B ◦G ◦A = G, with non-involutive A and/or B. Conversely, if
the only non-trivial automorphisms of a function come from its affine derivatives,
neither cyclotomic nor ℓ-variate cyclotomic mapping exists in its CCZ-equivalence
class. This also implies the non-existence of representatives that commute with
the Frobenius automorphism because x 7→ x2 is not involutive.

A lot of questions still remain open. For instance, this does not rule out the
existence of a linearly self-equivalent mapping G in the CCZ-equivalence class of
this cubic, it only proves that if such a mapping G exists, it satisfies B ◦G ◦A = G
for two involutions A and B. However, in light of Theorem 6.43, it proves that this
cubic is very different from the other known APN functions. The most interesting
problem that remains is the following one.

Problem 6.63 (From CCZ self-equivalence to linear self-equivalence). Given a
CCZ self-equivalent function, is it possible to use its automorphisms to find a
linearly self-equivalent function in the same CCZ-equivalence class ?

6.5 (Quadratic) APN mappings

This section is dedicated to APN mappings, and in particular to quadratic APN
mappings. First, we recall the main results about the Walsh spectrum analysis of
most quadratic APN functions. As explained below, their Walsh spectrum is very
structured in most cases. In particular, in even dimension, a lot of cases coincide
with the Walsh spectrum shared by very specific cyclotomic mappings. This also
explains why the symmetries in the Walsh spectrum should be studied on the
ortho-derivative, rather than on the function itself.

6.5.1 Classical Walsh spectra

6.5.1.a The case of odd dimension

First, we recall some definitions related to quadratic APN functions.

Definition 6.64 (Plateaued function [ZZ99]). Let f : Fn2 → F2. The function f
is said to be plateaued if there exists a positive integer c > 0 such that for any
α ∈ Fn2 , Wf (α) ∈ {0,±c}. In that case, c = 2i, with i ≥ n

2 , and the numbers of
occurrences of 0, 2i,−2i in the Walsh spectrum are given in Table 6.8. The number
c = 2i is called the amplitude of f .

A vectorial function F : Fn2 → Fn2 is called plateaued (resp. plateaued with
single amplitude) if all its non-zero components are plateaued (resp. plateaued
with the same amplitude). ▷
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Value Multiplicity
2i 22n−2i−1 + (−1)f(0)2n−i−1

0 2n − 22n−2i

−2i 22n−2i−1 − (−1)f(0)2n−i−1

Table 6.8: Walsh spectrum of a plateaued Boolean function of n variables with
amplitude 2i.

Example 6.65 (Quadratic functions). Any quadratic function f : Fn2 → F2 is
actually plateaued. Indeed, for any α ∈ Fn2 :

Wf (α)2 =
∑

∆∈Fn
2

(−1)α·∆WD∆f (0).

This is for instance proven in Eq. (2.20). Because f is quadratic, its derivatives
are either affine or constant, so we further get:

Wf (α)2 = 2n
∑

∆∈Fn
2

(−1)α·∆+D∆f(0)1LS(f)(∆) = 2n
∑

∆∈LS(f)
(−1)α·∆+D∆f(0).

But the function ∆ 7→ D∆f(0) is linear over LS (f) with corresponding mask ε
(because f is affine over LS (f), see Lemma 4.20), so:

Wf (α)2 = 2n
∑

∆∈LS(f)
(−1)(α+ε)·∆ = 2n+dim(LS(f))1LS(f)⊥(α+ ε).

This proves that f is plateaued with amplitude 2
n+dim(LS(f))

2 . ▷

Definition 6.66 (Almost bent (AB) function [CV95]). Let F : Fn2 → Fn2 . Then
L(F ) ≥ 2n+1

2 . If F satisfies L(F ) = 2 n+1
2 then F is said to be almost bent (AB).

In that case n is necessarily odd, and for any α ∈ Fn2 , β ∈ Fn2 \ {0}:

WF (α, β) ∈
{

0,±2
n+1

2
}
,

that is F , is plateaued with single amplitude 2 n+1
2 . ▷

The previously mentioned definition and properties are due to Chabaud &
Vaudenay [CV95]. In our case, we are interested in the following relations between
the APN and almost bent properties.

Proposition 6.67 (APN and AB functions, odd case). Let n be odd. Let F : Fn2 →
Fn2 . Then F is almost bent if and only if F is APN and F is plateaued.

The direct implication appears in [CV95, Theorem 4 & Note 2]. The indirect
one is proven in the quadratic case in [CCZ98, Theorem 8], and the general case
in [CCD00, Corollary 4.2].

Any quadratic APN function in odd dimension is therefore plateaued with
single amplitude 2n+1

2 . This implies that its Walsh spectrum can be computed
from Table 6.8, by also taking care of the zero function. We detail it in Table 6.9.
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Value Multiplicity
2n 1

2 n+1
2 (2n − 1)

(
2n−2 + 2 n−3

2
)

0 (2n − 1)(2n−1 + 1)
−2 n+1

2 (2n − 1)
(
2n−2 − 2 n−3

2
)

Table 6.9: Walsh spectrum of an almost bent function over Fn2 with F (0) = 0.

Value Multiplicity
2n 1

2 n
2 +1 1

3(2n − 1)(2n−3 + 2 n−4
2 )

2 n
2 2

3(2n − 1)(2n−1 + 2 n−2
2 )

0 (2n − 1)(2n−2 + 1)
−2 n

2 2
3(2n − 1)(2n−1 − 2 n−2

2 )
−2 n

2 +1 1
3(2n − 1)(2n−3 − 2 n−4

2 )

Table 6.10: Walsh spectrum of an APN function over Fn2 , n even with 2
3(2n − 1)

bent components and F (0) = 0.

6.5.1.b The case of even dimension

In even dimension, since almost bent functions do not exist, the situation is a bit
different. This is detailed in the following proposition.

Proposition 6.68 (Plateaued APN functions, even case [Ber+06, Corollary 3]).
Let n be even. Let F : Fn2 → Fn2 be a plateaued function. Let B be its number of
bent components. Then:

1. If F is APN, then 2
3(2n − 1) ≤ B.

2. If F is APN, then B = 2
3(2n − 1) if and only if L(F ) = 2 n+2

2 .

3. If B = 2
3(2n − 1) and L(F ) = 2n+2

2 , then F is APN, and it has the Walsh
spectrum described in Table 6.10.

This extremal case with exactly 2
3(2n − 1) bent components occurs for almost

all known APN functions in even dimension. As an example, this is the case for
the Kim mapping and the cube power mapping over F64. The one third/two thirds
partition of the non-zero components is highlighted in Figures 6.2 and 6.3. Because
the infinite families are all quadratic, this can be proven by studying another
extremal behavior, with respect to the size of the image set. This is detailed in the
following proposition and corollary.
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Proposition 6.69 (Size of the image set [CHP17]). Let F : Fn2 → Fn2 be a function
with differential uniformity δF . Then:

22n

|Im(F )| − 2n

2n − 1

 ≤ δF .
Proof.∑

a∈Fn
2 ,a̸=0

∣∣∣DaF
−1({0})

∣∣∣ =
∑

a∈Fn
2 ,a ̸=0

|{x ∈ Fn2 , F (x+ a) = F (x)}|

=
∑

a∈Fn
2 ,a̸=0

|{(x, x+ a), x ∈ Fn2 , F (x+ a) = F (x)}|

= |{(x, y) ∈ Fn2 × Fn2 , y ̸= x, F (y) = F (x)}|
= |{(x, y) ∈ Fn2 × Fn2 , F (y) = F (x)}| − 2n

=
∑
x∈Fn

2

∣∣∣F−1({F (x)})
∣∣∣− 2n

=
∑

b∈Im(F )

∣∣∣F−1({b})
∣∣∣2 − 2n.

Therefore, by applying Cauchy-Schwarz inequality to the sequences (1)b∈Im(F ) and
(
∣∣F−1(b)

∣∣)b∈Im(F )we observe that:

22n

|Im(F )| − 2n =
(∑b∈Im(F )

∣∣F−1(b)
∣∣)2

|Im(F )| − 2n ≤
∑

b∈Im(F )

∣∣∣F−1(b)
∣∣∣2 − 2n =

∑
a∈Fn

2 ,a̸=0

∣∣∣DaF
−1(0)

∣∣∣ .
This finally implies that there exists a ̸= 0 such that:

22n

|Im(F )| − 2n

2n − 1 ≤
∣∣∣DaF

−1(0)
∣∣∣ ;

otherwise, the previous inequality would not hold. The announced bound on the
differential uniformity is thus obtained.

Corollary 6.70 (Size of the image set of APN functions [CHP17, KKK23, Cze20]).
Let F : Fn2 → Fn2 be an APN function. Then:

|Im(F )| ≥
{

2n+1
3 if n is odd,

2n+2
3 if n is even. (6.8)

Proof. Adapted from [Car21].
22n

|Im(F )| −2n

2n−1 ≤ δF becomes 22n

3·2n−2 ≤ |Im(F )| when
δF = 2. We further see that:

0 <
∣∣∣∣∣2n + 2

3 − 22n

3 · 2n − 2

∣∣∣∣∣ = 4(2n − 1)
9 · 2n − 6 < 1.

so there is at most a single integer in that range, which in that case would be⌈
22n

3·2n−2

⌉
. For an even n, we know that 3 | 2n + 2, so 2n+2

3 ∈ N. In the same way,
for an odd n, 2n+1

3 ∈ N and lies in ] 22n

3·2n−2 ,
2n+2

3 [.
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This result was independently obtained in multiple papers [CHP17, KKK23,
Cze20]. Note that 2n+2

3 = 2n−1
3 + 1. In particular, in many cases, APN

functions reaching this bound are almost 3-to-1 functions (with F−1({0}) = {0}),
see Definition 6.12. It is believed [KKK23] that they are the only APN functions
in even dimension that reach the bound of Corollary 6.70.

Example 6.71 (APN monomials). As shown in [KKK23, Corollary 4], Corol-
lary 6.70 gives a straight-forward proof of the fact that an APN function
F : F2n → F2n defined by F (x) = xd satisfies gcd(d, 2n − 1) = 1 if n is odd
and gcd(d, 2n − 1) = 3 if n is even. Indeed, its image set is the group of the d-th
roots of unity which is of cardinality 2n−1

gcd(d,2n−1) . This implies that gcd(d, 2n−1) ≤ 3,
and this common divisor must be odd because 2n− 1 is odd. If n is odd, 3 ∤ 2n− 1,
so necessarily gcd(d, 2n − 1) = 1. When n is even, gcd(d, 2n − 1) = 1 would imply
that x 7→ xd is bijective over F4 ⊂ F2k but there does not exist any APN bijection
over F4, so gcd(d, 2n − 1) = 3. ▷

The following proposition describes in more detail the relation with the almost
3-to-1 property.

Proposition 6.72 (Almost 3-to-1, plateaued & APN functions). Let n be even
and F : Fn2 → Fn2 , with F (0) = 0. Then:

1. [KKK23, Theorem 15] If F is a plateaued almost 3-to-1 function, then F is
APN and its Walsh spectrum is the one given in Table 6.10.

2. [KKK23, Theorem 4] If F is an APN cyclotomic mapping of exponent 0 with
respect to F4, then F is almost-3-to-1.

3. [KKK23, Theorem 5] Furthermore, let F be a plateaued cyclotomic mapping
of exponent 0 with respect to F4. Then the following statements are equivalent:

(i) F is APN.
(ii) F is almost 3-to-1.
(iii) F has the Walsh spectrum given in Table 6.10.

Proof. We prove Item 3, while Items 1 & 2 can be seen as subcases of this proof.
Let us assume that F is a quadratic cyclotomic mapping of exponent 0 with respect
to F4, that is, a 3-divisible function.

(i) =⇒ (ii) If F is APN, because of Corollary 6.70, it follows that F is 3-to-1
on F∗

2n .

(ii) =⇒ (iii) First, we observe that:∑
β∈F2n

WF (0, β) =
∑
x∈F2n

∑
β∈F2n

(−1)Tr(βF (x)) = 2n|F−1(0)| = 2n ,
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because 0 has a single preimage. In other words, ∑β∈F∗
2n
WF (0, β) = 0.

Moreover:∑
β∈F2n

WF (0, β)2 =
∑
x∈F2n

∑
y∈F2n

∑
β∈F2n

(−1)Tr(βF (x))+Tr(βF (y))

=
∑
x∈F2n

∑
a∈F2n

∑
β∈F2n

(−1)Tr(β(F (x+a)+F (x)))

= 2n
∑
x∈F2n

|{a ∈ F2n : F (x+ a) + F (x) = 0}|

= 2n (1 + 3(2n − 1)) = 22n+1 + 22n − 2n+1 ,

where we successively use y ← x+ a as a change of variables, the mean of
characters and our hypothesis, that is, that F is almost 3-to-1. It follows
that: ∑

β∈F∗
2n

WF (0, β)2 = 2n+1(2n − 1) .

Therefore:

S :=
∑
β∈F∗

2n

(
WF (0, β)2 + (−2)n/2WF (0, β)− 2n+1

)
= 0.

But S can also be expressed as:

S =
∑
β∈F∗

2n

(
WF (0, β)− (−2)n/2

) (
WF (0, β)− (−2)n/2+1

)
= 0.

Because F is plateaued, all WF (0, β) are divisible by 2n/2. Moreover, it holds
that:

WF (0, β)− 1 = 2n − 2 |{x ∈ F2n ,Tr(βF (x)) = 1}| − 1,

but 2n − 1 ≡ 0 mod 3 because n is even and |{x ∈ F2n ,Tr(βF (x)) = 1}| ≡
0 mod 3 because F is almost 3-to-1 and with F−1({0}) = 0, so we observe
that:

WF (0, β)− 1 ≡ 0 mod 3,

and therefore WF (0, β) ̸∈ {0,−(−2)n/2,−(−2)n/2+1}, because −2 ≡ 1 mod 3.
When n/2 is even, it then holds that:(

WF (0, β)− (−2)n/2
) (
WF (0, β)− (−2)n/2+1

)
≥ 0, (6.9)

that is, the two terms are of the same sign. Indeed, if WF (0, β)− 2n/2 ≥ 0,
then of course WF (0, β) ≥ −2n/2+1. Conversely, if WF (0, β) < 2n/2, then
necessarily WF (0, β) ≤ −2n/2+1, because WF (0, β) must be divisible by
2n/2, but cannot belong to {0,−2n/2}. When n/2 is odd, Eq. (6.9) also
holds for the same reasons. Indeed, if WF (0, β) − 2n/2+1 ≥ 0, then of
course WF (0, β) ≥ −2n/2. Conversely, if WF (0, β) < 2n/2+1, then necessarily
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WF (0, β) ≤ −2n/2, because WF (0, β) must be divisible by 2n/2, but cannot
belong to {0, 2n/2}.
In any case, we deduce that, because S is a sum of positive terms
which vanishes, all its terms must vanish. In other words, WF (0, β) ∈
{(−2)n/2, (−2)n/2+1} and these two values occur with multiplicities 2(2n−1)/3
and (2n−1)/3 respectively, because their multiplicities (a, b) are the solutions
of the following system:

a+ b = 2n − 1, a(−2)n/2 + b(−2)n/2+1 = 0.

Since F is plateaued, the values of β such that |WF (0, β)| = 2n/2 correspond
to bent components, and the other ones to components with linearity 2n/2+1,
so F has the announced Walsh spectrum.

(ii) =⇒ (iii) If F has the Walsh spectrum given in Table 6.10, then F satisfies
the hypotheses of Proposition 6.68, Item 3, so F is APN.

Some of these results already appear in [CGT16, Corollary 1 & Theorem 3], in
the context of quadratic functions.
Remark 6.73. As we will see below, if a cyclotomic mapping with respect to F2k ,
with k even, is APN, then necessarily its exponent d defines an APN function
x 7→ xd over F2k . Then, as shown in Example 6.71, 3 divides d, but 3 also divides
2k − 1 because k is even. This implies that an APN cyclotomic mapping with
respect to a subfield of even dimension is necessarily 3-divisible. In particular, it
is also almost 3-to-1 because of Corollary 6.70, be it quadratic (or plateaued) or
not. However, this does not imply that F has the classical Walsh spectrum given
in Table 6.10. An example of this situation is Dobbertin’s power function over
F210m , m ≥ 1, with exponent d = 28m + 26m + 24m + 22m − 1 [Dob01]. As any
power function, this function is a cyclotomic mapping of exponent 3 with respect to
F22m : it can be written as x3P (x22m−1). It is also 3-to-1 by the previous discussion,
however it is known that its Walsh spectrum is not 2n/2 divisible [CCD00]. Then,
its Walsh spectrum cannot be the classical one given in Table 6.10, and its form is
only conjectured [Bud+22, Conjecture 29]. ▷

6.5.2 APN (generalized) cyclotomic mappings

We have shown in Section 6.3 that many families among the known APN functions
are linearly equivalent to a cyclotomic mapping. We then further study these
mappings since they seem to play a particular role among all known APN mappings.
Note that the differential uniformity of cyclotomic mappings was investigated by
Chen and Coulter [CC23] recently, but their results do not provide any relevant
information for our parameters in characteristic 2. We thus continue studying
the link between those two properties. Since the generalization is straightforward,
we state the results in a more general context, such as the one of generalized
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cyclotomic mappings. However, as seen in Section 6.1.6, they do not a priori
provide linear self-equivalence, so the main concern remains the specific case of
cyclotomic mappings.

6.5.2.a Necessary conditions to be APN

First of all, an APN generalized cyclotomic mapping with respect to a subfield F2k

has a single preimage for 0.

Proposition 6.74. Let F : F2n → F2n be a generalized cyclotomic mapping with
respect to F2k . Assume that there exists λ ̸= 0 such that F (λ) = 0. Then the
differential uniformity of F is at least 2k.

Proof. We observe that, for any φ ∈ F2k , we have F (λφ+ λ) + F (λφ) = 0.

In particular an APN generalized cyclotomic mappping with respect to F2k

must satisfy F−1({0}) = {0}. Furthermore, it must be based on APN monomials
over F2k .

Lemma 6.75. Let F : F2n → F2n be a generalized cyclotomic mapping with
respect to a subfield F2k . If F is APN, then all its exponents dλ, λ ̸= 0, defined in
Definition 6.25 are such that x 7→ xdλ is APN on F2k .

Proof. Suppose that there exists a coset λF2k , λ ̸= 0, such that Gλ : x 7→ xdλ is
not APN on F2k . Then, there exist φ1, φ2 ∈ F2k such that δGλ

(φ1, φ2) > 2. Using
that, for any φ ∈ F2k ,

F (λφ+ λφ1) + F (λφ) = F (λ) (Gλ(φ+ φ1) +Gλ(φ)) ,

we deduce that there exist more than two φ ∈ F2k such that

F (λφ+ λφ1) + F (λφ) = F (λ)φ2

implying that F is not APN.

This explains the fact that the exponents of the cyclotomic mappings in most
of the infinite families are Gold exponents.

Note that the stability of F2k with respect to addition is used in the previous
proof, this is the reason why it cannot (at least directly) be adapted to the more
general case of cyclotomic mappings with respect to generic groups G.

The case of subfields of even dimension is very peculiar. Indeed, we can in that
case derive the following necessary conditions from Corollary 6.70, some of which
are already mentioned in Remark 6.73.

Proposition 6.76. Let k be an even divisor of n and F be a cyclotomic mapping
with respect to F2k . Let Γ be a system of representatives of the multiplicative cosets
of F2k . If F is APN then:

• F does not satisfy the F2k-subspace property,
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• F is cyclotomic of exponent 0 with respect to F4,

• all F (γ), γ ∈ Γ belong to different cosets of F2k ,

• F is almost 3-to-1 with F−1(0) = {0}.

Proof. Lemma 6.75 states that xd is APN over F2k . The first point is then a
consequence of the property exhibited in Example 6.71, because there does not
exist any APN bijective monomial for even dimension. Furthermore, because k
is even, we have that gcd(d, 2k − 1) = 3, which implies that F is 3-divisible by
Proposition 6.13. From Corollary 6.70, F is then necessarily almost 3-to-1, or
equivalently, all F (γ), γ ∈ Γ belong to different cosets of F2k .

6.5.2.b Spectral properties of (generalized) cyclotomic mappings

For generalized cyclotomic mappings with respect to a subfield, we can easily
express the Walsh coefficients in terms of the Walsh coefficients of the power
functions x 7→ xdλ .

Proposition 6.77. Let n = ℓk and F : F2n → F2n be a generalized cyclotomic
mapping with respect to F2k . Let dγ , γ ∈ Γ denote its exponents as defined in
Definition 6.25, where Γ is a system of representatives of the multiplicative cosets
of F2k . For any α, β ∈ F2n, we have:

WF (α, β) = −
ℓ−1∑
i=1

2ik +
∑
γ∈Γ

WF2k ,x
dγ

(
TrF2n/F2k

(αγ) ,TrF2n/F2k
(βF (γ))

)
.

Proof. A direct computation yields:

WF (α, β) =
∑
λ∈F2n

(−1)TrF2n /F2k
(αλ+βF (λ))

= (−1)0 +
∑
γ∈Γ

∑
φ∈F∗

2k

(−1)TrF2n /F2k
(αγφ+βF (γφ))

= 1 +
∑
γ∈Γ

 ∑
φ∈F2k

(−1)TrF2n /F2k
(αγφ+βF (γφ)) − 1


= (1− |Γ|) +

∑
γ∈Γ

∑
φ∈F2k

(−1)TrF2n /F2k
(αγφ+βF (γφ))

= −
ℓ−1∑
i=1

2ik +
∑
γ∈Γ

∑
φ∈F2k

(−1)TrF2n /F2k
(αγφ+βF (γ)φdγ )

= −
ℓ−1∑
i=1

2ik +
∑
γ∈Γ

WF2k ,x
dγ

(
TrF2n/F2k

(αγ) ,TrF2n/F2k
(βF (γ))

)
;

where we successively used the multiplicative decomposition using Γ, changed
the sum over F∗

2k into a sum over F2k , used Definition 6.25, and finally the trace
linearity.
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Proposition 6.78 (Walsh coefficients in zero). Let n = ℓk. Let F : F2n → F2n be
a generalized cyclotomic mapping with bijective exponents with respect to F2k . Let
β ∈ F∗

2n and K(β) =
∣∣∣{γ ∈ Γ : TrF2n/F2k

(βF (γ)) = 0}
∣∣∣. Then:

WF (0, β) = 2k
(
K(β)−

ℓ−2∑
i=0

2ik
)
.

Proof. By Proposition 6.77, WF (0, β) can be expressed as:

WF (0, β) = −
ℓ−1∑
i=1

2ik +
∑
γ∈Γ

WF2k ,x
dγ

(
0,TrF2n/F2k

(βF (γ))
)
.

Moreover, x 7→ xdγ is a bijection over F2k and thus, WF2k ,x
dγ (0, λ) = 2k · 10(λ).

Then:

WF (0, β) = −
ℓ−1∑
i=1

2ik + 2k
∣∣∣{γ ∈ Γ s.t. TrF2n/F2k

(βF (γ)) = 0
}∣∣∣ .

When n is even and k = n/2, the Walsh coefficients in zero are directly derived
from the number of preimages by F of the multiplicative cosets of F2k .

Corollary 6.79 (Walsh coefficients in zero when k = n/2). Let n = 2k be an
even integer and F : F2n → F2n be a generalized cyclotomic mapping with bijective
exponents with respect to F2k . Then, for any β ∈ F∗

2n, we have:

WF (0, β) = 2k(K(β)− 1), with K(β) =
∣∣∣Γ ∩ F−1(β−1F2k)

∣∣∣ .
Most notably, if F is a plateaued APN function, there are at least 2(2k+1)

3 cosets of
F∗

2k with 0 or 2 preimages by F .

Proof. We know from Proposition 6.78 that WF (0, β) = 2k(K(β) − 1). Since
k = n/2, TrF2n/F2k

(βF (γ)) = βF (γ) + (βF (γ))2k = 0 if and only if βF (γ) ∈ F2k ,
i.e., F (γ) ∈ β−1F2k . We deduce that: K(β) =

∣∣Γ ∩ F−1(β−1F2k)
∣∣. If F is APN

then by Proposition 6.74, F−1({0}) = {0}. In that case this implies that: K(β) =∣∣∣Γ ∩ F−1(β−1F∗
2k)
∣∣∣, which is the number of cosets of F∗

2k mapped onto β−1F∗
2k .

Corollary 6.80. Let n = 2k be an even integer and F : F2n → F2n be a generalized
cyclotomic mapping with bijective exponents with respect to F2k . Then its linearity
satisfies:

L(F ) ≥ 2k
(

max
β∈Γ

(
∣∣∣Γ ∩ F−1(β−1F2k)

∣∣∣− 1
)
.
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Example 6.81. We exhaustively looked at the 63 mappings over F64 of the form
x 7→ x3 + x10 + ux24, where u ̸= 0. Eight of them can be proven non-APN thanks
to Proposition 6.74, because a coset is set onto {0}. For the remaining ones, we
computed the multiset {{K(β), β ∈ Γ}} where Γ is a system of representatives of
the multiplicative cosets of F∗

2k . The possible values for this multiset are:

M1 = {{0, 0, 1, 1, 1, 1, 1, 2, 2}},
M2 = {{0, 0, 0, 0, 1, 1, 1, 3, 3}},
M3 = {{0, 0, 0, 1, 1, 1, 1, 2, 3}},
M4 = {{0, 0, 0, 0, 1, 1, 2, 2, 3}},
M5 = {{0, 0, 1, 1, 1, 1, 1, 1, 3}},
M6 = {{1, 1, 1, 1, 1, 1, 1, 1, 1}},

In this specific case, it holds that 2(2k+1)
3 = 2×9

3 = 6. This implies that if a
function has as spectrum M1,M2,M3,M5 or M6, then it cannot be APN. The
spectrum M4 cannot be rule out. In practice, it is obtained for the six roots u of
X6 +X4 +X3 +X+1 and the associated functions are in that case (CCZ-equivalent
to) the Kim mapping, and therefore APN. ▷

The functions considered in this example are quadratic cyclotomic mappings
with respect to the subfield F2

n
2 ⊂ F2n , with n even. As detailed below and due

to a recent result of Göloğlu [Göl23], no new APN functions can be found in this
family. However, the previous results are more general and could hopefully lead to
the finding of new APN functions outside of this specific family.

6.5.3 APN cyclotomic mappings of degree 2

As already mentioned, quadratic APN functions are relatively better understood
than the general case. It is therefore interesting to look at this subcase in the
context of cyclotomic mappings.

First of all, as already mentioned by Göloğlu [Göl15, p.264] in a less general case,
quadratic cyclotomic mappings with respect to subfields can easily be characterized
by refining Lemma 6.14.

Proposition 6.82 (Quadratic cyclotomic mappings w.r.t subfields). Let F2k ⊂ F2n .
Let d < 2k− 1. Let F : F2n → F2n be a quadratic cyclotomic mapping of exponent d
with respect to F2k . Then, wt(d) ≤ 2. Furthermore if wt(d) = 2 with d = 2e1 + 2e2 ,
e1 ̸= e2 then F is of the form:

F : x 7→
ℓ−1∑
i=0

ℓ−1∑
j=0

λi,jx
2ki+e1 +2kj+e2

, for some λi,j ∈ F2n .

Proof. Let (2k−1)s+d = 2u+2v be an exponent of weight exactly 2, which appears
in the univariate form of F . By Lemma 6.14 we get d ≡ 2u′ + 2v′ mod 2k − 1 where
u′, v′ are the Euclidean remainders of u and v modulo k. If u′ = v′ = k − 1 then
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d ≡ 2k ≡ 1 mod 2k − 1 and therefore d = 1. Otherwise, 2u′ + 2v′
< 2k − 1 and

d = 2u′ + 2v′ which is of weight at most 2.
In the case where wt(d) = 2, F does not contain any linear monomial x2w as it

would imply d = 2w′ (where w′ ≡ w mod k), which is a contradiction. Furthermore
F (0) = 0 so all monomials of F have degree exactly 2. In that case, for any term
x2u+2v in F , we get d ≡ 2u′ + 2v′ mod 2k − 1 with u′ ̸= v′ (otherwise wt(d) = 1,
which is excluded). Since 2u′ + 2v′

< 2k − 1, we deduce 2e1 + 2e2 := d = 2u′ + 2v′ .
This means that there exist i, j such that {u, v} = {ki+ e1, kj + e2}. But u, v are
such that 2u + 2v < 2ℓk − 1 so necessarily i, j ∈ J0, ℓ− 1K.

Lemma 6.75 implies that the case where wt(d) = 1 is not interesting if we are
looking for APN cyclotomic mappings, as x 7→ xd is linear in that case. When
wt(d) = 2, we can always write d = 2a(2s + 1) but a can be arbitrarily set
to 0. Indeed, F = x2a(2s+1)P (x2k−1) is APN if and only if the linearly-equivalent
cyclotomic mapping F (x2n−a) = x2s+1Q(x2k−1) is APN where Q = P (x2n−a). We
then deduce the following corollary.

Corollary 6.83 (Quadratic APN cyclotomic mappings and Gold exponents).
Studying APN cyclotomic mappings whose exponent is a Gold exponent over F2k

d = 2s + 1, gcd(s, k) = 1 is sufficient to study quadratic APN cyclotomic mappings
with respect to F2k .

For even n, the family of quadratic cyclotomic mappings with respect to F2
n
2 ,

described in Proposition 6.82, has already received a lot of attention [Göl15, Car15,
Bud+17, Li+21, CL21, Göl23]. As shown in Proposition 6.82, they also include the
so-called “Kim-type” functions introduced by Carlet in [Car15, Section 3.7] who
raised the question of the existence of APN functions in this family. For instance,
it contains the APN trinomials for n ≡ 0 mod 4, k = n/2 that were exhibited by
Göloğlu [Göl15], and which have been latter proved affine equivalent to the Gold
power mapping x2t−i+1 [Bud+17, Section 4].

Most notably, the list of all quadratic APN cyclotomic mappings w.r.t F2
n
2 ,

n even, is now known to be complete. Cyclotomic mappings of exponent 3 are
all affine-equivalent to either x3 or x2k−1+1 [CL21, Li+21], and thus never CCZ-
equivalent to a permutation [GL20]. The general case, with exponent d = 2s+1, has
been recently classified by Göloğlu [Göl23], as he classified all APN (2s + 1, 2s + 1)-
projective mappings, which coincide with quadratic cyclotomic mappings with
respect to F2

n
2 (see Proposition 6.20). His result shows that a quadratic cyclotomic

mapping with respect to the subfield F2k ⊂ F2n where n = 2k is APN if and only
if it is equivalent to some specific Gold mapping (depending on the parities of k
and s) except when n = 6, where it can also be equivalent to the Kim mapping.

This implies that there is no hope to find new APN functions over F2n , n
even, among the quadratic cyclotomic mappings w.r.t F2

n
2 . However, some families

presented in Tables 6.2 and 6.3 contain functions that are equivalent to cyclotomic
mappings but not to Gold mappings. This is the case for instance of Families
(LK23a) and (LK23b) in Table 6.3, which consist of quadratic cyclotomic mappings
with respect to F2

n
3 for n divisible by 3. This also applies to more general
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biprojective mappings. Another interesting idea would be to try to build cyclotomic
mappings F2k ⊂ F22k , with non-quadratic APN exponents, corresponding to other
APN monomial functions. The results that we just presented in this section open
the door to new research directions as they are more general than the case n = 2k,
with F quadratic.

Similarly to Proposition 6.82, we provide the generic form of the polynomials
corresponding to quadratic ℓ-variate projective mappings, based on the following
lemma.

Lemma 6.84 (Quadratic multivariate functions). Let F : Fℓ2k → Fℓ2k be quadratic.
Then each multivariate monomial in the coordinates of F is of the form Xui

i X
uj

j

with i ̸= j and wt(ui) = wt(uj) = 1, or of the form Xui
i with wt(ui) ≤ 2.

Proof. Let (α1, . . . , αℓ) be an F2k -basis of F2n with n = ℓk. Let us consider the
linearly equivalent function F̃ defined by:

F̃ (x) =
ℓ∑
i=1

αiFi(x1, . . . , xℓ),

for any x = ∑ℓ
i=1 αixi. By construction, Fi(x1, . . . , xℓ) = TrF2n/F2k

(βiF (x)) for
some βi. The function x 7→ F (x)2j contains univariate monomials whose exponents
are the ones of F multiplied by 2j . This transformation does not change the
Hamming weight of the exponents so x 7→ F (x)2j is of algebraic degree at most
2. Moreover, we observe that (∑ℓ

i=1 αixi)2a = ∑ℓ
i=1 α

2a

i x
2a

i , so a linear univariate
monomial X2a can only produce multivariate monomials with a single variable,
and whose exponent is of Hamming weight 1. Similarly, we observe that:

(
ℓ∑
i=1

αixi

)2a+2b

=
ℓ∑

i,j=1
α2a

i x
2a

i · α2b

j x
2b

j ,

so a quadratic univariate monomial X2a+2b only produces multivariate monomials
X2a

i X
2b

j with i ̸= j or monomials X2a+2b

i .

As a direct consequence, we obtain the following proposition.

Proposition 6.85 (Quadratic ℓ-variate projective mappings). Let F : Fℓ2k → Fℓ2k

be a quadratic ℓ-variate projective mappings. Then its exponents (d1, . . . , dℓ) satisfy
wt(di) ≤ 2 for all i. Moreover, in a homogeneous coordinate of exponent 2s + 1,
only the terms XiX

2s

j with i ̸= j and X2s+1
i can appear. Most notably, the family

of 2-variate projective mappings of exponents (2r + 1, 2s + 1) with respect to F2k

with algebraic degree 2 coincides with the family of (2r, 2s)-biprojective mappings
defined in Definition 6.19.

Propositions 6.82 and 6.85 then allow the search for new quadratic APN ℓ-
variate projective mappings, ℓ > 2, from their polynomial representations. We
believe that this opens a promising direction for finding new APN mappings.
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6.6 A deeper analysis of the only known solution to
the big APN problem

In this last section, we focus on the study of the Kim mapping. Because it is
cyclotomic, symmetries appear in its LAT according to Corollary 6.52, and the
number of occurrences of a value in its Walsh spectrum is a multiple of |G|, where
G = F∗

23 ⊂ F∗
26 in that case. But it is well-known [Bro+10, CP19] that the

zero coefficients are heavily related to the CCZ-equivalence, and in particular
to CCZ-equivalence with a bijection. After recalling the known results, we give
a characterization of the appearance of a F2

n
2 -space of zeroes in the LAT of a

cyclotomic mapping over F2n with respect to F2
n
2 , just as in the LAT of the

Kim mapping. Hopefully, this result could lead to a better understanding of this
noteworthy phenomenon, and of the closely-related big APN problem.

6.6.1 CCZ equivalence and Walsh zeroes

Recall that the Kim mapping [Bro+10] is the quadratic APN function of 6 variables
defined by:

κ : F64 → F64 x 7→ x3 + x10 + ux24,

where u is a root of the primitive polynomial X6 + X4 + X3 + X + 1. The
most remarkable property of κ is that it is CCZ-equivalent to a permutation. In
particular, it led to the only known solution (up to equivalence) to the big APN
problem, which is known as the Dillon permutation.

In order to present our characterization of this phenomenon, we recall the
definition of the Walsh zeroes.

Definition 6.86 (Walsh zeroes). Let F : Fn2 → Fm2 . The Walsh zeroes of F are
the element of the set:

ZF := {(α, β) ∈ Fn2 × Fm2 , WF (α, β) = 0} ∪ {(0, 0)} .

In other words, the Walsh zeroes are the preimages of 0 by the Walsh transform,
to which we add (0, 0). ▷

The Walsh zeroes of a function enable us to obtain another characterization of
admissible mappings, which, as defined in Definition 2.61, are the mappings that
lead to a CCZ-equivalence relation between two functions.

Proposition 6.87 (Second characterization of admissibility [CP19, Theorem 1]).
Let F : Fn2 → Fm2 . Let A be an affine mapping over Fn+m

2 with linear part L. Then
A is admissible for F if and only if L(Fn2 × {0}) ⊂ ZF .

Proof. According to Lemma 2.62, A is admissible if and only if the function
x 7→ A1(x, F (x)) is bijective. However a function is bijective if and only if all its
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non-zero components are balanced. In other words, A is admissible if and only if,
for any a ∈ Fn2 \ {0}, it satisfies:

0 =
∑
x∈Fn

2

(−1)a·A1(x,F (x)) ⇐⇒ 0 =
∑
x∈Fn

2

(−1)(a,0)·A(x,F (x))

⇐⇒ 0 = (−1)(a,0)·A(0,0) ∑
x∈Fn

2

(−1)(a,0)·L(x,F (x))

⇐⇒ 0 = (−1)(a,0)·A(0,0) ∑
x∈Fn

2

(−1)L⊤(a,0)·(x,F (x))

⇐⇒ L⊤(a, 0) ∈ ZF .

Because (0, 0) is by definition an element of ZF , this is equivalent to state that
L(Fn2 × {0}) ⊂ ZF .

Corollary 6.88. A mapping A is admissible for a function F if and only if its
linear part L is admissible for F .

From this characterization, we deduce the following important characterization
of functions that are CCZ-equivalent to a bijection.

Corollary 6.89 (CCZ equivalence and Walsh zeroes [Bro+10]). Let F : Fn2 → Fn2 .
Then F is CCZ-equivalent to a bijection if and only if there exist two F2-spaces of
dimension n, V,W ∈ ZF which satisfy V ∩W = {0}.

Proof. The necessary condition is a consequence of Proposition 2.64: indeed up
to CCZ equivalence, we have |WF (α, β)| =

∣∣∣WG(L⊤(α, β))
∣∣∣, where L is the linear

part of the affine function mapping one graph to the other. But as L⊤ is linear and
bijective, it maps vector spaces of zeroes onto vector spaces of zeroes of the same
dimension and it also preserves the dimension of the intersection. In particular
the space Fn2 × {0} is always a subspace of ZF (because the linear functions are
balanced) and {0} × Fn2 belongs to ZF if and only F is bijective, which is the case
here by hypothesis.

Conversely, let V,W be two spaces of dimension n, which are in direct sum. By
choosing a basis (vi), (wi) of both spaces, we obtain a basis of the full space by
concatenating them. In particular, there exists (a unique) bijective linear function
L : F2n

2 → F2n
2 which maps for any i ∈ J1, nK, ξ(i) to vi and ξ(n+i) to wi. The

function L satisfies: L(Fn2 × {0}) = V ⊂ ZF , so L⊤ defines an admissible mapping
for F . Furthermore, the associated function G satisfies {0} × Fn2 = L−1(W ) ⊂ ZG.
This implies that G is a bijection.

Because the Kim mapping is CCZ equivalent to a bijection, Corollary 6.89
implies that the set of the Walsh zeroes of the Kim mapping contains two such
F2-subspaces.4 But the function actually satisfies a strictly stronger condition.

4This is precisely this argument that is used in [Bro+10] to find the APN bijection in dimension
6.
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Indeed, because the Kim mapping is defined over F64, it is easier (but equivalent)
to deal with ZF ⊂ F64×F64 (rather than ZF ⊂ F6

2×F6
2). In that case, it is possible

to find two spaces V,W of the form αF8 × βF8 which are in direct sum. Such
spaces are F2-spaces of dimension n = 6 but they are even F8-spaces of dimension
2. With the point of view taken since the beginning of this chapter, the structure
of theses spaces is not that surprising (while their sole existence is !). Indeed, it
is reminiscent of the symmetries of the Walsh transform of cyclotomic mappings
mentioned in Lemma 6.50 and Corollary 6.52.

Stated otherwise, in the case of a cyclotomic mapping F with bijective exponent,
such a space αF2

n
2 ×βF2

n
2 is a subset of the Walsh zeroes if and only if WF (αφ, β) =

0 for all φ ∈ F2
n
2 , because the other 0 are spread out by the symmetries. This is

also equivalent to WF (α, βφ) = 0 for all φ ∈ F2
n
2 .

With the benefit of hindsight, these F8-spaces of zeroes clearly appear in
Figure 6.2 as 7 × 7 grey squares, which must be completed using the very first
column and row which correspond to α = 0, β = 0. Two of them can be chosen to
have a trivial intersection: to do so they must lie neither in the same “row” nor
“column”, where row/column refer here to a set of 7 consecutive rows or columns.

6.6.2 F2
n
2 -subspaces in the Walsh zeroes of cyclotomic mappings

The following proposition and theorem provide a necessary and sufficient condition
for the existence of such (α, β) when F is a cyclotomic mapping with respect to
F2

n
2 .

Proposition 6.90 (Trivial square in the Walsh zeroes). Let n = 2k. Let F :
F2n → F2n be a cyclotomic mapping of bijective exponent d with respect to F2k . Let
us suppose that F (F2n) = β−1F2k , for some β. Then W (α, β) = 0 for any α ∈ F∗

2n .

Proof. By hypothesis for any λ ∈ F2n , F (λ) ∈ β−1F2k , i.e. TrF2n/F2k
(βF (λ)) = 0.

In that case, by Proposition 6.77, we get:

WF2n ,F (α, β) = −2k +
∑
γ∈Γ

WF,xd(TrF2n/F2k
(αγ), 0)

= −2k +
∑
γ∈Γ

2k · 10(TrF2n/F2k
(αγ)),

where we use the bijectivity of x 7→ xd for the second equality. But Γ is a
system of representatives of representatives of the multiplicative cosets of F2k .,
so TrF2n/F2k

(αγ) = 0 has a unique solution γ in Γ, because α ̸= 0. Thus
WF2n ,F (α, β) = −2k + 2k = 0.

The previous proposition trivially implies that, for the appropriate β and all
α ∈ F∗

2n , the Walsh zeroes contain the spaces αF2k × βF2k . Unfortunately, the
following theorem, which characterizes the non-trivial Walsh zeroes subspaces of
this form, implies that no other space of the specific form αF2k × βF2k can be
found for such F . Note also that this is a very degenerate case where |Im(F )| =
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2k < 2k + 1 = 2n−1
2k−1 <

2n−1
3 as soon as k > 2, so such a function cannot be APN,

due to Corollary 6.70.

Theorem 6.91. Let n = 2k. Let F : F2n → F2n be a cyclotomic mapping of
bijective exponent d with respect to F2k , and Γ be a system of representatives of
the multiplicative cosets of F2k . Let (α, β) ∈ F∗

2n × F∗
2n such that F (F2n) ̸= β−1F2k

and let G be defined by:

G : Γ \ Γβ−1 → F2k γ 7→
TrF2n/F2k

(αγ)
TrF2n/F2k

(βF (γ))e ;

where Γβ−1 =: {γ ∈ Γ : TrF2n/F2k
(βF (γ)) = 0} and x 7→ xe is the inverse of x 7→ xd

over F2k . Then,
WF2n ,F (αφ1, βφ2) = 0, ∀φ1, φ2 ∈ F∗

2k (6.10)
if and only if G is bijective.

Remark 6.92. Note that G(γ) = 0 ⇐⇒ TrF2n/F2k
(αγ) = 0, which means that

G(γ) = 0 has at most 1 solution: the unique γα−1 ∈ Γ∩α−1F2k , (if γα−1 /∈ Γβ−1). ▷

Proof. First of all, F (F2n) ̸= β−1F2k which implies that βF (F2n) ̸= F2k . Therefore
the domain of G is not empty, and G is well defined. We decompose the following
proof into several steps.

(i) Notation. For any u ∈ F2k , we denote the sizes of preimages by:

Cu := |{γ ∈ Γ \ Γβ−1 : G(γ) = u}|.

We also shorten Wu := WF2n ,F (αu, β), and denote the sequence of Wu by:
W := (Wv)v∈F2k

. We denote the Fourier transform of W by:

Ŵ := (Ŵu)u∈F2k
, Ŵu :=

∑
v∈F2k

(−1)uvWv.

(ii) Rewriting Wu. Thanks to Proposition 6.77 and to the symmetries of the Walsh
coefficients of x 7→ xd, we notice that, for all u ∈ F∗

2k ,

Wu = −2k + S +
∑

γ∈Γ\Γβ−1

WF,xd (uG(γ), 1) ; (6.11)

where S := ∑
γ∈Γβ−1 WF2k ,xd

(
uTrF2n/F2k

(αγ) , 0
)
. But as u ̸= 0, the

equation uTrF2n/F2k
(αγ) = 0 has a single solution γα−1 in Γ. If γα−1 ∈ Γ\Γβ−1 ,

then G(γα−1) = 0, C0 = 1, but also S = 0. Otherwise, C0 = 0 and S = 2k.
Thus, S = 2k(1− C0) and Eq. (6.11) becomes:

Wu = −2kC0 +
∑

γ∈Γ\Γβ−1

WF2k ,xd (uG(γ), 1)

= −2kC0 +
∑
y∈F2k

CyWF2k ,xd (uy, 1) . (6.12)

The sum in Eq. (6.12) is actually a sum over F∗
2k as WF2k ,xd (0, 1) = 0.
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(iii) Rewriting Ŵv. Let v ∈ F2k . Using Eq. (6.12) in the definition of Ŵv, we get

Ŵv = W0 − 2kC0
∑
u∈F∗

2k

(−1)uv +
∑
u∈F∗

2k

(−1)uv
∑
y∈F∗

2k

CyWF2k ,xd (uy, 1)

= W0 − 2kC0(2k · 10(v)− 1) +
∑
y∈F∗

2k

Cy
∑
z∈F2k

(−1)zd ∑
u∈F∗

(−1)u(yz+v)

= W0 − 2kC0(2k · 10(v)− 1) +
∑
y∈F∗

2k

Cy
∑
z∈F2k

(−1)zd
(
2k · 10(yz + v)− 1

)
;

where we successively developed WF2k ,xd (uy, 1), interchanged the three sums,
and used the average of (non)-trivial characters. Because 2k10(v) − 1 =∑
y∈F∗

2k
(−1)vdy−d , but also ∑z∈F2k

(−1)zd = 0, and ∑z∈F2k
(−1)zd10(yz+v) =

2k(−1)vdy−d , we obtain,

Ŵv = W0 +
∑
y∈F∗

2k

2k(Cy − C0)(−1)vdy−d

= W0 +
∑
y∈F∗

2k

2k(Cy−e − C0)(−1)vdy. (6.13)

Defining A = (Au)u∈F2k
as: A0 = W0, and Au = 2k(Cu−e − C0) for any

u ∈ F∗
2k , we can restate Eq. (6.13) as:

Ŵv = Âvd ∀v ∈ F2k . (6.14)

(iv) The actual proof. We prove the theorem using the following equivalence given
by the symmetries in the Walsh spectrum (see Corollary 6.52):

Eq. (6.10) ⇐⇒
[
Wu = 0, for all u ∈ F∗

2k

]
.

Let us suppose that G is bijective. Therefore, we obtain:

(2k + 1)−NF,β−1 =
∣∣∣Γ \ Γβ−1

∣∣∣ = |F2k | = 2k,

that is, NF,β−1 = 1, which, with Corollary 6.79, gives W0 = 0. The bijectivity
of G also means that Cu = 1 for all u ∈ F2k . Thus A is constant and equal
to 0, and by the Fourier inverse so is Â = Ŵ and thus so is W : Eq. (6.10) is
satisfied.
Conversely, let us suppose that Wu = 0 for any u ∈ F∗

2k . In that case, for any
v ∈ F2k we have Ŵv = ∑

v∈F2k
(−1)uvWu = W0(−1)0 = W0 so Ŵ is constant

and equal to W0. By Eq. (6.14), since x 7→ xd is bijective over F2k , this also
means that Â is constant and equal to W0. So Ŵ = Â, and thus W = A.
So 0 = Au = 2k(Cu−e − C0) for any u ̸= 0. Because x 7→ x−e is bijective
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over F∗
2k , we thus get Cu = C0 for any u. But the fact that the preimages

partition the domain gives:

(2k + 1)C0 =
∑
u∈F2k

Cu =
∣∣∣Γ \ Γβ−1

∣∣∣ = 2k + 1−NF,β−1 .

From the preliminary remark, we know that C0 ∈ {0, 1}, and C0 = 0 would
imply NF,β−1 = 2k + 1 which is excluded, so C0 = 1. Therefore Cu = 1 for
all u and G is bijective.

Corollary 6.93 (Necessary condition). Let n = 2k and let F : F2n → F2n be a
cyclotomic mapping of bijective exponent d with respect to F2k , and Γ be a system
of representatives. Let (α, β) ∈ F∗

2n ×F∗
2n such that F (F2n) ̸= β−1F2k and αF× βF

is a Walsh zeroes subspace. Then NF,β−1 = 1. Moreover, denoting {µ} := Γβ−1,
we have TrF2n/F2k

(αµ) ̸= 0.

This theorem provides a characterization which is based on the values of F
rather than its Walsh spectrum. It should be further investigated. In particular,
the component functions x 7→ TrF2n/F2k

(βF (x)) are well understood as they are
necessarily homogeneous functions of exponent d because of the multivariate
characterization of cyclotomy given in Theorem 6.18.

While this is left as future work, it should be noted that composing a
homogeneous function of exponent d with the function x 7→ x−e where ed ≡
1 mod 2k − 1 is very intriguing. It is likely that this expression could be simplified
and could lead to a more precise understanding of this property.

Furthermore, in the very specific case of the Kim mapping −e = 2. This implies
that x 7→ x−e is in that case the Frobenius automorphism. Even the less precise
fact that it is linear is a priori very different from the general case. Could this
explain the very peculiar behavior of the Kim mapping ?

Finally, the problem of determining whether a quadratic APN cyclotomic
mapping with respect to F2

n
2 is CCZ-equivalent to a bijection is closed by

Göloğlu [Göl23] as a corollary of his classification: such a mapping is CCZ-equivalent
to a bijection if and only if it is equivalent to the Kim mapping. However, our
result does not (explicitly at least) take into account the degree of the function
and therefore opens the question of whether non-quadratic cyclotomic mappings
could be CCZ-equivalent to a bijection.
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6.7 Concluding remarks

As shown in this chapter, the study of APN functions is very rich, and it is clear
that an even richer theory still remains to be developed. While this work does
not come with new instances of APN function yet, we expect that the theoretical
arguments that we developed will benefit future lines of research that are more
focused on exhibiting such new examples. To be honest, finding new APN functions
was actually our primary goal, but we had to take some side roads.

Necessary tools. A first clear obstacle that we encountered was the lack of
publicly-available tools to properly study APN functions. While computational
algebra system such as SageMath [Sage24] or Magma are now widespread in the
community, a substantial effort is still needed to provide efficient and convenient
libraries to tackle some very specific problems. The initiative taken by Léo Perrin
with SboxU [Bau+24b] is a first step to fulfill this need, but it still needs some
functionalities. Moreover, while some hard-coded lists of APN functions appears
in SboxU, it is not sufficient to guarantee that a newly found APN function is
indeed new. In fact, the number of known functions is continually growing, and no
collaborative database is maintained. As a first step toward such a goal, the author
of this thesis took a substantial time to implement all the infinite APN functions
listed in Tables 6.2 to 6.4. These implementations are currently based on either the
initial univariate or multivariate representations given by their designers. However,
at the end of this chapter, it is clear that such a dichotomy has no reason to be and
that a more convenient interface has to be designed in order to handle different
representations. Hopefully, this will be soon made publicly available. A second
goal in this direction would be to build a database of the known APN functions in
which, for instance, the numerous invariants of each non-equivalent function could
be stored. This work was carried out by many researchers to provide arguments of
newness, but a public database would be a more convenient way of storing and
accessing, for instance, the Walsh and differential spectra of an ortho-derivative.

Necessary clean up. Another related point is the necessary clean up of the
infinite APN classes. From purely computational evidence, it is clear that given
an infinite family, many of the parameter sets may lead to equivalent functions.
Sometimes, these equivalences are known. For instance, we already mentioned
the case of the families (BCL09a/b/c) where the parameter a appears as an
element of F∗

2n in most tables of recent papers, while it is known since the original
work [BCL09b, Section II.B] that it can be reduced to one or two values depending
on the parity of n. This again is an unnecessary obstacle to the finding of new
APN functions, which is already sufficiently hard as it is. This is also the case
for the parameter a of the (BHK20) family which can be reduced to a sole value.
Furthermore, Kaspers & Zhou [KZ21, KZ22] proved that this is also the case of the
parameter a for the family (ZP13) in [KZ21, Theorem 1.1], and that, other than
that, any other choices of parameters lead to CCZ-inequivalent functions. They
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also provide the same kind of results for the family (T19) in [KZ22]. With the
results that we present in this chapter, their methodology seem very promising to
try to reduce the number of representatives in each family. Furthermore, they are
able to explicitly determine the cardinality of the automorphism groups for the
previous families. This invariant is another useful tool to compare functions from
distinct families, and again, avoid to study twice functions that may belong to two
distinct families.

Cryptanalysis of an Sbox. Along our path, the point of view that we developed
in this chapter and the computational tools that we programed also enabled us to
give new insights on a different, yet related, problem. Indeed, we took a look back
at previous cryptanalyses [Per19, PU16, BPU16] of the Sbox of two recent Russian
standards, namely Streebog and Kuznyechik [Fed12, Fed15]. This Sbox is known to
have a surprising structure with respect to both additive and multiplicative cosets
of the subfield F2

n
2 . It of course resonates with this chapter. With the same kind

of methodology, we are able to clarify a bit more the choices of the subcomponents
of this function. We also generalize its construction, and showcase the interest of
such a family by presenting specific instances with surprising properties such as a
very-low linearity. This is presented in Chapter B.

Back to the main road. Finally, because of these difficulties, we focused on
a theoretical study. Our work enables us to get a better picture of the diversity
among the infinite APN families. In particular, while tremendous efforts were
made to diversify the known APN functions, it is astonishing to observe that the
vast majority shares some very peculiar properties. The fact that most of them
are linearly self-equivalent is already intriguing, but not as much as the fact that
all these self-equivalences are almost of the same nature. As suggested all along
the chapter, this reaffirms some open questions and leads to many others that we
recall below.

1. Is an APN function always CCZ self-equivalent ? linearly self-equivalent ?

2. Is a quadratic function always linearly self-equivalent ?

3. Can we find stronger necessary conditions for cyclotomic mappings with
respect to subfields/projective mappings to be APN ?

4. Can we find conditions for cyclotomic mappings with respect to subgroups ?

5. Can we find more APN cyclotomic/projective mappings by using smaller
subfield than F2

n
2 ⊂ F2n ?

6. Can we use the cyclotomic or projective constructions with APN monomials
of higher degree to build new functions inequivalent to quadratic functions ?



256 Chapter 6. Linear self-equivalences among known infinite APN families

7. Can we prove or disprove the existence of linearly self-equivalent representa-
tives among the sporadic examples, and in particular for the Brinckmann-
Leander-Edel-Pott cubic and for the functions for n = 8 found by QAM
methods ?



Chapter 7

Design of symmetric primitives for
emerging use cases

Contrary to the four previous chapters, this one is dedicated to the design of
symmetric primitives. Of course, designing and cryptanalysing cannot be considered
separately, however the latter one comes with many new challenges. In particular,
a new primitive should meet a need, and create its own place among all previous
ones. The first phase of a design process is wide open, and therefore particularly
challenging. But again, while novelty is obviously seeked, it should not be traded
for security nor efficiency. This is the reason why the initial cryptanalysis and
benchmarks are essential. Furthermore, these first metrics give a starting point to
figure out what can and/or must be improved.

Not only is this chapter rather different from the previous ones, it also tackles
two use cases and two kinds of primitives that are radically different from the
cases of lightweight permutation-based AEAD encryption schemes such as Ascon,
or lightweight block ciphers such as Midori that were presented to a great extent
in Chapters 3 to 5. However, and as we will see, both designs are still heavily
influenced by the design and analysis of block ciphers.

First, we consider the case of message authentication codes (MAC, see
Definition 1.4) based on the AES. As already mentioned, the AES is today the most
widespread, and arguably the most secure block cipher. It has resisted at least for
more than 25 years to intensive cryptanalysis. This is the reason why optimizing its
implementation became a very important challenge. As astonishing as it can be, an
AES round can today achieves a latency and and a throughput which is comparable
to the ones of a few logical XORs on a modern CPU with AES instructions. Though
it can be counter intuitive thinking about the involved hardware circuit, this is
the case for modern processors supporting the AES-NI [Gue08] set of hardware-
accelerated instructions designed by Intel for their modern processors. With such
performances, the full AES remains competitive and a line of research studies mode
of operations [MV04, RBB03, KR21] to take advantage of this performance boost.
But the AES round alone became also a possible component for new designs thanks
to this instruction set. However, while at least a dozen new primitives tackles
different use cases, it is surprising that dedicated message authentication codes
were not presented before. To take up this challenge, we first focus on the design
of universal hash functions which is a kind of primitives that comes with its own
precise security notions. Then only are our MACs derived by using the EWCDM
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construction [CS16]. In order to present a competitive family of UHFs, we rely
on automated tools. First, we present an automated tool that, given a candidate,
builds an associated Mixed Integer Linear Programming (MILP) problem which
encodes the counting of the number of actives Sboxes. The solving of this problem
(thanks to a dedicated solver) then provides an upper bound on the probability of
the differential trails. Secondly, we automated the compilation and benchmarking
of the studied candidates to automatically measure their performances. In the
end, we obtain a UHF that can reach better performances than state-of-the-art
ones. We also derive from it a MAC which is, as of today, the fastest one on
modern desktop/server processors. This first section is based on a joint work with
Augustin Bariant, Gaëtan Leurent, Clara Pernot, Léo Perrin & Thomas Peyrin that
is published in the IACR Transactions on Symmetric Cryptology, 2024(2) [Bar+24].
The presentation made in this thesis is a strict subset of the subjects that are
detailed in the published paper.

The second part of this chapter is focused on a problem coming from asymmetric
cryptography. A so-called fully homomorphic encryption (FHE) is an algorithm
which enables to execute any kind of computations on both plain and encrypted
data without decrypting the former ones, and return an encrypted solution. While
the effective solutions are quite recent in the history of cryptography, the interest
for such technologies is exploding. Indeed, with the growth of cloud providers that
enables the user to outsource its computations, such techniques seem necessary to
ensure security, especially when sensitive data have to be analyzed. However, the
methods that exist today remain very costly in terms of computations, but also in
terms of bandwidth. Indeed, and contrary to the case of symmetric ciphertexts,
the current FHE ciphertexts are much larger than the size of the original plaintexts.
This is the reason why the so-called transciphering [NLV11] technique suggests
a trade-off which enables the user to exchange less data with the server, at the
cost of an increased number of computations on the server side. Instead of directly
encrypting its data using the FHE scheme, the user can encrypt them using a
symmetric cipher and then send it under this form. On top of that, the user
provides the server with an FHE encryption of the secret key that was used to
encrypt the data. Because any computation can be homomorphically executed,
the homomorphic decryption of the symmetric ciphertexts is possible, and leads
to FHE ciphertexts containing the result, i.e. FHE ciphertexts associated to the
plaintexts. From there, the true outsourced computations can start.

However, the symmetric cipher must be homomorphically evaluated on the
server side. Therefore, because of the native constraints of the FHE schemes,
the symmetric encryption algorithms that we usually use lead to very costly
FHE implementations. This is the reason why dedicated symmetric algorithms
are needed for this specific use case. Previous works [Can+16, Méa+16] have
highlighted that a stream cipher (see Definition 1.8) is far more suitable for this
application than a block cipher in CBC mode. In this chapter we then focus
on the design of a stream cipher over the field with 17 elements to be used in a
FHE scheme called TFHE [Chi+16, Chi+17, Chi+20]. In particular, our cipher
is thought of to take full advantage of the so-called programmable bootstrapping
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feature of TFHE and the low cost of linear operations. Its design is inspired from
previous stream ciphers, but also from block ciphers. In particular, by borrowing
ideas from the AES, such as the square state and the use of an MDS matrix, we
are able to provide strong security arguments that are often lacking when it comes
to stream ciphers. Such theoretical arguments are also supported by the solving of
associated MILP problems, like in the case of the MACs mentioned above. This
section is based on a joint work with Sonia Belaïd, Nicolas Bon, Christina Boura,
Anne Canteaut, Gaëtan Leurent, Pascal Paillier, Léo Perrin, Matthieu Rivain,
Yann Rotella & Samuel Tap that has been submitted to an international conference.
The presentation made in this thesis is again, a selection of the subjects detailed
in the published paper.
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7.1 Universal hash functions and MACs based on AES

7.1.1 Context and design goals

7.1.1.a AES-based cryptographic schemes

As already mentioned, for instance in Chapter 4, the AES block cipher [DR02] has
deeply influenced the design of symmetric-key cryptographic primitives. This trend
even accelerated after the introduction in modern CPUs of the hardware-accelerated
set of instructions called AES-NI [Gue08], which implements the AES encryption and
decryption. To benefit from that potential performance boost, designers continued
studying modes of operations which allow an efficient reuse of the full AES [MV04,
RBB03, KR21]. Yet, many new cryptographic designs rely on the AES round
function as a building block, either for hash functions [Ben+08, Ind+08, BD08,
GK08], for authenticated encryption schemes [WP14, Nik14, Jea+21, Sak+21,
NFI24], for permutations [Iso+23, GM16, Köl+16, Bos+22], or collision resistant
building blocks [JN16, Nik17].

Today, hardware acceleration of the round function of AES is widespread in
modern computer CPUs and becomes more and more powerful with a reduced
latency and an increased throughput. This allows many symmetric primitives to
eventually reach throughput performances under 1 c/B, but advances are still
needed, especially to handle the impressive throughput range (100 Gbps to 1 Tbps)
of the sixth-generation of mobile communication systems (6G).

This is the direction taken by the Authenticated Encryption (AE) algorithm
Rocca [Sak+21, Sak+22] and its updated version Rocca-S [NFI24], which is currently
the fastest AE on AES-NI platforms and under submission at IETF. The round
function framework of Rocca has even been further analysed and optimal round
functions (in terms of speed) have been found within the framework [TSI23]. More
generally, there has been significant efforts to design symmetric primitives relying
on AES rounds, such as AEGIS [WP14], Tiaoxin [Nik14] or Aerion [Bos+22].
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7.1.1.b Universal hash functions and message authentication codes

Security notions of UHFs and MACs. In the following, we study the
construction of (almost) universal hash functions (UHF) based on AES rounds. A
UHF is a family of functions of the form:

H = (hk : F⋆2 → Fn2 )k∈Fκ
2
,

where each function, which is indexed by a key k, takes as input an arbitrary-long
(but finite) plaintext and maps it to a fixed-length tag. As for the definitions of
block cipher, hash function, or MAC, which are given in Section 1.3.1, the definition
of UHF is abstracted from security arguments. The two security notions associated
to UHF are given in the following definitions.

Definition 7.1 (ε-AU). Let ε ∈ [0, 1]. A family of functions H = (hk)k∈Fκ
2

is
ε-almost-universal if it satisfies:

∀x, x′ ∈ F⋆2, s.t. x ̸= x′,
|{k ∈ Fκ2 : hk(x) = hk(x′)}|

2κ ≤ ε.

▷

Definition 7.2 (ε-AXU). Let ε ∈ [0, 1]. A family of functions H = (hk : F⋆2 →
Fn2 )k∈Fκ

2
is ε-almost-XOR-universal if it satisfies:

∀∆ ∈ Fn2 , ∀x, x′ ∈ F⋆2, s.t. x ̸= x′,
|{k ∈ Fκ2 : hk(x) + h(x′) = ∆}|

2κ ≤ ε.

▷

The ε-AU notion only requires collision resistance on average over a random key.
The ε-AXU notion is a stronger variant that covers an arbitrary output difference,
rather than just collisions, which corresponds to ∆ = 0. In particular, if H is an
ε-AXU family, it is also an ε-AU family. These security notions are relatively weak,
so that they can be fulfilled by purely combinatorial constructions. However, UHF
remains very versatile: as we will see, they can for instance be turned into a MAC
with a few extra components.

As presented in Definition 1.4, a MAC also processes a message and a secret
key to generate a tag1. However, is should ensure authenticity and integrity of
the message, and therefore it should be hard for an attacker to forge a tag, i.e. to
generate a valid combination of message/tag without knowledge of the secret key.

More formally, for a key k, a nonce N and a message x, a nonce-based MAC F
consists of a signing algorithm AUTHk(x,N) that generates a tag T , and a
verification algorithm VERk(x,N, T ) that returns “valid” if AUTHk(x,N) = T
and “invalid” otherwise. A (q, v, t)-adversary against the nonce-based MAC F is
an adversary A with access to oracles AUTHk and VERk, making at most q MAC
queries to the AUTHk oracle, at most v verification queries to VERK oracle, and

1A nonce-based MAC also takes as input a nonce value that should be used more than once.
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running in time at most t. We say that A forges if any of its queries to VERk

returns “valid”. The advantage of A against the nonce-based MAC security of F is
defined by:

AdvMAC
F (A) := P

[
AAUTHk,VERk forges

]
.

where k is picked uniformly at random and where A is not allowed to ask
a verification query (x,N, T ) to VERk if a previous query (x,N) to AUTHx

returned T . Note that A is also not allowed to repeat nonces for AUTHk, but can
repeat them for VERk.

MAC based on universal hash functions. MACs are classically built from
block ciphers, but also from UHF. Notably, GMAC [Dwo07] and Poly1305 [Ber05]
are two popular MACs based on UHF which use polynomial evaluation in a finite
field as a UHF. They use the Wegman-Carter-Shoup construction [CW77, Sho96]
to construct a nonce-based MAC from UHF. However, it only provides 2n/2 security
for a n-bit tag with unique nonces, and fails completely when nonces are repeated.
The EWCDM construction [CS16] guarantees a significantly higher security as
it was proven [MN17] to provide essentially 2n security with unique nonces and
even 2n/2 when nonces are repeated.

Arithmetic UHFs. There has been a significant effort to design fast UHF based
on arithmetic operations: polynomial hashing methods such as GHASH used in
GCM [MV04] or Poly1305 [Ber05], NH in UMAC [Bla+99], etc. These constructions
can be quite fast, and have a proven security level. For instance, GHASH only
requires a single multiplication and a single addition in F2128 for every 128-bit block
of plaintext. This is particularly interesting in environments where instructions
enabling fast arithmetic in the finite field of size 2128 are provided, which is the case
of most modern processors intended for a usage in servers and desktop computers.
On the other hand, Poly1305 and UMAC rely on integer multiplication.

AES-based UHFs. Dedicated design strategies for block ciphers and hash
functions are well known, but dedicated Universal Hash Functions (UHFs) have
received less attention. We thus focus on designing fast UHFs based on the
AES round function. An interesting existing example due to Minematsu &
Tsunoo [MT06] is known as PC-MAC. The authors consider four rounds of AES as
an ε-AXU family with ε ≈ 1.18 · 2−110, under the hypothesis that the round keys
are independent, and derive a provably secure MAC with 4 AES rounds per 128-bit
block of plaintext. Their analysis is based on the Maximum Expected Differential
Probability (MEDP) of 4-round AES that is provided by Keliher and Sui [KS07].
Another interesting work is the EliMAC primitive proposed by Dobrauning et
al. [DMN23], which uses 11 AES rounds per 128-bit message block (7 rounds can
be precomputed in an offline phase, leaving 4 in the online phase). We thus aim for
fewer than 4 AES rounds per block of message. However, our security arguments
will be heuristic, instead of relying on a formal security proof. Our design goal are
detailed in the following section.
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7.1.1.c Design goals

While several AES-based constructions exist, we identified substantial room for
improvement. We then describe here the objectives our family of UHFs is intended
to fulfill. The family in itself is described in Section 7.1.2.

AES-based round functions. As already mentioned, many designs take
advantage of the round function of AES, as well as the 128-bit XOR operation,
to be both secure and efficient, thanks to the AES-NI instructions set in modern
processors. This is for example the case of Tiaoxin [Nik14] and AEGIS [WP14],
of the AEAD proposals Rocca [Sak+21, Sak+22] and Rocca-S [NFI24] or of the
constructions by Jean & Nikolić [JN16] or by Nikolić [Nik17]. These designs aim
at minimizing the so-called rate [JN16], that is, the number of AES rounds per
128-bit message block. Rocca (during additional-data processing) and one of the
schemes of Jean & Nikolić achieve a rate of 2 for 128-bit security. As presented in
the following goal, we adopt a similar strategy.

Goal 7.3. Our ε-AU families should use AES rounds as internal components for
high software performance, and preferably at the lowest possible rate.

Instruction scheduling. Moreover, modern processors can execute several
instructions simultaneously, and schedule instructions as soon as the input operands
are ready. The several execution units of a CPU are pipelined: an instruction
takes several cycles to process, but an execution unit can start processing a new
instruction at every clock cycle, even if the previous the previous instruction has
not returned its result yet. [Int24]

There are two main metrics to measure the performance of an instruction I.
First, the latency of I is the number of clock cycles between the beginning of I
and the output of its result. We denote it by L(I). The throughput of I, which is
denoted by T (I), is the number of instructions that can be processed in a given
amount of time. We usually consider the reciprocal throughput, which is measured
in cycles. In practice, the throughput of an instruction I corresponds to the number
of ports which can process I. In this work, we focus on the AESENC instruction,
which computes one round of AES, and on the 128-bit XOR instruction. This
constitutes a fair2 comparison with previous schemes. The latency and throughput
of these instructions for some processors are given in Table 7.1.

In practice, we cannot exploit the full throughput of both types of instructions,
because they share some common ports. As shown in Table 7.1 for the more
modern processors (at the bottom of the table), AESENC is now available on two
ports and the 128-bit XOR on three or four, with a non-trivial intersection between
the two sets of ports. This implies that constructions with 2 AES-NI instructions

2It could be possible to leverage the more recent 512-bit VAESENC instruction which computes
4 AES rounds in parallel, however it would be hard to compare with previous designs which focus
on 128-bit instructions. We can expect that future AES-based designs will greatly benefit from
such parallelization.
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Architecture Instr Latency Throughput P0 P1 P2 P3 P4 P5 P6

Intel Haswell XOR 1 0.33 × × ×
AESENC 7 1 ×
XOR 1 0.33 × × ×Intel Skylake AESENC 4 1 ×

Intel Ice Lake XOR 1 0.33 × × x
AESENC 3 0.5 × ×
XOR 1 0.33 × × ×Intel Tiger Lake AESENC 3 0.5 × ×

AMD Zen 1/2/3/4 XOR 1 0.25 × × × ×
AESENC 4 0.5 × ×

Table 7.1: Scheduling of AESENC and XOR instructions on modern processors
over the different ports [Fog22].

per 128-bit message block require at least 1 cycle per 128-bit message, i.e. at least
0.0625 cycles per byte (c/B). This bound of 0.0625 c/B can only be achieved, if the
pipelining is favorable. It should be noted that trying to optimize the scheduling,
for instance by minimizing the number of XOR (compared to the number of rounds
of AES), is heavily-based on the possibilities provided by modern processors. On
the other hand, regardless of implementation tricks, a full throughput on current
Intel processors will always remain out of reach for some older algorithms, because
their rationale were not thought to take advantage these recent enhancements.
More details are given in the published paper [Bar+24].

In addition to the throughput analysis, dependency chains also affect the
performance of AES-based constructions [Int24, Section 3.2.2]. There are a lot of
other subtleties, which are difficult to exhaustively consider. As a general guideline,
we state the following goal.

Goal 7.4. The instruction scheduling in modern processors should be favorable.

One way to directly evaluate the performance with state-of-the-art instruction-
scheduling algorithms is to compile and benchmark candidates on-the-fly. This
strategy exploits advanced techniques from compilers (e.g. modern gcc) or
processors, and remains future-proof, since it can easily be adapted to future
processors.

Goal 7.5. Our tool should automatize the benchmarking of candidates. The
automatic benchmarking should be adaptable to all processors.
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Security. As we first focus on the design of a UHF family with the ε-AU security,
we are only interested in collision resistance. In order to facilitate the security
analysis of our candidates, we consider that the output of one of our ε-AU UHFs
is not of a single word, but rather an entire state composed of multiple 128-bit
words. In addition, we consider that the inner state of the construction is fully
unknown, key-dependent, and of full entropy, so that values of the inner states
cannot be exploited to build collisions. Thus, in order to ensure collision resistance,
it is sufficient in our case to prevent the existence of high-probability differentials
of the form hk(x) + hk(x+ ∆) = 0. We then rely on the following assumption to
investigate these.

Assumption 7.6. The highest probability of a differential trail is a good indication
of the highest probability of a differential.

Thanks to Assumption 7.6, estimating the security level can be done by modeling
the differential propagation with a Mixed Integer Linear Programing (MILP)
model. This is now a widespread practice [JN16, Sak+21], which is addressed in
Section 7.1.4.

Goal 7.7. A lower bound on the number of active Sboxes in the differential trails
of a candidate should be easily computable with computer-aided tools, such as MILP
solvers.

Sum up. Our goals are in line with previous works [JN16, Sak+21]: we want a
primitive that favors parallel AES calls to optimize scheduling. This implies that
the number of 128-bit XORs should be considered3 and in fact minimized. As a
consequence, we limit ourselves to sparse linear layers.

To compensate the slower diffusion of the sparse linear layer, we consider more
sophisticated injection techniques inspired by the design of (tweak-)key schedules.
This a priori increases the cost of each round (in particular the memory), but it
enables the safe use of very simple round functions.

The overall structure is similar to that of Panama [DC98], a hash function
attacked in [Rij+02]. It was based on a large “buffer” and a smaller “inner state”,
the former being linearly updated using message blocks, and the latter being
non-linearly updated using data extracted from the buffer. Our construction is
presented in the next section.

3This is already observed by the designers of Rocca who observed the negative impact that
AES and XOR used “in a cascade way” could have.
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7.1.2 A family of universal hash functions

We present a family of UHFs, that is large-enough to contain algorithms that
are both fast and secure, but also small-enough so that vast subsets of it can be
explored in practice.

The idea is to separate the (potentially large) state into two subparts with
different roles:

• an inner part updated with AES rounds and a linear layer,

• and an outer part updated only with a linear layer and new message blocks.

Each round, words of the outer state are XORed to the inner state, but not the
other way around. Thanks to the outer part, each message block is XORed several
times into the inner state, so that short differential trails leading to collisions do
not exist. This construction is similar to many sponge-like constructions, but in
our case the linear outer state allows to save many AES round calls. On the other
hand, sponge-like designs would apply the same function to the full state. It can
also be thought of as a large tweakable block cipher with a large tweak, and a
linear tweakey schedule.

By restricting the application of the AES round function to the inner part, such
a construction has the potential to offer both a high throughput and a low rate.
The sparsity of the round function also makes easier the security analysis based on
MILP modeling that is detailed in Section 7.1.4.

In the following, vectors of 128 bits are either named word, block, register or
wire depending on the context. As in the previous chapter, a diagonal block matrix
whose diagonal is made of matrices A0, · · · , Aℓ is denoted by diag(A0, · · · , Aℓ). In
a block matrix definition, ⋆ denotes an arbitrary block.

7.1.2.a Overall structure

The UHF family we consider is described in Figure 7.1. Each wire on the figure
represents a 128-bit value. The inner state is represented on the left-hand side,
and the outer linear message-schedule with memory on the right. Overall, it looks
like a standard an SPN (see Figure 1.4): the inner state, which is alternatively
denoted by X,Y and Z, is iteratively updated through a round function built by
composing a linear layer with a non-linear one. Between each round, the linear
message-schedule ingests several blocks of the input message, and produces an
injected value V , which is added to Z to yield X. The memory registers of the linear
message-schedule, that we denote by R, keep linear information about previous
input message blocks.
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Figure 7.1: A stands for a key-less AES round. Each choice of the size parameters
s,m, r, the Boolean values ai, and the matrices L, T defines an instance.

Parameters. From now on, by size, we always mean the number of 128-bit
blocks. Thus, each member of the family is parameterized by the sizes s,m, r of
the inner state X,Y , Z, of the input message M , and of the memory R, that can
be chosen freely. Note that s also corresponds to the size of the injected value V .
Once these sizes are fixed, we define a specific instance by choosing the vector a
and the matrices L, T .

The Boolean vector a := (a0, · · · , as−1), of size s, indicates whether a state
wire goes through an AES round or not: A0 = Id and A1 is one round of AES. For
any i, if ai = 1, the i-th wire of the state is called an AES wire.

The s× s invertible sparse matrix L ∈ GLs(F2128) is used as linear layer. By
design, we restrict the coefficients of L to {0, 1}, so that L can be viewed as a
matrix of GLs(F2). In particular, the output of the linear layer is only composed
of copies and XORs of the 128-bit input words.

Finally, T is the (s + r) × (m + r) message-schedule transition matrix. The
matrix T indicates how to compute the s-word injected-value V and how to update
the memory R (of size r). Both are linearly computed using the current memory R
and m fresh message words, M . Similarly to L, we restrict by design the coefficients
of T to {0, 1}, i.e. T ∈M(s+r)×(m+r)(F2).
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Notation 7.8 (Time stamp, coordinates and sequences). We use superscript to
indicate the clock (with t = 0 as initial clock) and subscripts are reserved for
coordinates: for instance R(t)

i stands for the i-th coordinate of R(t), that is, R at
time t. We keep plain characters for generic purposes: e.g. the memory R, and
use calligraphic letters to denote the sequence throughout time: e.g. V := (V (t))t∈N.
Finally, for any finite subsets I ⊂ N, J ⊂ J0, s− 1K and t ∈ N, we denote sub-
sequences and sub-vectors as: VI := (V (t))t∈I and V (t)

J := (V (t)
j )j∈J .

7.1.2.b Round function and message-schedule

Round Function. It is applied on the inner state, and is composed of three
layers.

Linear layer. The matrix L is applied to X to produce Y : ∀ t ≥ 0, Y (t) := L
(
X(t)

)
.

AES-round layer. An AES round A, composed of SubBytes, ShiftRows and
MixColumns, but without AddRoundKey, is applied in parallel to each AES
wire: ∀ t ≥ 0, i ∈ J0, s− 1K , Z

(t)
i := Aai

(
Y

(t)
i

)
.

Injected-value addition layer. The injected value V , which is generated by the
message-schedule, is added to the state: ∀ t ≥ 0, X(t+1) := Z(t) + V (t).

In the AES round layer, the AddRoundKey step is omitted. Thus, by using the
AddRoundKey step of the AES-NI instruction, the addition of the round-value word
can be considered as free on AES wires.

Message-Schedule. The linear message-schedule has a memory R of size r.
Each register contains a linear combination of previous message words. At round t,
m new message words are ingested, the s-long injected value V (t) is output and
the memory R(t) is updated, in a single transition step:

∀t ≥ 0,
(
R(t+1)

V (t)

)
= T

(
R(t)

M (t)

)
. (7.1)

As highlighted by the previous equation, it is convenient to decompose T as a block
matrix.

Notation 7.9 (T decomposition). In the following, given a transition matrix T ,
we use the following decomposition and notation:

T :=
(
T00 T01
T10 T11

)
s

r

mr

. (7.2)

Taking advantages of Eqs. (7.1) and (7.2), we can easily express the injected-
values as (recursive) linear combinations of input-messages blocks:

∀t ≥ 0, R(t+1) = T00R
(t) + T01M

(t) V (t) = T10R
(t) + T11M

(t). (7.3)
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Remark 7.10. Let I ⊂ N, u := max(I). The sequence VI can therefore be viewed
as a family of |I| · s linear combinations, or equivalently as a |I| s × um matrix
where each column represents one of the um message blocks that can appear in
the |I| s combinations. We often prefer the latter point of view. ▷

An injected-value sequence V can be obtained from infinitely many matrices T .
For instance, infinitely many unused memory registers could be added. It is thus
necessary to limit as much as possible this redundancy while exploring the transition
matrices T . In the next section, we start by finding a normal form for the transition
matrices. We then limit our search by defining an equivalence relation between
injected-value sequences and finally present and justify our search space.

7.1.3 A searchable space of universal hash functions

7.1.3.a A normal form for transition matrices

The first notable point about transition matrices is that, at clock t, only the space
spanned by the memory registers (and not the register themselves) matters. Indeed,
the same information can be recovered from two different spanning families, only
in different representation systems. This is illustrated by the following proposition.

Proposition 7.11 (Change of basis for memory registers). Let T be a transition
matrix. Let P ∈ GLr(F2). Let us define TP ∈M(s+r)×(m+r)(F2) such that:

TP =
(
PT00P

−1 PT01
T10P

−1 T11

)
. (7.4)

Then TP produces the same sequence V as the original matrix T .

Proof. Let us denote for any t ≥ 0, R(t)
P , V

(t)
P the respective memory registers and

round-message at clock t produced by TP . By adapting Eq. (7.3) to TP , we obtain:

∀t ≥ 0 R
(t+1)
P = PT00P

−1R
(t)
P + PT01M

(t) V
(t)
P = T10P

−1R
(t)
P + T11M

(t).
(7.5)

By design, R(0) = 0 and R
(0)
P = 0 because the memory is initialized as such. In

particular R(0)
P = PR(0). Let t ≥ 0 and let us suppose that R(t)

P = PR(t). Then by
injecting R(t)

P = PR(t) into Eq. (7.5) and simplifying we get:

R
(t+1)
P = PT00P

−1R
(t)
P + PT01M

(t)

= PT00P
−1PR(t) + PT01M

(t)

= PT00R
(t) + PT01M

(t)

= P (T00R
(t) + T01M

(t)) = PR(t+1).

This first proves by induction that R(t)
P = PR(t) for any t ≥ 0.
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Let t ≥ 0. According to Eq. (7.5), V (t)
P = T10P

−1R
(t)
P + T11M

(t). Replacing
R

(t)
P by PR(t), we obtain:

V
(t)
P = T10P

−1PR(t) + T11M
(t) = T10R

(t) + T11M
(t) = V (t);

which proves the announced equality for any t ≥ 0.

For fixed sizes r,m, s, Proposition 7.11 in particular states that it is sufficient
to explore a single representative per similarity class for the top-left block T00.
Contrary to the previous chapter, we here use the so-called Frobenius normal form
which is based on the invariant factors rather than the elementary divisors. In the
following, we denote by ∼sim the similarity equivalence relation between matrices.
We recall the following classical result about similarity that can be for instance
found in [DF04, Thm. 14, p. 476] or [Gan90, p. 192].

Proposition 7.12 (Frobenius normal form, invariant factors). Let M ∈Mn(F2).
Then there exists a unique family (Q0, · · · , Qℓ−1) of polynomials of F2[X] such
that:

Qℓ−1 | · · · | Q1 | Q0 and M ∼sim Diag(CQ0 , · · · , CQℓ−1).

This representative is the Frobenius normal form of M and the polynomials
(Q0, . . . , Qℓ−1) are the invariant factors of M .

According to Proposition 7.12, it is thus sufficient to exhaust all possible
Frobenius normal forms rather than all r × r matrices for the top left-hand corner.
This decreases the search space by a significant factor: for r = 4, there are
20160 ≈ 214.3 matrices in GL4(F2), but only 14 ≈ 24 equivalence classes. Actually,
it is easier to count the number of equivalence classes by using the canonical form
based on the elementary divisors that is introduced in Proposition 6.30: when
ℓ = 4, there exist 14 possible families of elementary divisors.

On top of that, Proposition 7.11 also allows to get rid of redundant memory
registers, as presented in the following corollary.

Corollary 7.13. Let T be a transition matrix. Let us denote d = rk(T00|T01).
Then, there exists an instance using d memory-registers which generates the same
sequence V.

Proof. If d = r then T generates V and has d memory-registers. Let us now
suppose that d < r. In that case, we can find P ∈ GLr(F2) such that the first r−d
rows of (PT00|PT01) = P (T00|T01) are all-0. The matrix (PT00P

−1|PT01) naturally
shares the same property, and according to Proposition 7.11, TP produces the
same round-message sequence. But the r − d first empty rows in TP indicates
that the first r − d memory registers will be zero at all time t ≥ 0, and therefore
will never impact the output sequence. TP can thus be adapted by removing the
r − d null rows in the upper half, and removing the corresponding r − d columns
in the left-hand half. The obtained matrix T ′ generates the same sequence with d
memory registers.
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Corollary 7.13 states that after choosing a Frobenius normal form for T00, and
any value for T01, one can immediately look at the rank of the top half (T00|T01).
If the top half has not full rank, the study of the matrix comes back to the study
of an instance with strictly less memory, that is, a smaller r. If the search is done
by increasing values of r, one can only consider a top half with a full rank.

7.1.3.b An equivalence relation for injected-value sequences

Even if we limit redundancies thanks to Proposition 7.11 and Corollary 7.13, for
most of values of r,m, s, the associated space of message-schedules remains too big.
In particular, it cannot be exhaustively searched, especially if a MILP problem
needs to be optimized for each instance.

To further reduce the explored space, we first restrict ourselves to matrices T
for which rk(T11) = m. Indeed, if rk(T11) < m, only a strict subspace of the
messages at round t impacts the injected values at this round. This does not
directly generate collisions, since the unused messages can be stored in memory
and used in later rounds. However, this requires extra registers whose only purpose
is to store the unused injected messages of previous rounds, increasing the memory
size r without increasing the security. More precisely, after a few rounds, such an
instance behaves as if exactly m message blocks impacted the injected values at
each round; the message blocks sequence being slightly slid. So from now on, we
restric ourselves to the case rk(T11) = m, and in particular, s ≥ m.

Secondly, we take into account our adversary in a scenario where it has a full
control over the input differences in message blocks (such as a chosen-plaintext
scenario). From this point-of-view, the implementation does not matter, only
the actual decompositions of all V (t)

i as linear combinations of M (t′)
j with i, j ∈

J0,m− 1K and t′ ≤ t do. In particular, with n degrees of freedom, such an adversary
can choose the differences of n independent V (t)

i , rather than just the differences
of n message blocks M (t)

i . We thus study injected-value sequences up to linear
change of variables of the inputs.

Definition 7.14 (Linearly-equivalent injected-values sequences.). Let V =
(V (t))t∈N and W = (W (t))t∈N be sequences of linear combinations such that,
for any i, t, V (t)

i depends only on M
(t′)
j , where j ∈ J0,m− 1K , t′ ≤ t ∈ N. Then, V

is linearly-equivalent to W if:

∀ t ∈ N \ {0} , ∃ P (t) ∈ GLtm(F2), V J0,t−1K = W J0,t−1KP (t),

where P (t) is a lower triangular block matrix4 whose blocks are of size m×m. ▷

Remark 7.15. Let t ∈ N \ {0}. The lower triangular form of P (t) implies that the
equivalence relation preserves the fact that only variables M (t′)

i , t′ ≤ t appear in
both V (t) and W (t). ▷

4The sequences V J0,t−1K and W J0,t−1K are here viewed as matrices of dimension ts × tm, see
Remark 7.10.
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Proposition 7.16. Linear equivalence of injected-value sequences, as defined in
Definition 7.14, is an equivalence relation.

Proof. The invertible lower triangular matrices is a sub-group of GLtm(F2). Let
t > 0 and V J0,t−1K = W J0,t−1KP (t), W J0,t−1K = XJ0,t−1KQ(t). Reflexivity is proved
with Id, symmetry using

(
P (t)

)−1
and transitivity using P (t)Q(t).

Proposition 7.17. Let T be a transition matrix such that rk(T11) = m. Then,
up to a wire permutation of the inner state, T produces a sequence V which is
linearly-equivalent to the sequence produced by T̃ , where:

T̃ =

 ⋆ ⋆

0 Idm
⋆ ⋆


s−m

m

r

mr

.

Proof of Proposition 7.17. By hypothesis, rk(T11) = m, so at each round, the
information of the m independent new message blocks is fully contained in m of
the round-value blocks. In other words, there exists m indices I = {i0, · · · , im−1}
such that for any t, V (t)

I =
(
F C

)
×MJ0,tK, where C ∈ GLm(F2) (and F ∈

Mm×(t−1)m(F2)).
Up to a wire permutation, let us assume that I = J0,m− 1K. In that case,

(T10|T11) can be decomposed, such that C appears in it:

(
T10 T11

)
=
(
B C
D E

)
s−m

m

mr

. (7.6)

Now, let ℓ ∈ N \ {0} and let us consider the following change of variables:

∀t ∈ J0, ℓ− 1K , M̃
(t) := BR(t) + CM (t) ⇐⇒ C−1(M̃ (t)

−BR(t)) = M (t).

Because R(t) is a linear combination of M (t′)
i where t′ < t, this change of variables

corresponds to a lower triangular block matrix P (t) (whose diagonal is only made
of C blocks).

Decomposing V (t) as V (t) =
(
V

(t)
J0,m−1K | V

(t)
Jm,s−1K

)
, we can rewrite the linear

relations in Eq. (7.3) using the decomposition of (T10|T11) given in Eq. (7.6):

R0 = 0, ∀t ≥ 0, R(t+1) = T00R
(t) + T01M

(t),

∀t ≥ 0, V (t)
J0,m−1K = BR(t) + CM (t), V

(t)
Jm,s−1K = DR(t) + EM (t).

By substituting M (t) in the previous equations we obtain R0 = 0 and for any t ≥ 0:

R(t+1) = T00R
(t) + T01C

−1(M̃ (t)
−BR(t)),

V
(t)
J0,m−1K = BR(t) + CC−1(M̃ (t)

−BR(t)),

V
(t)
Jm,s−1K = DR(t) + EC−1(M̃ (t)

−BR(t));
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which, once simplified and reorganized, become:

R(t+1) = (T00 − T01C
−1B)R(t) + T01C

−1M̃
(t)
,

V
(t)
J0,m−1K = M̃

(t)
,

V
(t)
Jm,s−1K = (D − EC−1B)R(t) + EC−1M̃

(t)
.

Thus, the sequence V, is linearly-equivalent to the sequence generated by the
transition matrix T̃ defined by:

T̃ :=

 T00 − T01C
−1B T01C

−1

0 Idm
D − EC−1B EC−1

 . (7.7)

The matrix T̃ has the announced form.

We can now present the chosen form for the explored transition matrices.

Theorem 7.18. Let T be a transition matrix such that rk(T11) = m. Then,
up to a wire permutation of the inner state, T produces a sequence V which is
linearly-equivalent to the sequence produced by a matrix T̃ of the following form:

T̃ =

 F ⋆

0 Idm
⋆ ⋆


s−m

m

r

mr

; (7.8)

where F is a Frobenius normal form matrix.

Proof. First using Proposition 7.17, we obtain, up to a wire permutation of the
inner state, a transition matrix T̃ of the form given in Eq. (7.7) and which produces
a linearly-equivalent sequence. By Proposition 7.11, the top left-hand block can be
modified to be in Frobenius normal form. The multiplication of the lower-left part
by P−1 does not change the fact that the first rows of this block are all-0. The
lower-right block is not modified, so Idm still appears on its first rows. The matrix
T ′ has thus the announced form.

The class of matrices presented in Theorem 7.18 is not only chosen to make
the search more efficient, but also for its sparsity in order to guarantee a small
implementation cost. Indeed, the Frobenius normal form constitutes a very sparse
representative of a similarity class: it is a sparse matrix (a diagonal block matrix)
with sparse non-empty blocks (companion blocks). The chosen form for the lower
half is also quite sparse with the 0 and Id blocks.
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7.1.3.c Constraints on the linear layer

Regarding the linear diffusion matrix L, it should be implementable with a low
number of XORs. However, we must ensure that each inner state block at round i
will eventually influence all of them. To this end, we use the following metric of
diffusion.

Definition 7.19. Let L̂ be a matrix identical to a binary matrix L, except that its
coefficients are integers. The diffusion time of L is the smallest integer i such that
all coefficients in (L̂)i are non-zero. If no such integer exists, we set it to +∞. ▷

We consider integers rather than binary field elements so that additions do
not cancel out; this is equivalent to considering the iterations of L, such that
all XORs in the matrix multiplications are replaced with ORs. Intuitively, this
number tells how many rounds are needed to ensure a full diffusion in the inner
part, although in some special cases, it is not entirely accurate as there may be
some bad interactions between non-AES wires and the linear layer L. In the case
where all wires are AES wires, this metric is exactly the number of rounds which
guarantee that every output wire depends on every input wire. In our search space,
we generate matrices L under weight constraints, often with a weight of s+ 1 or
s+ 2 so that L can be implemented with 1 or 2 XORs and ignore matrices with
high diffusion time: we mostly use a value of around 2× s in this paper5.

7.1.3.d The actual explored space

The search method presented above is optimized but heuristic: we stress that
we do not assure the minimal sparsity of the studied transition matrices. Still,
the explored space contains promising candidates (see Table 7.2), that could be
further-optimized later on.

Nevertheless, exhaustive search remains unreachable. Equivalence relations on
a and L could be used, but would (and in practice do) interfere with the previous
ones. Instead, we restrict the weight of a and L.

7.1.4 Turning collision resistance into a MILP problem

The search space being established, we now focus on assessing the security of
the potential UHF candidates, by building an adapted MILP model and then
solving it thanks to an optimizer. A MILP model is composed of three objects:
variables, representing either real numbers or (modular) integers6, constraints,
that is, inequalities between Z-affine combinations of variables, and an objective
function which is a Z-linear combination of variables that needs to be maximized
(or minimized) when subjected to the given constraints. A MILP solver, such as
Gurobi [Gur23], takes as input a MILP model and returns, if it exists, values for
the variables that both satisfy the constraints and maximizes (or minimizes) the
objective function.

5For a rate of 1.75, we show candidates with infinite diffusion time.
6“Mixed” in MILP actually highlights the different natures of variables.
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7.1.4.a Prior works

The use of MILP modeling for searching differential trails with the highest
probability was set to light by Mouha, Wang, Gu & Preneel in 2011 [Mou+11].
Several approaches exist depending on the needed level of precision and the available
computational power. In theory, by using one MILP variable for each bit of the
state at each round, all the non-linear differential transitions could be modeled
(at the cost of many constraints). This approach is in practice very costly. For
byte-aligned primitives, it is much faster and practical to rather affect a MILP
variable to each byte of the state. Yet less precise, such a model enables, if it can
be efficiently solved, to determine the minimum number of active Sboxes, from
which an upper bound on the probability of the best differential trail can easily be
estimated. In the case of AES-based ciphers, this method has become standard, as
highlighted by the work on Rocca [Sak+21] or Deoxys-BC [Jea+21]. As in these
papers, we consider the byte-wise approach. To do so, we extend Notation 7.8 so
that the byte position appears.

Notation 7.20. The second subscript indicates the byte position: Xi
j,ℓ is the ℓ-th

byte of Xi
j.

7.1.4.b Our model

In this section we consider a fixed candidate: s,m, r and a, T , L are thus fixed. To
these constants, we add ρ, the number of rounds of the primitive to model. We
first describe our variables and objective.

Variables. Let i ∈ J0, ρ− 1K be a round number, j ∈ J0, B − 1K be a word
number, where the bound B ∈ {s,m, r} depends on the register, and ℓ ∈ J0, 15K
be a byte position. Each byte of the state is modeled as a binary variable, that
is equal to 0 if the byte is inactive (no difference) and 1 if it is active (non-zero
difference). The binary variables xij,ℓ, yij,ℓ, zij,ℓ, rij,ℓ,mi

j,ℓ, v
i
j,ℓ respectively represents

the bytes Xi
j,ℓ, Y

i
j,ℓ, Z

i
j,ℓ, R

j,ℓ
i ,M

j,ℓ
i , V

i
j,ℓ.

Objective. Our goal is to minimize the number of active Sboxes, represented by
the variables yij,l on AES wires, i.e. j ∈ Supp(a). Our objective is then defined by:

Obj :=
ρ−1∑
i=0

∑
j∈Supp(a)

15∑
ℓ=0

yij,l.

Before presenting the main constraints, we present auxiliary ones that will appear
in the definition of more advanced ones.
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Multiple-XOR. It models the relation ⊕N−1
i=0 Ui = 0 where (Ui)i∈J0,N−1K is a list

of N bytes represented by N binary variables (ui)i∈J0,N−1K. To do so, we introduce
an auxiliary binary variable α, and two constraints:

αN ≥
N−1∑
i=0

ui and
N−1∑
i=0

ui ≥ 2α.

In that way, depending on α ∈ {0, 1}, either 0 or at least 2 bytes are active.

MDS constraints. It models the relation between an input column of bytes,
represented by the binary variables (yi)i∈J0,3K, and an output one, represented
by (zi)i∈J0,3K ∈ {0, 1}4, through the AES MDS matrix which a differential branch
number equal to 5. This is done using an auxiliary binary variable α, and the two
constraints:

10α ≥
3∑
i=0

yi + zi and
3∑
i=0

yi + zi ≥ 5α,

so that either 0 or at least 5 bytes are active.
Remark 7.21. In the above constraints, Σ corresponds to an integer sum, not a
modulo-2 sum. ▷

We can now create constraints for each layer of the round function. Let
i ∈ J0, ρ− 1K.

Linear layer. The transition through L is naturally expressed by linear relations
between bytes. If we denote by L = (Lj,k)j,k∈J0,··· ,s−1K, where Lj,k ∈ F2 for any
j, k, , it holds that:

∀i ∈ J0, ρ− 1K , j ∈ J0, s− 1K , ℓ ∈ J0, 15K , Y i
j,ℓ =

s−1∑
k=0

Lj,kX
i
k,ℓ.

These constraints can therefore be modeled using a Multiple-XOR constraint.

AES-round layer. Let j ∈ Supp(a) so that an AES round is applied on the j-th
wire. The Sbox layer does not change the activity pattern, but the linear layer
(ShiftRows and MixColumns) needs to be modeled. For any round i ∈ J0, ρ− 1K,
and column index t ∈ J0, 3K, the t-th diagonal of Y i

j is linked by an MDS relation
together with the t-th column Zij . Those relations require an MDS constraint.
When j /∈ Supp(a), we simply add the constraints yij,ℓ = zij,ℓ for all i, ℓ.
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Message-schedule. The 128-bit linear relations between Ri,M i, Ri+1, V t given
by Eq. (7.3) can be modeled with 16 Multiple-XOR constraints (one for each byte).

Injected-value addition. For all i, j, ℓ, Y i+1
j,ℓ = Zij,ℓ + V i

j,ℓ is modeled as a
Multiple-XOR.

Finally, we add constraints on the inputs/outputs of the UHF, and constraints
to take advantage of the inherent symmetries of the AES round function.

Input constraints. At clock t = 0, the state and memory are fully inactive.
Thus:

∀ℓ ∈ J0, 15K , j ∈ J0, s− 1K , j′ ∈ J0, r − 1K x0
j,ℓ = 0, r0

j′,ℓ = 0.

Message constraints. If a trail with an inactive first round exists, shifting it by
1 round makes it still a valid trail. Moreover, in the AES, any column (resp. row)
plays the same role, so any trail can be shifted so that the first difference appears
in the byte of index ℓ = 0. By forcing at least one 0-index first-round-message
byte to be active, we facilitate the solving process, without leaving any trail aside.
Hence the symmetry constraint:

m−1∑
j=0

m0
j,0 ≥ 1.

This model is our basic model. Additional constraints can be added to it such
as the following output constraints.

Output constraints. We can force the state to be fully inactive at the end:

∀ℓ ∈ J0, 15K , j ∈ J0, s− 1K xρj,ℓ = 0.

This last constraint highly reduces the MILP solution space, and in practice
enable faster solving by Gurobi. However, it is a too-strong constraint when ρ is
small. Indeed, a differential trail over more rounds but with less active Sboxes
cannot be captured by this model. In practice, we iteratively increase ρ to capture
more and more trails, until a sufficient number of rounds is reached. In the
published paper [Bar+24], we also detail other costly constraints to avoid taking
into account trails that cannot be instantiated in real life, and therefore deduce
more accurate bounds.
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A word on solutions. A solution to this model consists in an activity pattern,
which, if it is instantiable, minimizes the number of active Sboxes. There is however
no a priori guarantee that it actually can be instantiated as an actual differential
trail. Nevertheless, if it is instantiable, and if all transitions can occur with maximal
probability, then the instantiated trail would have a probability of pN , where N is
the number of active Sboxes, and p = δS2−8 is the probability associated to the
differential uniformity 8-bit Sbox S of the AES. Thanks to Assumption 7.6, this
higher bound on the probability of the best differential trail enables us to estimate
the level of security of any candidate, once the solver terminates.

Search strategy. The search stategy that we followed was guided by the solving
of partial MILP model which can enables us to discard unsecure candidate, but
also by our on-the-fly benchmarking tool. Indeed, if a candidate can quickly be set
aside because of this low performances, there is no need to solve a costly model.
The detailed search strategy, as well a thorough description of our results can be
found in [Bar+24, Section 6]. Table 7.2 presents an overview of the variety of the
candidates, as well as their competitive performance.

Speed (cy/B)
Rate w m s r XOR-cost Diffusion Security 16 kB 256 kB
2 8 4 9 4 4 15 26 0.074 0.067
1.75 7 4 10 5 5 ∞ 23 0.079 0.068
2 6 3 7 4 4 11 25 0.086 0.080
2 4 2 6 4 3 9 24 0.104 0.099
2 2 1 4 3 4 5 23 0.180 0.175
2 1 0.51 1 5 3/12 - 26 0.374 0.371

1A message is added every other round.
2There is 1 inherent XOR in the transition matrix. Every other rounds, the message accounts

for 2 additional XORS.

Table 7.2: Retained candidates for different parameters sets. Speeds were measured
on Intel 11th Gen Core i5-1135G7 (Tiger Lake) for different message sizes.

7.1.5 MACs based on UHFs

As the previous sections might suggest, the biggest part of this work was to come up
with a framework, and to find some interesting candidates. However the ultimate
goal remains to build some concrete MAC instances. We detail here the general
strategy that we followed and refer to the published paper [Bar+24] and to our
GitHub repository7 for more information about the actual candidate named LeMac
and PetitMac.

To turn our fast universal hash function into a MAC, we use the following
strategy:

7The implementations of LeMac and PetitMac can be found on GitHub at https://github.
com/AugustinBariant/Implementations_LeMac_PetitMac.

https://github.com/AugustinBariant/Implementations_LeMac_PetitMac
https://github.com/AugustinBariant/Implementations_LeMac_PetitMac
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1. Using one of the round functions we obtained in our search, we get an ε-AU
family H taking an arbitrary message as input with a 128 · s-bit output. The
family is indexed by the secret initial state, and we conjecture that it is a
2−128-AU family based on our MILP analysis.

2. We compose H with an ε-AXU family C taking a 128 · s-bit input with a
128-bit output, and therefore obtain an ε′-AXU family C ◦H.

3. We use the EWCDM construction [CS16], with the ε′-AXU family C ◦H,
and the AES block cipher.

We thus obtain a MAC whose security relies only on the pseudo-random-function
security of AES and the ε-AU security of H, the former being a standard assumption,
and the latter being a consequence of our MILP-based analysis.

ε-AXU family C. We build the family C using the sum hashing construction
from [CW77, Proposition 8]. Given two ε-AXU families H1 : A1 → Fn2 and
H2 : A2 → Fn2 , this construction yields an ε-AXU family G : A1×A2 → Fn2 defined
by:

G =
{
x 7→ (h(1)(x)⊕ h(2)(x)) : h(1) ∈ H1, h

(2) ∈ H2
}
.

Concretely, we take the AES block cipher as an ε-AXU family (the ε-AXU security
of AES is a consequence of its the security as a PRF), and define the family C by:

C =
{
Ck : (x0, x1, . . . , xs−1) 7→

s−1⊕
i=0

AESki
(xi)

}

where each AES is keyed independently. C is a 2−128-AXU family assuming that
the AES is a secure PRF, and the composition of the 2−128-AU family H and the
2−128-AXU family C yields a 2−127-AXU family C ◦H using the composition result
from [Sti92, Theorem 5.6].

EWCDM. The MAC itself follows the EWCDM construction by Cogliati and
Seurin [CS16]. Based on a ε-AXU family H and an encryption scheme E , this
construction is instanciated as:

EWCDM[H, E ]k1,k2,k3(x,N) = Ek3

(
Hk1(x)⊕ Ek2(N)⊕N

)
.

It uses a nonce N to obtain high security, but it still provides security up to 2n/2

queries if the nonces are repeated (or omitted).
When used with unique nonces, EWCDM was initially proved secure up to 22n/3

queries, but a more recent result proved security up to essentially 2n queries [MN17].
We use the EWCDM construction because it provides significantly higher security
than the more common Wegman-Carter-Shoup construction:

WCS[H, E ]k1,k2(x,N) = Hk1(x)⊕ Ek2(N).

Indeed, Wegman-Carter-Shoup only provides 2n/2 security with unique nonces,
and fails completely when nonces are repeated.
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Initialization. While the family is indexed by the secret initial state, we suggest
to derive it as follows: the branch with index i is initialized to EKinit(i), where
Kinit is 128-bit secret key, and E is the AES-128 block cipher.

LeMac & PetitMac. In the end, we present two MACs both of which take as
input a 128-bit nonce, a 128-bit key, and return a 128-bit digest. It is based on the
round function which corresponds to the fastest candidate we found for w = 8. For
cases where the high parallel potential of LeMac might not be an advantage (e.g. on
smaller processors), we propose instead PetitMac, which is based on the promising
candidate we found for w = 1. It has a rate of 2, and ensures the activation of at
least 26 S-boxes during absorption.

Security & performances. Regarding security, we claim that LeMac and
PetitMac offer 128-bit security in the nonce-respecting model, meaning that an
attacker with advantage close to one requires a data complexity close to 2128, or
a time complexity close to 2128. In the nonce-misuse setting, we claim that an
attacker with advantage close to one requires a data complexity close to 264, or a
time complexity close to 2128.

According to our benchmarks that are detailed in [Bar+24, Section 7], LeMac
is currently by far the fastest MAC on the high-profile use-case of AES-NI
platforms, PetitMac is, as expected, not competitive on high-end desktop but
is very competitive on microcontrollers.

7.2 A stream cipher for transciphering in TFHE

We describe in this section our second design, which is a stream cipher operating
over F17 to be used for transciphering in TFHE. To do so, we start by presenting
the context of fully homomorphic encryption, and deduce our design goals from it.

7.2.1 Context and design goals

7.2.1.a Specificities of TFHE

As presented in introduction of this chapter, we focus now on designing a stream
cipher to be used as a transciphering [NLV11] method in TFHE [Chi+16, Chi+17,
Chi+20]. Before presenting our design goals, we give more detail about specificities
of TFHE which guide our approach, and about the previous ciphers designed to be
used as transciphering schemes for TFHE.

In the following, we denote by Zq the ring of integers modulo q, where q ≥ 1.
Note that q stands for quotient and can a priori take any integer value. The
discretized torus is defined by Tq = {aq | a ∈ Zq}.

The security of TFHE is based on the following variants of the Learning With
Errors (LWE) problem [Reg05].



7.2. A stream cipher for transciphering in TFHE 281

Definition 7.22 (LWE problem over the discretized torus). Let q, n ∈ N and let
s = (s1, . . . , sn) $← Fn2 . Let χ be an error distribution over Zq. The decisional
learning with errors over discretized torus problem is to distinguish between samples
drawn from the two following distributions:

D0 = {(a, r) | a $← Tnq , r
$← Tq}

D1 = {(a, b) | a = (a1, . . . , an) $← Tnq , e
$← χ, b =

n∑
j=1

aj · sj + e}.

The search version of the problem is to recover s from samples of D1, and the
generalized decisional and search problems [BGV12] are defined similarly, but for
ai, r drawn from Tq[X]/(Xn + 1) and si from F2[X]/(Xn + 1), where in that case
n is a power of two. ▷

We do not present the TFHE scheme in detail and refer to [Chi+16, Chi+17,
Chi+20] or to our paper [Bau+24a] for more information. However, it is important
to define the plaintext space in order to understand the specificities of our stream
cipher.

Plaintext space. The plaintext space is the ring Zp, with p ∈ N. We
identify Zp with Tp. Furthermore, Zp is embedded in Zq, with q > p using
the mapping ρ : Zp→Zq, defined by ρ : m 7→

⌊
mq
p

⌉
. The image of this

mapping only reaches p elements in Zq, which take the form
{
kq
p | k ∈ Zp

}
. These

elements are evenly distributed across Zq and form sectors of Zq, represented by:{(
(2k−1)q

2p , (2k+1)q
2p

)
| k ∈ Zp

}
.

During the encryption of m, a small noise term e is sampled from a Gaussian
distribution over Zq and added to m. Since e is small, the noisy message m+ e
remains within the same sector as m. However, as homomorphic operations are
performed, the noise grows and may eventually exceed the sector boundaries. Upon
decryption, the recovered message takes the form m′ + e′, where m′ is the expected
result and e′ is the accumulated noise. As long as e′ < q

2p , the message m′ can be
correctly recovered by rounding to the nearest sector center. The noise in TFHE
grows depending on the operations.

Sum of ciphertexts. The sum of two ciphertexts c1 and c2 that repectively encrypts
m1 and m2 with noise levels σ2

1 and σ2
2, results in a valid ciphertext c′, which

encrypts m1 +m2 with noise σ2
1 + σ2

2.

Product with a cleartext. Multiplying each coordinate of c1 by a constant λ ∈ Z
produces a valid ciphertext c′, which encrypts m′ = λ ·m with noise λ2 · σ2

1.

These linear operations are extremely fast, particularly in comparison to
bootstrapping. However, they increase the noise level, which means that only a
limited number of such operations can be performed before the correctness of the
results is compromised.



282 Chapter 7. Design of symmetric primitives for emerging use cases

Figure 7.2: Timing of a PBS with respect to the precision of the ciphertext.

Programmable Bootstrapping (PBS). Bootstrapping [Gen09] is a generic
technique that allows the noise of a ciphertext to be homomorphically reset to
a nominal level. Thanks to this technique, the correctness of long computations
can be guaranteed. In TFHE, bootstrapping is impletemented in a programmable
manner: while the noise is being reset, any arbitrary function can be evaluated
on the ciphertext. The programmable bootstrapping (or PBS) is by far the most
computationally expensive operation in TFHE, and its cost increases significantly
with the modulus p of the plaintext, as illustrated in Figure 7.2.

7.2.1.b State of the art

While transciphering can theoretically be instantiated with any symmetric cipher,
traditional ciphers like AES were soon found to be suboptimal [GHS12]. This
prompted the exploration of specialized ciphers tailored for transciphering.

Early specialized approaches included the LowMC block ciphers [Alb+15] and the
Kreyvium stream cipher [Can+16]. These ciphers offered reduced multiplicative
depths, making them more suitable for homomorphic encryption. Though not
initially designed for TFHE, Trivium and Kreyvium provide good performance
within the TFHE transciphering framework [BOS23].

In 2016, the FLIP stream cipher [Méa+16] introduced a novel concept based
on a filter permutator that randomly permutes key bits and applies a non-linear
function to generate a keystream bit. Its key innovation was the direct application
of non-linear filtering on key bits, which helped control the noise generated during
homomorphic operations. Two variants of FLIP, named FiLIP [Méa+19] and
Elisabeth [Cos+22], aimed at a higher security level and improved performance.
Most notably, Elisabeth operates on arbitrary groups like Z24 to minimize costly
field conversions in homomorphic evaluations. However, in 2023, an algebraic
attack successfully compromised Elisabeth [Gil+23]. In response, patched
versions—Elisabeth-b, Gabriel, and Margrethe—were proposed [HMS23], but
their TFHE evaluation cost was at least double that of the original Elisabeth in
single-thread computations.

The most recent advancement in transciphering is FRAST [Cho+24], which
introduces a TFHE-friendly round function based on a random Sbox to reduce



7.2. A stream cipher for transciphering in TFHE 283

the number of rounds. FRAST significantly boosts throughput, though with slightly
increased communication overhead and a needed setup phase.

7.2.1.c Our design choices.

In light of this (very light) introduction on TFHE, but mostly thanks to the
guidance of coauthors who actively work on FHE, we started designing our stream
cipher based on the following guidelines.

Plaintext space. The plaintext space is reduced to a few bits to limit the cost of
the PBS. We choose p = 17 so that p is odd, as suggested in [BPR24] which
avoids having to deal with negacyclicity, and the closest possible to a low
power of 2, which is convenient for encoding 4-bit nibbles. Because p is a
prime number, it also eases the design and security analysis thanks to the
field structure of Zp = Fp.

Non-linearity. The non-linearity comes from a layer of Sboxes, each computing a
function Fp → Fp giving rise to one PBS evaluation. Given our fixed choice
of p, the number of PBS per element of the output stream represents the
main performance metric which we search to minimize.

Arrangement of operations. The initial key material (giving rise to fresh TFHE
ciphertexts) can go through complex linear combinations before hitting the
Sbox layer. Each Sbox output should only go through linear operations with
low ℓ2-norms before undergoing another PBS, so that the noise in input of
the PBS is sufficiently low to ensure correctness. It should also go through
lightweight linear operations (with low ℓ2-norms) before being released. This
way, the TFHE ciphertexts obtained after the stream-cipher decryption, keep
a noise level as close to nominal as possible.

7.2.2 Description of Transistor

Bringing everything together, we designed the stream cipher Transistor. We
claim that it provides 128 bits of security, meaning any attack should require at
least 2128 elementary operations, assuming no more than 231 digits (about 1 GB)
are generated with a single master key/IV pair. Transistor is described in this
section.

7.2.2.a Overall Structure

Transistor is a stream cipher that generates a keystream composed of elements
from Fp = F17. It generates tuples of 4 digits at once, using the procedure outlined
in Figure 7.3.

The idea is to generate two pseudo-random sequences with a very long period
using two distincts LFSRs. One of them generates whitening subkeys, while the
other acts as a sort of key schedule. The output of the latter is fed into a Finite
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K (Key schedule)

W (whitening LFSR)

⊞ SD SR MC

FSM state

φ

⊞ Z(t)

16

4

(a) General structure (rectangles correspond to registers).
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Figure 7.3: A high level view of Transistor.

State Machine (FSM) with its own state, and which operates on it using non-linear
operations. We thus have the following components:

• a register of 16 elements of Fp (the FSM state),

• an LFSR over Fp (the key schedule or key-LFSR K) of length |K| = 64,

• an LFSR over Fp (the whitening LFSR W), of length |W| = 32,

• a non-linear round function F16
p → F16

p (the round function), and

• a filter φ : F16
p → F4

p that extracts 4 digits from the FSM.

The FSM state is initialized to all zeros, while each LFSR is seeded with key
material.

7.2.2.b Detailed Description

Obviously taking inspiration from the AES, the state of the FSM is organized into
a square matrix, where each entry corresponds to a digit in Fp. This matrix is
then processed using the following operations:

SubDigits (SD): an S-box layer where a permutation S is applied on each digit;

MixColumns (MC): each column is multiplied by an MDS matrix M over Fp;

ShiftRows (SR): the i-th row is rotated by i positions.

The filter (φ): it extracts 4 digits from the state and returns them.
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X(t) X(t+1)

K(t+1)S(t)φ

SR MC ⊞ SD

(a) Notation throughout clocks.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

(b) Numbering in the FSM.

Figure 7.4: Our notations.

In what follows, we provide a more detailed description of each step, using the
notation summarized in Figure 7.4(a). The keystream output at clock t ≥ 0
consists of the tuple Z(t) ∈ F4

p. The internal state of the FSM, just before the
filter is applied, is denoted by X(t), so that S(t) = φ

(
X(t)

)
. As a consequence,

X(t+1) = SD
(
K(t+1) +

(
MC ◦ SR(X(t))

))
, where K(t) is obtained by concatenating

16 successive digits generated by the key-schedule LFSR K.

S-box Layer (SD). We let S be defined by its lookup table:
S = [1, 12, 6, 11, 14, 3, 15, 5, 10, 9, 13, 16, 7, 8, 0, 2, 4], (7.9)

so that S(0) = 1, S(1) = 12, and so on. It has the following polynomial
representation, and is thus of maximum degree:

S(x) = 1 + 4x1 + 13x2 + 7x3 + 16x4 + 15x5 + 5x7 + 5x8

+ 11x9 + 13x10 + 12x11 + 13x12 + 15x14 + x15 .

It was chosen by enumerating all APN permutations of F17. Then, we selected S
among those that offer a good balance between minimizing the number of pairs
(∆in,∆out) for which the associated differential equation has exactly two solutions,
and minimizing the maximum modulus of the Walsh spectrum.

Linear Layer (MC). We opted for a 4× 4 Maximum Distance Separable (MDS)
to ensure optimal diffusion. The matrix we chose is:

M =


2 1 1 1
1 −1 1 −2
1 1 −2 −1
1 −2 −1 1

 . (7.10)

We verified that there is no MDS matrix in F17 with coefficients in {−1, 1} by
exhaustively testing all such matrices. As we were interested in MDS matrices with
minimal ℓ2-norm and we were able to find during the initial experiments matrices
with a squared ℓ2-norm of 7, it was evident from the definition of the ℓ2-norm
that matrices with minimal ℓ2-norm could not have coefficients x with |x| > 2.
Thus, by testing all matrices with coefficients in {−2,−1, 1, 2}, we found a total
of 30 720 MDS matrices with an ℓ2-norm of 7. We selected M for its symmetries,
particularly because it is its own transpose.
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Filter. The filter function φ maps the FSM state, which belongs to F16
p , to a

tuple (a, b, c, d) in F4
p. As summarized in Figure 7.3(e), we have that a, b, c and d

correspond to the digits of the FSM state with indices 4, 6, 12, and 14 respectively
(using the numbering from Figure 7.4(b)).

LFSRs. The whitening LFSRW and the key schedule LFSR K are simply LFSRs
over Fp of maximum period, and which are respectively of length 32 and 64. A
simple way to obtain a maximum-period LFSR over Fwp is to generate a primitive
element of Fpw , and then use the coefficients of its minimal polynomial as the taps.
The output can then be any non-trivial linear combination of its cells.

Initialization. The key material loaded in the LFSRs is derived from a 128-
bit master key, and possibly an IV, using the SHAKE [Sha3] extendable output
function. We set the FSM state X(−1) to be all 0, so that the first keystream tuple
S(0) is obtained by adding the first outputs of the whitening LFSR with the image
under S of some of the first outputs of the key schedule.

7.2.2.c Controlling the evolution of the noise

The design of Transistor allows to control the evolution of the noise in the FSM
while getting a very low number of PBS per element. An overview of this evolution
is depicted in Figure 7.5, but we refer to our paper [Bau+24a] for its thorough
analysis. This analysis is based on the careful arrangement of the operations.

We also use an interesting implementation trick for our LFSR, that we called
silent LFSR. A naive approach for implementing an LFSR homomorphically would
be to maintain an encrypted state, and update it by computing a linear combination
with the feedback coefficients. This method however causes the noise in the state to
accumulate over time, necessitating periodic use of PBS operations to refresh and
control the noise growth. However, every output of an LFSR is a linear combination
of the cells in its initial state, so by computing on the fly the coefficients of these
linear combinations in clear, we can evaluate the output of the LFSR at every
clock cycle without updating an encrypted version of the internal state. This way,
the noise variance in the output of the silent LFSR remains stable over time. This
principle is comparable to the approach of FLIP [Méa+16] and follow-up works,
whereby a key state is queried without being updated.

7.2.3 Security Analysis

In this section we analyze the resistance of Transistor against classical attacks
and derive lower bounds on the complexity required for these attacks to succeed.
The internal parameters, especially the LFSR dimensions, were chosen based on
the security analysis results presented here. It has to be noted that many attacks
discussed in this section assume that the adversary has access to the sequence
(S(t))t≥0 prior to its addition with the whitening LFSR. The corresponding attacks
against Transistor have therefore a higher complexity since the attacks we describe
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Figure 7.5: Evolution of the noise variance in a homomorphic evaluation of
Transistor. Operations involving PBSs are in blue and dashed.

need to be adapted in order to remove the influence of the whitening LFSR. This
can be done either by guessing part of its internal state, at the price of a higher
time complexity, or by cancelling its outputs thanks to a parity-check equation, at
the price of a higher data complexity.

On top of this analysis, algebraic attacks and the relationship between the
security of Transistor and LEX [Bir07] are provided in our paper [Bau+24a].

7.2.3.a Time-Memory-Data trade-offs

Let P,M, T,D denote the respective precomputation, memory, time and data
complexities needed for recovering the internal state of a stream cipher. As
independently introduced by Babbage [Bab95] and Golic [Gol97], generic Time-
Memory-Data Trade-Offs aim at leveraging a more interesting balance between the
four metrics than the extreme cases obtained with an exhaustive search (T = N ,
D = 1) or a full code-book attack (P = M = N , T = 1), where N is the number
of possible internal states.

To do so, a table is first built and stored offline. This table contains pairs
(X,F (X)) (indexed by the second coordinate) where F is the function which maps
an initial state X to the first n elements of the output sequence where n is chosen
such that Im(F ) has size N . Then, during the online phase, the attacker hopes to
find a collision between the images stored in the table and the ones observed online.
If the attacker observes D sequences of length n, the standard birthday-paradox
argument states that MD ≈ N is the condition for such a collision to occur. Taking
M = D = P = T =

√
N gives the classical trade-off.

In the case of Transistor without the whitening LFSR W , such an attack can
be mounted in two ways. First, we can choose F as the function which maps the
LFSR state K and the state of the FSM to the first outputs of φ. In this case,
n = |K|+ 16, providing the first bound:

p|K|+16 ≥ 2λD ,

where λ is the security level and p = 17 for Transistor. In that case, the number
of observed sequences D can actually be replaced by the number of observed
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successive output digits. Indeed, by observing d≫ n output digits, one can build
d− n+ 1 ≈ d sequences of n digits.

Yet, at any clock t > 0, the FSM state only depends on the initial state K. We
can therefore consider F as the function which maps the initial LFSR state K (and
the all-zero FSM state) to the first k/4 output blocks S(0), S(1) . . . S(k/4−1), where
k denotes the size of K in digits. In this case, n = |K| and therefore:

p|K| ≥ 2λD .

However, this attack must be launched in the multi-key setting because each
observed output sequence must be obtained from an all-zero initial FSM state.
Then, D also corresponds to the number of distinct keyed primitives attacked.

Both attacks can be applied to the full Transistor, that is, with the whitening
LFSR W.

To do so, we denote by PW = X |W| −
∑|W|
i=1 ciX

|W|−i the characteristic
polynomial of W , and by (wt)t∈N, (st)t∈N, (zt)t∈N the sequences of digits generated
by W, φ and Transistor respectively, so that zt = wt + st. Therefore, by linearity,
we immediately deduce that,

∀t ≥ 0, z|W|+t −
|W|∑
i=1

ciz|W|−i+t = s|W|+t −
|W|∑
i=1

cis|W|−i+t.

The same attack as before can therefore be mounted by observing the sequence
(s|W|+t −

∑|W|
i=1 cis|W|−i+t)t∈N, instead of (st)t∈N. Therefore, with the parameters

used in Transistor, since the length of the keystream generated from the same
key is limited to 231 digits, TMDTO attacks have time complexity 2296 is the
single-key setting, and drops to 2130 when keystreams generated from 2130 keys
are available to the attacker.

7.2.3.b Guess-and-determine attack

We explain a basic guess and determine attack, where the attacker links the FSM
state X(t) (initialized as X(−1) = 0) to the filter output S(t) by guessing digits of
the key-schedule sequence (K(t)).

Without the whitening LFSR, the attacker observes at each clock: t ≥ 0

S(t) = φ(X(t)) = SD
(
K(t) +

(
MC ◦ SR(X(t−1))

))
I
,

where I = {4, 6, 12, 14}, and where the notation for subvectors is the one
introduced in Notation 7.8. Since X(t−1) is known, he deduces:

K
(t)
I = SD−1(S(t))−

(
MC ◦ SR(X(t−1))

)
I
.

After guessing the 12 missing digits K(t)
J , where J = J0, 15K \ I, he computes the

full X(t) = SD
(
K(t) +

(
MC ◦ SR(X(t−1))

))
.
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Starting from clock t = |K|/16, the key-schedule digits are linearly dependent
on the previous ones, and the attacker can verify that the output S(t) is correct
without making new guesses. Therefore, in total the adversary has to guess 12

16 |K|
digits, leading to a complexity p

3
4 |K|. When taking into account the whitening

LFSR, the attacker first has to guess it, leading to an attack with complexity
p

3
4 |K|+|W|.

7.2.3.c Three consecutive outputs are statistically independent of
the secret key

The basic strategy in (fast) correlation attacks against stream ciphers [Sie85, MS88]
consists in recovering some information about (a part of) the initial state of the
cipher from the knowledge of the keystream. In the following, we investigate this
type of attacks without the whitening LFSR and aim at recovering the internal
state of the key-LFSR K. To this end, we consider the so-called augmented function
with n outputs, which generates n consecutive output blocks of

(
S(t)

)
t∈N

from
the internal state of the FSM and from (n− 1) consecutive 16-digit blocks of the
key-sequence:

F (n) : F16
p × F16(n−1)

p → F4n
p

(X(t),K(t+1), . . . ,K(t+n−1)) 7→ (S(t), S(t+1), . . . , S(t+n−1)) .

It is obvious that F (n) is balanced, i.e., all preimages by F (n) have size p4n.
In this context, an important quantity is the smallest length of output sequence

(S(t))t∈N that can provide information on the sequence produced by the key-
LFSR [And95]. In the following, we show that this minimal length is at least 4.
This property is equivalent to the following theorem.

Theorem 7.23 (Uniform distribution of F (3)). For any K(0),K(1) ∈ F16
p , the

function
X 7→ F (3)(X,K(0),K(1))

is uniformly distributed.

The remaining of this section is dedicated to the proof of this theorem. A
reader willing to accept this as a fact, can safely continue to Section 7.2.3.d.

Rephrasing the theorem. First, balancedness can be rephrased in terms of
differentials by using the following lemma.

Lemma 7.24. Let G,K be two groups and let G : G→ K. Then G is balanced if
and only if for all x ∈ G, it holds that:

|{∆ ∈ G, f(x)− f(x+ ∆) = 0}| = |G|
|K|

.
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Proof. Let us denote by y the value y := f(x) and by Ux the set defined by
Ux := {∆ ∈ G, f(x)− f(x+ ∆) = 0}. We immediately observe that:

Ux := {∆ ∈ G, f(x+ ∆) = y} =
{

∆ ∈ G, x+ ∆ ∈ G−1({y})
}

= −x+G−1({y}).

In particular, |Ux| =
∣∣G−1({y})

∣∣, so stating that all preimage sets have cardinality
|G| / |K| is equivalent to stating that all sets Ux have cardinality |G| / |K|.

In our case, we consider for any (K(0),K(0)) the function F : X 7→
F (3)(X,K(0),K(0)). This corresponds to G = F16

p ,K = F12
p . It then remains

to be shown that for all keys K(0),K(1) ∈ F16
p and for all X ∈ F16

p the number of
solutions ∆ ∈ F16

p of the equation:

F (3)(X,K(0),K(1))− F (3)(X + ∆,K(0),K(1)) = 0

is always p4. This can be done by looking at the number of input differences that
lead to 12 output zeros at specific positions. This number can be computed by
using that M is an MDS matrix.

MDS code and MDS matrix. While this property was already mentioned
in this manuscript, we never developed it. We therefore provide a few classical
results.

Definition 7.25 (MDS code and MDS matrix). Let C be an [n, k, d]-linear code
over Fp, that is, a subspace of dimension k of Fnp with a minimal Hamming
distance d. The code C is an MDS code if it reaches the Singleton bound [Sin64],
i.e., if d = n − k + 1. A t × t matrix M is an MDS matrix if G = (Ik|M) is a
generator matrix of an MDS code. ▷

For any matrix G with n columns, and any set I ⊂ {0, . . . , n− 1}, we denote
by GI the submatrix made of columns whose indices belong to I.

Lemma 7.26 (Characterization of MDS code). Let C be a linear code of dimension
k of Fnp and let G ∈Mk×n(Fp) be a generator matrix of C. Then C is MDS if and
only if any k × k submatrix of G is of full rank (i.e., invertible).

Proof. Let us assume that there exists I of cardinality k such that GI satisfies
rank(GI) < k. In that case, there exists a non-zero linear combination a ∈ Fkp
of the rows of GI which sums to 0. Therefore, the codeword c = aG is not zero
(because a ̸= 0 and G of full rank) but c has at least k coordinates which are equal
to 0. This implies that wt(c) ≤ n− k < n− k + 1 and C is not MDS. Conversely,
let us suppose that GI is of full rank for any I of cardinality k. Let us suppose
that there exists c ∈ C \ {0} such that wt(c) ≤ n − k. Then there exists a set I
of k indices such that ci = 0 for any i ∈ I. But because c is not zero, c = aG
with a ̸= 0. However, we also have that 0 = aGI . This contradicts the full rank
of GI .
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Lemma 7.27 (Information set). Let G be the generator matrix of a [n, k, d]-code C.
Let I ⊂ J0, n− 1K be a subset of cardinality k such that GI is of full rank. Let
J = J0, n− 1K \ I. Then for any x ∈ Fkp there exists a unique c ∈ C such that
cI = x. In particular, c can be linearly expressed in term of cI .

Proof. By construction, Im(GI) is the space Im(GI) = {cI , c ∈ C}. But because GI
is of full rank, we also have that Im(GI) = Fkp, which proves both existence and
uniqueness. Furthermore, let c ∈ C. We observe that d := (G−1

I (cI))G is by
construction a codeword such that dI = cI . By uniqueness, we conclude that d = c
and therefore c = (G−1

I (cI))G. The word c is therefore the image of cI by the
linear mapping x 7→ (G−1

I (x))G.

We can now state the key proposition for our proof of Theorem 7.23.

Proposition 7.28. Let M be a 4 × 4-MDS matrix over Fp. Let a, b ∈ Fp. Let
W := Fp×{a}×Fp×{b}. Then there exist two affine functions L1, L2 : (Fp)2 → Fp
such that M(W ) can be described as:

M(W ) = {(L1(x, y), x, L2(x, y), y) , x, y ∈ Fp} .

Proof. We consider the [8, 4, 5] MDS-code C =
{
(x,Mx), x ∈ (Fp)4}. Any set

I ⊂ {0, . . . , 7} of cardinality 4 is then an information set. For any a, b ∈ Fp, we can
thus list all codewords where c1 = a and c3 = b by letting (c0, c2) range over all of
Fp×Fp. But the previous enumeration can be achieved by fixing c1 = a and c3 = b,
and allowing any pair (ci, cj) with i, j /∈ {1, 3} and i ̸= j to take values in Fp × Fp,
because {1, 3, i, j} also forms an information set. We deduce, that when c1 and
c3 are fixed to a and b respectively and when (c0, c2) goes through Fp × Fp, then
(ci, cj) also goes through all Fp × Fp. This is the case for instance for i = 5, j = 7.

Moreover, since {1, 3, 5, 7} is an information set, all others coordinates ck are
linear in c1, c3, c5, c7. When restricted to the case where c1 = a, c3 = b, any ck
becomes affine in c5, and c7. In particular, this is the case of c4 and c6.

Note that the result can be naturally adapted to any set W of the form
W = U0 ×U1 ×U2 ×U3 where two sets Ui are equal to Fp, while the two other are
sets with a single element.

Proving Theorem 7.23. We are now ready to prove, which we first reformulate
using Lemma 7.24.

Theorem 7.29 (Equivalent formulation of Theorem 7.23). Let K(0),K(1), X ∈ F16
p

and let us consider the following equation with unknown ∆ ∈ F16
p :

F (3)(X,K(0),K(1))− F (3)(X + ∆,K(0),K(1)) = 0. (7.11)

Then Eq. (7.11) has p4 solutions.
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Figure 7.6: The conditions to have F (3)(X,K(0),K(1))−F (3)(X+∆,K(0),K(1)) =
0.

Proof. Let K(0),K(1), X ∈ F16
p . We look for the number of solutions ∆ of the

above equation. Let ∆(i) for i ∈ J0, 5K be the possible values of the difference at
each relevant step for three consecutive outputs, as shown in Figure 7.6(a). The
numbering of the cells can be found in Figure 7.4(b).

Let us first look at the conditions on ∆(2). First, ∆(2)
4 = ∆(2)

6 = ∆(2)
12 = ∆(2)

14 = 0,
since there is no difference in the second output block. Moreover, the second and
fourth columns (in blue and green in Figure 7.6(a)) of ∆(2) must be a vector of the
form M(y, 0, z, 0) for a given pair (y, z). Equivalently, let W := Fp×{0}×Fp×{0}.
Then the second and fourth columns must belong to M(W ). Thus, all possible
solutions for ∆(2) that guarantee that the first two output blocks are 0 lie in a
vector space V of dimension 8, which is defined by:

V := {(a0, 0, a1,0)||M(a2,0, a3,0)||(a4,0, a5,0)||M(a6,0, a7,0)} ,

where each ai with i ∈ J0, 7K takes all possible values in Fp and where the
concatenation is made column by column. Equivalently, V can be defined by:

V = W ×M(W )×W ×M(W ).

Moreover, thanks to Proposition 7.28, V can also be defined as the set of words of
the form:

(a0, 0, a1, 0) || (L0(a2, a3), a2, L1(a2, a3), a3) ||
(a4, 0, a5, 0) || (L0(a6, a7), a6, L1(a6, a7), a7),

where each ai with i ∈ J0, 7K takes all possible values in Fp. For each i ∈ J0, 15K, we
denote by X(3)

i and X
(2)
i the values of the FSM state at the same instant as ∆(2)

and ∆(3). Those values are fixed (as we fixed the input and the key). Then the set



7.2. A stream cipher for transciphering in TFHE 293

of values for ∆(3) such that the first output differences are 0 can be written as gX(V )
where gX : F16

p → F16
p is the parallel application of some shifted version of the Sbox.

Namely, for all 0 ≤ i ≤ 15, gXi (b) = S(X(2)
i + b) − S(X(2)

i ) = S(X(2)
i + b) −X(3)

i

with b ∈ Fp. It is worth noting that, since X(2) and X(3) are fixed, all component
functions of gX are bijective because the Sbox is bijective. Also, gXi (0) = 0. As
the function gX is the concatenation of 16 bijective applications in parallel, then
the set of solutions for ∆(3) can be expressed as U × U

(1)
X × U × U

(2)
X , where

U = {(a, 0, b, 0), a, b ∈ Fp} and U
(1)
X can be expressed by:

U
(1)
X =

{(
gX1 ◦ ℓ0(a2, a3), gX5 (a2), gX9 ◦ ℓ1(a2, a3), gX13(a3)

)
, a2, a3 ∈ F16

p

}
,

and U (2)
X can be expressed the same way by using respectively the outputs 3, 7, 11

and 15 of the function gX . Eventually, as each component of gX is bijective, the
set U (1)

X is of the form:

{(f1(a2, a3), a2, f2(a2, a3), a3) , a2, a3 ∈ Fp} ,

with appropriate functions f1 and f2 (and the same holds for U (2)
X for appropriate

functions f3 and f4. As an example, f1(a2, a3) := gX1 ◦L1((gX5 )−1(a2), (gX13)−1(a3)).
Eventually, the SR operation is applied to this set and leads to the conditions
depicted on Figure 7.6(b). Note that there is no condition on a0 and a5. Because
of Proposition 7.28, for any fixed value of (a3, a6) the image set of the first
column M(Fp × {a3} × Fp × {a6}) contains a single vector of the form (∗, 0, ∗, 0).
The same holds for the third column. We then deduce that, for each value of
(a3, a6, a2, a7) ∈ F4

p there is a unique value of ∆(4) that leads to a zero difference
between the third output blocks. We easily check that those solutions indeed satisfy
that all output block differences are zero.

Such a reasoning heavily relies on the specific structure of our FSM, and borrows
from the theory of difference propagation for block ciphers.

7.2.3.d Fast correlation attacks involving four consecutive outputs

Now, we want to estimate the minimal data complexity required for recovering
the internal state of the key-register from the knowledge of the output sequence
(S(t))t∈N, given that at least four consecutive outputs (S(t), S(t+1), S(t+2), S(t+3))
need to be considered together. The following lemma shows that, if the output
of the augmented function F (n) is correlated to its key-input, then there exists a
biased linear relation between the key-inputs and the outputs of F (n). This result
is the variant in the non-binary case of the Xiao-Massey lemma [XM88], which can
be derived from the proof given by Brynielsson in [Bry89].

Proposition 7.30 (Xiao-Massey lemma over Fp). Let F : Fnp × Fmp → Fkp be a
balanced function. Then the function Fy : Fnp → Fkp defined by Fy(X) = F (X, y) is
balanced for all y ∈ Fmp if and only if the function (X,Y ) 7→ α · Y + β · F (X,Y ) is
balanced for all α ∈ Fmp and all nonzero β ∈ Fkp.
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It follows that, as soon as the key-LFSR and the considered segment of the
output sequence are not statistically independent, there exists a biased linear
relation between the digits of these two sequences. There might exist some
other relations between these two sequences, of higher degree, whose probability
distribution is farther from the uniform distribution. However, it seems much more
difficult to exploit nonlinear relations in an attack for two reasons: in practice,
what is known to the attacker is the sum between (S(t))t∈N and the output of
the whitening LFSR. Any relation involving the digits of (S(t))t∈N in a nonlinear
manner would involve the outputs of the whitening LFSR is a nonlinear manner,
and would then probably require an exhaustive search for its initial state. A second
motivation for focusing on linear relations is that recovering the internal state of
the key-LFSR faster than exhaustive search is much easier if the known biased
relations are linear.

Linear cryptanalysis of F2. The Fourier transform is the appropriate tool for
analyzing the probability distribution of a function. To do so, we overload the
notation used for the binary Fourier transform introduced in Proposition 2.13.

Definition 7.31 (Fourier transform over Fp). Let F : Fnp → Fkp and ω be a p-th
root of unity in C. For α ∈ Fnp and β ∈ Fkp, the Fourier transform of F is

F̂ (α, β) =
∑
x∈Fn

p

ωβ·F (x)−α·x.

▷

Note that according to Proposition 2.13, what is defined as F̂ here rather
corresponds to the Fourier transforms of the functions x 7→ wβ·F (x). However,
as observed with Definition 2.15 in the binary case, it is equivalent, but more
convenient, to work with the analogous of the Walsh transform. The following
proposition provides the minimal length of the sequence (S(t))t∈N required for
recovering the initial state of (K(t))t∈N using the linear approximation:

−
n−1∑
i=1

αi ·K(t+i) +
n−1∑
i=0

βi · S(t+i),∀t ≥ 0 .

This proposition is a particular case of a more general theorem whose proof is de-
tailed in our paper [Bau+24a], and which holds even if the considered approximation
is nonlinear, i.e., of the form −g(K(t), . . . ,K(t+n−1)) + h(S(t), . . . , S(t+n−1)).

Proposition 7.32. Let (Ut)t∈N be a sequence of elements in Fκp defined by Ut+1 =
Φ(Ut), (Vt)t∈N be a sequence of elements in Fmp following the uniform distribution
and F be a function from Fκp × Fmp to Fnp . Let α ∈ Fκp and β ∈ Fnp such that the
probability distribution of

(U, V ) 7→ β · F (U, V )− α · U
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is close to the uniform distribution, i.e., for all z ∈ Fp,

P [β · F (U, V )− α · U = z] = 1
p

+ εz with εz ≪ 1 ,

where the probability is taken over uniformly random (U, V ) $← Fκp × Fmp . Let us
consider the sequence (B(t))t∈N defined by B(t) = β · F (U (t), V (t)). Then, the
minimal length N of (B(t))t<N required for recovering U0 is:

N = κ ln p
∆ with ∆ = p

∑
y∈Fp

ε2
y =

∑
b∈F∗

p

∣∣∣p−(κ+16)F̂ (bα, 0; bβ)
∣∣∣2 .

It is worth noting that, in the binary case, the previous result corresponds to
the usual formula (see e.g. [HN12])

∆ = 4ε2 = 2−2(κ+16)

∣∣∣∣∣∣
∑
U,V

(−1)F (U,V )+α·U

∣∣∣∣∣∣
2

.

The quantity ∆ is called squared imbalance of the linear approximation in [BSV07,
Def. 4], or the capacity of F [HN12]. Indeed, ∆ corresponds to Shannon’s capacity
of a transmission channel as shown in the proof of the more general theorem in
our paper [Bau+24a].

It is worth noting that this bound is tight when U0 is recovered by performing
an exhaustive search over all its possible values and a maximum-likelihood satistical
test. This attack has time complexity Np|K| where |K| = 64. The time complexity
decreases if other decoding algorithms are used, for instance algorithms based on
low-weight parity-check relations, but the price to pay is a significant increase of
the required length N of output sequence [MS88, CT00, CJS01].

Theoretical estimation of the capacity. We now need to estimate the value
of the capacity ∆ in Proposition 7.32 when F corresponds to the augmented
function with n outputs, F (n) for n ≥ 4. The following theorem proves that the
modulus of any Fourier coefficient of the augmented function F (n) is upper bounded
by the product of the moduli of Fourier coefficients of all active Sboxes in the
corresponding linear trail. Most notably, this implies that the correlation of a
linear approximation of several rounds of Transistor is determined by a single
linear trail, and that there is no linear-hull effect as we may find in a block cipher.

Theorem 7.33 (Fourier transform of a linear relation). Let

F (n) : F16
p × F16(n−1)

p → F4n
p

(X(t),K(t+1), . . . ,K(t+n−1)) 7→ (S(t), S(t+1), . . . , S(t+n−1)) .

Let α ∈ F16(n−1)
p and β be any nonzero element in F4n

p . Then,

p−16n
∣∣∣F̂ (n)(0, α;β)

∣∣∣ ≤ (L(S)
p

)wn
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where L(S) is the maximal modulus of the Fourier coefficients of S, and wn =∑n−1
i=1 wt(αi) where wt(.) denotes the number of nonzero digits of a vector with

coordinates in Fp.

Proof. For any t ≥ 0, we denote by X(t) the internal state of the FSM at time t
after SD. Then we have, as depicted on Figure 7.3(a):

X(t+1) = SD
(
L(X(t)) +K(t+1)

)
and S(t) = φ(X(t)) ,

where L denotes the linear layer, composed of SR and MC. For any n ≥ 1, we
denote by H(n) the following function:

H(n) : F16
p × F16(n−1)

p → F4(n−1)
p × F16

p

(X(t),K(t+1), . . . ,K(t+n−1)) 7→ (S(t), . . . , S(t+n−2), X(t+n−1)) .

In other words, the output of H(n) corresponds to the concatenation of the output
of F (n) and of the value of the 12-digits of the last state of the FSM which are not
outputted by φ. Then, we prove there exists b′ ∈ F16

p such that

Ĥ(n+1)(a, α1, ..., αn;β0, ..., βn−1, b) = ŜD(αn, b)× Ĥ(n)(a, α1, ..., αn−1;β0, ..., βn−2, b
′).

Let ω be a p-th root of unity in C and χ(x) = ωx for x ∈ Fp. For any i, we denote
byK̃(i) =

(
K(0),K(1), . . . ,K(i−1)

)
. Then:

I = ŜD(αn, b)× Ĥ(n)(a, α1, . . . , αn−1;β0, . . . , βn−2, b
′)

=
∑
K̃

(n)

χ

(
n−2∑
i=0

βiK
(i) + b′X(n−1) −

n−1∑
i=1

αiK
(i) − aK(0)

)∑
Z

χ (bSD(Z)− αnZ)

=
∑

K̃
(n+1)

χ

(
n−2∑
i=0

βi ·K(i) + b′ ·X(n−1) −
n−1∑
i=1

αi ·K(i) − a ·K(0)
)

× χ
(
b · SD(K(n) + L(X(n−1)))− αn ·K(n) + αn · L(X(n−1))

)
,

where the variables K(i) are summed over go through F16
p , and the last equality is

obtained by setting Z = K(n) + L(X(n−1)). We deduce that:

I =
∑
K̃

(n)

χ

(
n−1∑
i=0

βi ·K(i) − βn−1 · S(n−1) + b ·X(n) −
n∑
i=1

αi ·K(i) − a ·K(0)
)

× χ
(
b′ ·X(n−1) + αn · L(X(n−1))

)
=
∑
K̃

(n)

χ

(
n−1∑
i=0

βi ·K(i) + b ·K(n) −
n∑
i=1

αi ·K(i) − a ·K(0)
)

× χ
(
(b′ − φ∗(βn−1) + LT (αn)) ·X(n−1)

)
= Ĥ(n+1)(a, α1, . . . , αn;β0, . . . , βn−1, b) ,
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when b′ = φ∗(βn−1)− LT (αn), LT is the transpose of L and φ∗ : F4
p → F16

p is the
function outputting an internal state whose digits are all zero, expect the digits
affected by φ, which are equal to the inputs. Moreover, H(1) is the identity function
over F16

p implying that Ĥ(1)(a, b) = p16 if a = b and 0 otherwise. It follows that
there exist b′

1, . . . , b
′
n−1 such that:

Ĥ(n)(a, α1, . . . αn−1;β0, . . . , βn−2, b) = p16
n−1∏
i=1

ŜD(αi, b′
i) .

Therefore,

p−16nĤ(n)(a, α1, . . . , αn−1;β0, . . . , βn−2, b) =
n−1∏
i=1

ŜD(αi, b′
i)

p16 .

The result then directly follows by observing that ŜD(αi, b′
i) is the product of the

Fourier coefficients of the 16 Sboxes composing SD.

Estimation of the capacity in practice. Now, we apply Proposition 7.32 with
U (t) = (K(t+1), . . . ,K(t+n−1)) ∈ F16(n−1)

p , V (t) = K(t) ∈ F16
p and F (U (t), V (t)) :=

F (n)(K(t),K(t+1), . . . ,K(t+n−1)). The previous theorem implies that the data
complexity of the best correlation attack based on a linear approximation ∑n−1

i=1 αi ·
K(t+i) +∑n−1

i=0 βi · S(t+i),∀t ≥ 0 is the inverse of:

∆ = p

64 ln p

(L(S)
p

)2wn

(7.12)

where wn = ∑n−1
i=1 wt(αi) is the number of active Sbox in the linear trail.

In order to find a lower bound for the number of S-boxes active in a linear trail
over 4 rounds of Transistor, we apply a similar approach to the one described in
Section 7.1.4. Indeed, it is already mentioned in the seminal work of Mouha, Wang,
Gu & Preneel [Mou+11] that, because of the duality between linear and differential
cryptanalysis, the same kind of MILP modelization can be used for both kind of
attacks. We therefore reuse the already-described MDS constraints, together with
some border constraints to ensure that the initial and final inner state are fully
inactive, and therefore that the corresponding linear equations do not depend on
the unknown FSM state. We also adapt the multiple-XOR constraint to become a
so-called 3-fork constraint.

3-fork constraint. In terms of constraints, a sum X + Y + Z = 0 (or an equality
X = Y + Z) can be understood as: “among three such variables if one is
active, then at least two of them are”. This is exactly the constraint of the
multiple-XOR described in Section 7.1.4.

Note that any solution to the associated MILP system is actually a worst-case
scenario in our case: a returned activation pattern is not guaranteed to be actually
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instantiable, just like in the differential case. We solved this simple MILP model
using the SageMath interface for Mixed Integer Linear Programing solving within
seconds on a standard laptop.

Most notably, we have found that:

w4 ≥ 13, w5 ≥ 20 and w6 ≥ 25

with the potential trail examples depicted on Fig. 7.7. We also verified that wn ≥ 26
for n ∈ {7, 8, . . . 26}. For larger values of n, either a trail has at least one active
Sbox per round, or it splits into two smaller trails with at least 13 active Sboxes.
Therefore, we deduce that wn ≥ 26 for all n ≥ 7.

out 0

SR

out 1

SR

out 2

SR

out 3

SR

(a) 4-round trail.

out 0

SR

out 1

SR

out 2

SR

out 3

SR

out 4

SR

(b) 5-round trail.

Figure 7.7: Two activity patterns for linear trails over 4 and 5 rounds.

The Sbox has been chosen to minimize the maximal modulus of its Fourier
coefficients, which is L(S) = 6.5135. It follows that the number of 4-digit blocks of
(S(t))t∈N required for any correlation attack based on a linear approximation is at
least 239.4, corresponding to 241.4 digits of the output sequence.

The previous analysis assumes that the output of the whitening LFSR is known
by the attacker. This can be achieved by an exhaustive search for its initial state,
implying that the time complexity of our attack will be multiplied by a factor
p|W| ≃ 2131. However, we can also get rid of the whitening LFSR by choosing
some coefficients β0, . . . , βn−1 corresponding to a recurring relation satisfied by the
sequence generated by W , such as ∑n−1

i=0 βi ·Zt+i = ∑n−1
i=0 βi · S(t+i). By definition,
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such a recurring relation corresponds to a multiple of the feedback polynomial ofW .
It has therefore degree d ≥ 32, implying that it involves 4-digit blocks of (S(t))t∈N
at distance ⌈d/4⌉ ≥ 8. As mentioned, we have wn ≥ 26 for n ≥ 7, which implies
that exploiting any linear approximation compatible with a recurring relation for
the whitening LFSR requires the knowledge of at least 277 digits of the output
sequence.

7.2.4 Performance

Just as in the previous section about LeMac and PetitMac, we refer to
our paper [Bau+24a] for a thorough presentation of our implementation and
benchmarks. Here, we only compile a few metrics to compare the performances
of Transistor with the ones of previous solutions. According to our benchmarks,
our design is faster than FiLIP [Méa+19] by several orders of magnitude. But
FiLIP was designed to minimize the output noise and not the computation time.
Regarding the implementations of Trivium and Kreyvium presented in [BOS23],
the performances have been measured on a massive AWS instance. Thus, it is
not possible to give a fair comparison with our work. However, we stress that
Transistor does not require any set-up time, which is a clear advantage compared
to these ciphers.

In Table 7.3, we compare the performances on a similar laptop of Transistor
with FRAST [Cho+24], the previous fastest solution in the state of the art. In this
paper, the chosen set of parameters is tailored to target a security level of 128 bits
and an error probability perr = 2−80. We observe that our instance of Transistor
for perr = 2−128 is 3 times faster in terms of throughput with a much lower latency
and no setup (against a 25-second setup for FRAST). As FRAST was already faster
than Elisabeth and its patches, we did not include them in this comparative
study.

Cipher perr Setup Latency Throughput
FRAST [Cho+24] 2−80 25 s (8 threads) 6.2 s 20.66 bits/s
Transistor 2−128 No 251 ms 65.10 bits/s

Table 7.3: Execution timings of FRAST and Transistor.

7.3 Concluding remarks

Designers of block ciphers can rely on a solid theoretical background that was
presented to a great extent in previous chapters. This enables researchers to build
secure and efficient primitives. However, for stream ciphers, such frameworks were
not really available. With Transistor, we not only outperform the state-of-the-art
of stream ciphers tailored for TFHE, we also present a general structure that
could easily be adapted to other contexts: the combination of an LFSR-based key
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schedule, LFSR-based whitening, and non-linear FSM with an AES-like structure
is general enough to find applications beyond TFHE.

Our security arguments rely on the minimum number of rounds needed to
have a non-zero correlation between the ciphertext and the master key. This is an
inherent property of the round function of the FSM which we consider to be of
independent interest. A lot of question remains. How does this quantity behave?
Can we build FSM update functions in such a way as to increase this quantity
without increasing the cost of its evaluation?

For the previously-presented MACs based on the AES, the situation is quite
different. Indeed, the relationship between MACs and encryption schemes is better
understood, as the large number of AEAD primitives published in the last few years
might suggest. However, dedicated MACs are not as studied as other constructions.
With LeMac and PetitMac, we showcased, again, how much the study of block
ciphers can benefit other domains of symmetric cryptography. It also proves once
again the influence of the AES on our field, and how much its construction can still
heavily influence novel constructions.

Furthermore, we also observe how much automated tools have now a substantial
role in cryptanalysis, and can be used for multiple and very different purposes.

While these projects were carried out independently (but with a non-trivial
intersection of co-authors), and while the targeted designs have a priori little in
common, regrouping them in a single chapter enabled the author of this thesis (at
least) to identify, in hindsight, a surprising number of similarities between them.
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Conclusion and perspectives

The central theme of this manuscript was the following question:

How can the strengths or weaknesses of symmetric ciphers be captured
by their algebraic properties?

This was achieved by multiple approaches. First, in Chapter 3, we presented
a higher-order differential attack against the soon-to-be lightweight standard of
the American National Institute of Standards and Technology, Ascon. The main
properties leveraged in this attack are the sparsity of the polynomial representation
of the cipher, but also the low degree of a few iterations of the round function.
These specific features enable us to track the evolution of its ANF round after
round. While it does not put Ascon at risk when used properly, it surely points
out that its lightweightness affects its algebraic representation and allows practical
recoveries of information (in misuse scenarios) that are not expected for an ideal
cipher.

In Chapters 4 and 5, the lightweightness of the block cipher Midori was challenged
by other means. The most striking example is how much this cipher appears secure
at first sight, in its original representation, while changing our point of view
reveal potential issues that were hidden until that point. More precisely, by using
standard and well-studied attacks but in a different system of coordinates, it is
possible to discover unexpected distinguishers. By studying a conjugate cipher,
rather than the original one, we free ourselves from the initial point of view to
rather focus on properties that remain invariant by conjugation, for instance,
the cycle decomposition of the function. We also show in these chapters how
such considerations are, after all, not so far away from multiple less-standard
cryptanalysis techniques. This not only confirms the relevance of the study
of conjugate ciphers, it also, and mainly, indicates that such studies could be
strengthened and adapted to other targets.

In Chapter 6, we showcased that analyses “up to a change of variables” could
also benefit other subfields of symmetric cryptography. In that case, we focused on
the study of non-linear components of ciphers and proved that, despite the different
point of views taken by many designers of APN functions, most of them could
be considered under a single framework. This unifying frame of reference revisits
many questions about our understanding of these optimal objects, but could first
and foremost enable us to provide new examples to diversify the already known
families of APN functions.

301
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Finally in Chapter 7, we demonstrate that such an algebraic point of view is
also well-suited to the design of new primitives. With LeMac and PetitMac, we
showed for instance that similarity equivalence provides efficient tools to traverse
large classes of functions while looking for both secure and efficient universal
hash functions. On the other hand, the analysis we made of our stream cipher
Transistor proves once again the significance of the spectral point of view, and in
particular of Fourier analysis, when providing security arguments for a symmetric
cipher, even in unusual use cases, including in odd characteristics.

Throughout these examples, we contributed to a better understanding of the
algebraic properties of symmetric ciphers, but we above all opened (and perhaps
reopened) many questions whose investigation would surely benefit our field. A
selection of the most representative open problems that we mentioned throughout
this manuscript are recalled below.

Open problems
Chapter 3: Higher-order differential attacks.

Open Problem 7.34 (Data-optimized cube attack). Can a cube attack against
Ascon take advantage, not only of the coefficient αu of a monomial of highest degree
Xu, but also of other coefficients αv, where v ∈ Prec(u)?

Open Problem 7.35 (Heuristic conditional distinguishers). Let αu be a coefficient
whose polynomial expression (in key variables) is known, and stored. Can we find
an efficient heuristic method that helps to determine conditions under which αu is
biased?

Chapter 4: Cryptanalysis of a conjugate ciphers.

Open Problem 7.36 (New targets). Can the cryptanalysis of conjugate ciphers
be extended to other targets? To other kind of attacks?

Open Problem 7.37 (Security analysis). Are we able to provide some security
arguments for all conjugates of a cryptographic function, for instance by leveraging
its cycle decomposition? What would be the corresponding design criteria for the
Sbox ?

Chapter 5: Commutative cryptanalysis.

Open Problem 7.38 (Commutative cryptanalysis outside existing frameworks).
Can (probabilistic) affine commutants, which are neither linear nor fixed-point-free
involutions, be found and leveraged in an attack against a symmetric cipher?

Open Problem 7.39 (Differential behavior of existing commutative distinguishers).
Can we provide an in-depth analysis of the differential properties relative to the
exhibited commutative distinguishers? See Section 5.5.2.
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Chapter 6: Linearly self-equivalence and APN functions.

Open Problem 7.40 (Linearly self-equivalent representatives of APN functions,
Problem 6.47). Does the CCZ-equivalence class of any APN function contain a
linearly self-equivalent mapping?

Open Problem 7.41 ((Non-quadratic) APN ℓ-variate projective mappings).
Can we build more cyclotomic or ℓ-variate projective mappings? Can we build
non-quadratic ones, based on APN monomials other than the Gold power mapping?

Chapter 7: Design of new primitives.

Open Problem 7.42 (Transistor-like stream ciphers). Can we build a
Transistor-like stream cipher, with an FSM update function which guarantees a
zero correlation between the ciphertexts and the master key for more than 3 rounds,
without decreasing the performance?
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Appendix A

Infinite families of quadratic APN
functions

The polynomial representations of the known infinite families of APN functions,
together with the conditions on their parameters to actually be APN are presented
in Tables A.1 to A.4. In the following, we provide more details on these conditions
when they do not fit in the tables, but also on the precise references where these
results were found.

In the following, for n = ℓk, we denote by Sℓ,k = 2n−1
2k−1 = ∑ℓ−1

i=0 2ik.

(BCL08a). See [BCL08, Corollary 1].

(BCL08b). See [BCL08, Theorem 2].

(BCV20). See [BCV20, Lemma 3.17].

(BCL09a). See [BCL09a, Corollary 1] [BCL09b, Corollaries 3 & 4].

(BBMM11). See [Bra+11a, Theorem 2.1].

(BCCCV20). See [Bud+20, Theorem VI.3 & Equation 16].

(BHK20). See [BHK20, Corollary 1].

(ZKLPT22). The conditions for this family of quadratic APN functions are
numerous. We therefore recall the original statement by the authors.

Theorem A.1 (Family (ZKLPT22)). [Zhe+22, Theorem 2] Let n = 2k with k ≥ 1
odd. Let i be a positive integer such that gcd(n, i) = 1. Let a ∈ F2n \ F2k and
b, c ∈ F2n such that bc ̸= 0. Let Fi,s,a,b,c : x→ aTrL/F(bx2i+1) + a2kTrL/F(cx2s+1).
If one of the following conditions is verified, then Fi,s,a,b,c is APN over F2n:

1. b is not a cube and:

a) s = 3i and c

b22i−2i+1 ∈ F∗
2k or,

b) s = k − 2i and c22i

b2i−1 ∈ F∗
2k or,
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c) s = k + 2i and cb2i−1 ∈ F∗
2k or,

d) i = 1, s = (k − 2)−1 mod n, and c2s−1

b22s ∈ F∗
2k or,

e) s = k and c /∈ F2k

2. or, s = n− i and c2i

b /∈ F2k .

(LZLQ22a). See [Li+22, Theorem 6].

(LZLZ22b). See [Li+22, Theorem 5].

(ZP13). See [ZP13, Corrolary 2].

(T19). See [Tan19, Theorem 3].

(CBC21). See [CBC21, Theorem 6.2].

(G22a). See [Göl22, Theorem III.2 F1].

(G22b). See [Göl22, Theorem III.2 F2].

(GK21). See [GK21, Theorem 1].

(CLV22a). See [CLV22, Theorem 3].

(CLV22b). See [CLV22, Theorem 4].

(LK23a/b). The conditions for these two families of quadratic APN functions
are too numerous for the table. We therefore recall the original statements by the
authors.

Theorem A.2 (Family (LK23a) [LK23, Theorem 1]). Let gcd(s, k) = 1 and

F : (x, y, z) 7→ (x2s+1 + x2s
z + yz2s

, x2s
z + y2s+1, xy2s + y2s

z + z2s+1).

Assume that the polynomials P1, P2, P3 have no root in F2k and P4 have no root in
F2k × F2k where q = 2s and P1, P2, P3, P4 are defined by:

P1 = Xq2+q+1 +X + 1,
P2 =Xq2+q+1 +Xq2 + 1,
P3 = Xq2+q+1 +Xq2+1 +Xq+1 +X + 1
P4 = Xq2+q+1 +XY q2+q +XY q +Xq2+q +XqY q2

+Xq2
Y + Y q2+q+1 + Y q2+q + Y q2 + Y q + 1.

Then F is APN.
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Theorem A.3 (Family (LK23b) [LK23, Theorem 9]). Let gcd(s, k) = 1 and

F : (x, y, z) 7→ (x2s+1 + xy2s + yz2s
, xy2s + z2s+1, x2s

z + y2s+1 + y2s
z).

Assume that the polynomials P1, P2, P3 have no root in F2k and P4 have no root in
F2k × F2k where q = 2s and P1, P2, P3, P4 are defined by:

P1 = Xq2+q+1 +Xq+1 +Xq +X + 1,
P2 = Xq2+q+1 +Xq2 + 1,
P3 = Xq2+q+1 +X + 1,
P4 = Xq2+q+1 +Xq+1Y q2 +XY q +XqY q2 +Xq2

Y

+Xq2 + Y q2+q+1 + Y q2+1 + Y q2+q + Y q2 + 1.

Then F is APN.
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ID
Functions

C
onditions

to
be

A
P

N
R

eferences

(B
C

L08a)
x

2
s+

1
+

a
x

2
(3−

i)
k

+
s+

2
i
k

F
ield:

n
=

3
k

(i.e.
ℓ

=
3),

k
≥

4,gcd(3
,k)=

1
[B

C
L08,B

ud+
06]

E
xponent:

gcd(s,n)=
1

(G
old

for
F

2
n)

O
thers:

sk
≡

im
od

3
,i∈

{1
,2},ord(a)=

S
3

,k

F
ield:

n
=

4
k

(i.e.
ℓ

=
4),

k
≥

3,
k

odd
(so

gcd(4
,k)=

1)
E

xponent:
gcd(s,n)=

1
(G

old
for

F
2

n)
(B

C
L08b)

x
2

s+
1

+
a
x

2
(4−

i)
k

+
s+

2
i
k

O
thers:

sk
≡

im
od

4
,i∈

{1
,3},ord(a)=

S
4

,k

[B
C

L08,B
C

L06]

(B
C

V
20)

a
x

2
k

+
1

+
x

2
s+

1
+

x
2

s+
k

+
2

k

+
bx

2
k

+
s+

1
+

b 2
k

x
2

s+
2

k

F
ield:

n
=

2
k.

[B
C

08,B
C

V
20]

E
xponent:

gcd(s,k)=
1

(G
old

for
F

2
k )

O
thers:

a
∈
F

2
n

\
F

2
k ,

X
2

s+
1

+
bX

2
s

+
b 2

k

X
+

1
has

no
root

x
s.t

x
2

k
+

1
=

1.

a
̸=

0
(B

C
L09a)

x
3

+
a

−
1TrF

2
n

/F
2 (a

3x
9)

[B
C

L09a]

(B
C

L09b/c)
x

3
+

a
−

1TrF
2

n
/F

2 3 (a
3x

9
+

a
6x

18)
F

ield:
n

=
3
k

[B
C

L09b]
E

xponent:
-

x
3

+
a

−
1TrF

2
n

/F
2 3 (a

6x
18

+
a

12x
36)

O
thers:

a
̸=

0
F

ield:
n

=
3
k,gcd(3

,k)=
1.

E
xponent:

gcd(s,n)=
1

(G
old

for
F

2
n),3

|(k
+

s)
(B

B
M

M
11)

a
x

2
s+

1
+

a
2

k

x
2

2
k

+
2

k
+

s

+
bx

2
2

k
+

1
+

ca
2

k
+

1x
2

s+
2

k
+

s

O
thers:

a
prim

itive
in

F
2

n.
b,c

∈
F

2
k
,bc

̸=
1.

[B
ra+

11a]

Table
A

.1:
K

now
n

infinite
fam

ilies
ofunivariate

quadratic
A

PN
functions

over
F

2
n

(1/2).
T

he
G

old
m

appings
are

om
itted.
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ID
Fu

nc
ti

on
s

C
on

di
ti

on
s

to
be

A
P

N
R

ef
er

en
ce

s

(B
C

C
C

V
20

)
a

2
x

22k
+

1
+

1
+

b2
x

2k
+

1
+

1
+

a
x

22k
+

2
+

bx
2k

+
2

+
d
x

3
F

ie
ld

:
n

=
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.
[B
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+

20
]

E
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∤k

.
E

xp
on

en
t:

If
i
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k
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−
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n
} .
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∈
{ k

+
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n
−

1,
(k

+
2)

−
1

m
od

n
} .

(B
H

K
20

)
x

3
+

a
x

2s
+

i
+

2i

+
a

2
x

2k
+

1
+

2k

+
x

2s
+

i
+

k
+

2i
+

k

O
th

er
s:

a
of

or
de

r
3.

[B
H

K
20

]

(Z
K
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T

22
)

a
Tr

F 2
n

/
F 2k

(b
x
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+

1
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a
2k

Tr
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n
/
F 2k

(c
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+

1
)
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ie
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=

2k
,k

od
d.
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+
22

]
E
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d(
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n
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1

O
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a
/∈
F 2

k
,b

c
̸=

0.
i,

s,
b,

c
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T
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em

A
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.
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ie
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:
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=
3k

.
E
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d(

s,
k

)=
1

(G
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d
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r
F 2

k
).

O
th

er
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a
2n

−
1

2k
−

1
̸=

1,
b

∈
F∗ 2k

.
(L

ZL
Q

22
a)

L
(x

)2k
+

1
+

bx
2k

+
1

L
:x
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x

2k
+

s

+
a
x

2s

+
x

bi
je
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n
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F 2

n
.

[L
i+

22
]

Ta
bl

e
A
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:

K
no

w
n

in
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ite
fa

m
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es
of

un
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A

PN
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F 2

n
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ID
Functions

C
onditions

to
be

A
P

N
R

eferences

(ZP
13)

(x
,y)

7→ (
x

2
s+

1
+

a
y

(2
s+

1)2
i

x
y

)
F

ield:
n

=
2
k.

k
even.

[ZP
13]

E
xponent:

gcd(s,k)=
1

(G
old

for
F

2
k ),

i
even.

O
thers:

a
∈
F

2
k

and
non-cubic.

F
ield:

n
=

2
k.

k
≥

2.
E

xponent:
gcd(s,k)=

1
(G

old
for

F
2

k ).
(T

19)
(x

,y)
7→ (

x
2

2
s+

2
3

s

+
a
x

2
2

sy
2

s

+
by

2
s+

1

x
y

)
O

thers:
a

∈
F

2
k
,b

∈
F

∗2
k

such
that

X
2

s+
1

+
a
X

+
b

has
no

root
in

F
2

k
.

[Tan19]

(C
B

C
21)

(x
,y)

7→ (
x

2
s+

1
+

x
2

s+
k

/
2y

2
k

/
2

+
a
x

y
2

s

+
by

2
s+

1

x
y

)
F

ield:
n

=
2
k.

k
even.

[C
B

C
21]

E
xponent:

gcd(s,k)=
1

(G
old

for
F

2
k ),

s
<

k2 .
O

thers:
a
,b

∈
F

2
k

such
that

(bX
2

s+
1

+
a
X

2
s

+
1) 2

k
/

2+
1

+
X

2
k

/
2+

1

has
no

root
in

F
2

k
.

F
ield:

n
=

2
k

E
xponent:

gcd(3
s,k)=

1.
(G

22a)
(x

,y)
7→ (

x
2

s+
1

+
x

y
2

s

+
y

2
s+

1

x
2

2
s+

1
+

x
2

2
sy

+
y

2
2

s+
1 )

[G
öl22]

(G
22b)

(x
,y)

7→ (
x

2
s+

1
+

x
y

2
s

+
y

2
s+

1

x
2

3
sy

+
x

y
2

3
s

)
F

ield:
n

=
2
k,

k
odd.

[G
öl22]

E
xponent:

gcd(3
s,k)=

1.

F
ield:

n
=

2
k,

k
≡

2
m

od
4.

E
xponent:

gcd(s,k)=
1.

(G
K

21)
(x

,y)
7→ (

x
2

s+
1

+
by

2
s+

1

x
2

s+
k

/
2y

+
ab

x
y

2
s+

k
/

2 )
O

thers:
a

∈
F

∗2
k

/
2 ,

b
∈
F

2
k ,

b
non-cubic

such
that

b 2
s+

2
s+

k2
̸=

a
2

s+
1

[G
K

21]

Table
A

.3:
K

now
n

infinite
fam

ilies
ofm

ultivariate
quadratic

A
PN

functions
over

F
2

n
(1/2).
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ID
Fu

nc
ti

on
s

C
on

di
ti

on
s

to
be

A
P

N
R

ef
er

en
ce

s

(L
ZL

Q
22

b)
(x

,y
)7→

(
x

3
+

x
y

2
+

y
3

+
x

y
x

5
+

x
4
y

+
y

5
+

x
y

+
x

2
y

2

)
F

ie
ld

:
n

=
2k

,g
cd

(k
,3

)=
1.

[L
i+

22
]

F
ie

ld
:

n
=

2k
.

E
xp

on
en

t:
gc

d(
s,

k
)=

1.
(C

LV
22

a)
(x

,y
)7→

(
x

2s
+

1
+

x
y

2s

+
a
y

2s
+

1

x
22s

+
1

+
a
x

22s
y

+
(1

+
a
)2s

x
y

22s
+

a
y

22s
+

1

) O
th

er
s:

a
∈
F 2

k
s.

t.
X

2s
+

1
+

X
+

a
ha

s
no

ro
ot

in
F 2

k
.

[C
LV

22
]

(C
LV

22
b)

(x
,y

)7→
(

x
3

+
x

y
+

x
y

2
+

a
y

3

x
5

+
x

y
+

a
x

2
y

2
+

a
x

4
y

+
(1

+
a
)2

x
y

4
+

a
y

5

) F
ie

ld
:

n
=

2k
.

[C
LV

22
]

O
th

er
s:

a
∈
F 2

k
s.

t.
X

3
+

X
+

a
ha

s
no

ro
ot

in
F 2

k
.

F
ie

ld
:

n
=

3k
.

E
xp

on
en

t:
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d(
s,

k
)=

1.
O

th
er

s:
T

he
po

ly
no

m
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of

T
he

or
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A
.2

(L
K

23
a)

(x
,y

,z
)7→

 x
2s

+
1

+
x

2s

z
+

y
z

2s

x
2s

z
+

y
2s

+
1

x
y

2s

+
y

2s

z
+

z
2s

+
1
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ve
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ro
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F 2

k
or

F 2
k

×
F 2

k
.
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K

23
]

(L
K
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b)

(x
,y

,z
)7→

 x
2s

+
1

+
x

y
2s

+
y
z

2s

x
y

2s

+
z

2s
+

1

x
2s

z
+

y
2s

+
1

+
y

2s

z

 
F

ie
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:
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.
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K
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]

E
xp

on
en

t:
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d(
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k
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1.
O

th
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T
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A
.3
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F 2
k

or
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×

F 2
k
.

Ta
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e
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.4
:

K
no
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m
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A
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Appendix B

Reusing the tools of Chapter 6 for
cryptanalysing an Sbox

So far, we only considered multiplicative decompositions of F∗
22k . But as F2k , with

n = 2k is an additive subgroup of F22k , we can also partition F22k as:

F22k =
⊔
λ∈O

λ+ F2k ,

given any system of representatives O.
We refer to any λ+ F2k as an affine line and to such λ as its origin. Any set

O with 2k elements such that TrF22k/F2k
(O) = F2k is a system of origins; and in

particular the subspaces λF2k with λ ∈ F22k \ F2k .

B.1 Additive Subspace Property for Permutations
Let Γ be a system of multiplicative representative and γ◦ be the representative of
F∗

2k . We denote by Γ◦ the set Γ \ {γ◦}. We now define a family of permutations Π,
which map any multiplicative coset γF∗

2k , γ ̸= γ◦ onto the (punctured) additive
coset G(γ) + F∗

2k , where G(γ) ∈ O. Moreover, the restriction of Π to all cosets
are the same, up to the additive offset, i.e., all the lines are shuffled the same
way. Therefore, this property can be seen as “an additive variant” of the subspace
property. However, if we want to construct a permutation of F∗

22k , then for γ = γ◦,
F∗

2k must be mapped onto O. As we will show later, the functions satisfying this
property include, for n = 8, the Sbox used in the Russian standard primitives
Streebog and Kuznyechik [Fed12, Fed15].

Definition B.1 (ASPP). A function Π: F22k → F22k with Π(0) = 0 is said to have
the additive subspace property for permutations (ASPP) if there exist:

• a multiplicative system of representatives Γ and a system of origins O, and

• two bijective maps: G : Γ◦ → O, F : F2k → F2k with F (0) = 0, such that:

Π|F22k \F2k
: γφ 7→ G(γ) + F (φ) and Π(F∗

2k) = O. (B.1)

Such a tuple (Γ◦,O, F,G) is called an ASPP-decomposition of Π. ▷

Since only Γ◦ matters in Definition B.1 and not Γ, γ◦ can always be chosen
freely.

351
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Proposition B.2. Any function satisfying the ASPP is bijective.

Proof. As it is defined, Π is injective on its restriction to F22k \F2k . By construction,
F takes all values except 0 on F∗

2k . Thus, Π(F22k \ F2k) = F∗
22k \ O. But the values

in {0} ∪ O are exactly the ones taken by Π on F22k . Π is thus a bijection.

For any such functions, the decomposition is almost unique.

Definition B.3 (Trivially-equivalent decompositions). Let Π be a function
satisfying ASPP and (Γ◦,O, F,G) be a decomposition of Π. Let φ ∈ F∗

2k . Let
Γ̃◦ := φΓ◦, and F̃ : F2k → F2k , G̃ : Γ̃◦ → O be defined by:

F̃ = F ◦Mφ and G̃ = G ◦Mφ−1 ,

where the multiplication by φ (resp. by φ−1) is denoted by Mφ (resp. Mφ−1).
Then, the tuple (Γ̃◦,O, F̃ , G̃) is an ASPP-decomposition of Π. (Γ◦,O, F,G) and
(Γ̃◦,O, F̃ , G̃) are called trivially-equivalent. ▷

The new tuple is a decomposition of Π. First, F̃ , G̃ are well-defined and have the
announced domains and codomains. Moreover, they are bijective as compositions
of bijections, and F̃ (0) = F (φ × 0) = F (0) = 0. By design, Γ̃◦ is a system of
directions without representative for F2k . Finally, let γ̃ ∈ Γ̃◦, ψ ∈ F∗

2k . Then
G̃(γ̃) + F̃ (ψ) = G(φ−1γ̃) + F (φψ). By construction γ̃ = φγ for some γ ∈ Γ. Thus:

G̃(γ̃) + F̃ (ψ) = G(γ) + F (φψ) = Π (γ (φψ)) = Π(γ̃ψ).

Thus (Γ̃◦,O, F̃ , G̃) satisfies Definition B.1 and is therefore a decomposition of
Π.

Proposition B.4 (Uniqueness of the decomposition). Let Π be a function satisfying
the ASPP. Then all decompositions of Π are trivially equivalent.

Proof. Let (Γ◦,O, F,G) and (Γ̃◦, Õ, F̃ , G̃) be two decompositions of Π. Because Γ◦

and Γ̃◦ are systems of directions without representatives for F2k , we can enumerate
Γ◦ =

{
γ0, · · · , γ2k−1

}
and Γ̃◦ =

{
γ̃0, · · · , γ̃2k−1

}
such that γi = γ̃iφi, where

φi ∈ F∗
2k for all i ∈

q
0, 2k − 1

y
.

Let ψ ∈ F∗
2k and let i ∈

q
0, 2k − 1

y
. Then γiψ = γ̃iφiψ and thus G(γi)+F (ψ) =

G̃(γ̃i) + F̃ (φiψ), so that:

F (ψ) + F̃ (φiψ) = G(γi) + G̃(γ̃i). (B.2)

So, for any i, the restrictions of the functions F and F̃ ◦Mφi to F∗
2k only differ

by a constant, which is F (1) + F̃ (φi). We can thus rewrite it as:

∀ψ ∈ F∗
2k ,∀ i ∈

r
0, 2k − 1

z
, F (ψ) + F (1) = F̃ ◦Mφi(ψ) + F̃ (φi). (B.3)

The image of the restriction of the left-hand function to F∗
2k is F2k \ {F (1)},

and the image of the restriction of the right-hand function is F2k \
{
F̃ (φi)

}
. By
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Eq. (B.3), those sets must coincide, so F (1) = F̃ (φi) for all i. In particular, from
the injectivity of F̃ , we get φi = φj for all i, j. The single value taken by all φi is
now denoted by φ ∈ F∗

2k . Consequently, we deduce that γi = γ̃iφ for all i, and in
particular:

Γ◦ = φΓ̃◦.

Furthermore, by simplifying Eq. (B.3), we obtain that, for all ψ ∈ F∗
2k , F (ψ) =

F̃ (ψφ).
Again, by simplifying Eq. (B.2), we observe that G(γi) = G̃(γ̃i) so that, for

all i it holds that:

G̃ = G ◦Mφ−1 but also Õ = Im(G̃) = Im(G) = O.

The two representations are therefore trivially equivalent.

It is worth noting that, while the generalized cyclotomic property was
independent of the choice of Γ, this is not the case for the ASPP.

B.2 Streebog/Kuznyechik Sbox
The Sbox used by the last two Russian standards, Streebog and Kuznyechik, is
defined for n = 8, i.e., F22k = F256 and F = F16. It is specified [Fed12, Fed15]
as a look-up table of integers ranging from 0 to 255. In order to rather study a
function F : F22k → F22k , identification between F22k and J0, 255K must be specified,
as two different identifications gives two functions over F22k with a priori different
properties.

The latest study [Per19] on the Sbox points out a representation of F256 that
we will also be using: F256 ≃ F2[X]/(X8 + X4 + X3 + X2 + 1). Identification
between 8-bit words, integers of J0, 255K and polynomials of degree at most 7 is
done canonically: ∑7

i=0 bi2i ≃
∑7
i=0 biX

i ≃ (b7, · · · , b0). Finally, we denote by
Λ: F22k → J0, 255K the isomorphism built from these relations. Through Λ, F22k

inherits from the ordering of integers.
In the following, we consider the bijective Sbox π : F22k → F22k defined by:

π = Λ−1 ◦ LUT ◦ Λ,

where LUT is the look-up table given as specifications [Fed12, Fed15]. The previous
studies [Per19, PU16, BPU16] of π show how much it interacts with both additive
and multiplicative decompositions. We continue along this line of work by studying
its normalized form π0 := π + π(0), which acts as a permutation of F∗

22k .
The TK-log decomposition of π [Per19] can be restated by the fact that π0

satisfies the ASPP. The decomposition of π is therefore unique and partially
exhibited in [Per19]. Indeed, Perrin shows that the multiplicative coordinates
correspond to the decomposition Γ×F∗

2k where Γ =
{
ai, i ∈ J0, 16K

}
and a is a well-

chosen root of the polynomial defining F22k , namely a := Λ(2) as 2 ≃ X. In other
words, a is the class of X. Instead of Γ, we observe that a17 {a−i, i ∈ J1, 16K

}
=
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Γ◦ and use the associated trivially-equivalent decomposition to describe some
properties of π0 that can be easily verified.

Proposition B.5. Let b = a−1. Let (Γ◦,O, F,G) be the ASPP-decomposition of
π0 with Γ =

{
bi, i ∈ J0, 16K

}
= {1} ∪ Γ◦. Let G◦ := π0|F2k

.

1. Let λ ∈ F22k , and O ∩ (λ+ F22k) = {oλ}. Then ∀φ ∈ F2k , Λ(oλ) ≤ Λ(λ+ φ),
meaning that O is built by choosing the smallest possible element of each
affine line as origin.

2. Let F2k be enumerated in increasing order as F2k = {φ0, φ1, · · · , φ15}. Let
i ∈ J0, 16K , j ∈ J0, 14K. Then:

TrF22k/F2k
◦ π0(bi+17j) =

{
TrF22k/F2k

◦G(bi) = φi−1 if i ̸= 0
TrF22k/F2k

◦G◦(b17j) = φj+1 if i = 0 ,
(B.4)

and TrF22k/F2k
◦G◦(0) = 0 = φ0. In other words, enumerating both coordinates

of preimages by increasing powers results in enumerating the origins of the
images by increasing traces.

Figure B.1: Graphical representation of the values of TrF22k/F2k
◦ π0(bi+17j). The

first column corresponds to i = 0, i.e., to TrF22k/F2k
◦ π0(F2k).

As pointed out in [Per19], O is even more structured as it is an F2-space of
dimension 4. This structure is in line with Proposition B.5. Indeed, a natural way
to obtain a system of representatives O is to complete any F2-basis of F2k , B0, into
a basis of F22k , B0 ∪ B1. Then, O = ⟨B1⟩ is an additive system of representatives
that is also an F2-subspace. The most natural algorithm to do so is to exhaust
F22k \ F2k while keeping the first four vectors which make the rank grow. This
procedure leads to the described system of origins. Regarding π0, F is the least
understood building-block. It remains an open question to determine whether a
simple and natural description of F exists or not.
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B.3 Walsh coefficients of the functions satisfying the
ASPP

We now focus on the Walsh coefficients of the functions satisfying the ASPP. As for
generalized cyclotomic mappings, we can express the Walsh coefficients of functions
satisfying the ASPP in terms of the coefficients of their subfunctions.

Proposition B.6. Let Π be a function satisfying the ASPP, (Γ◦,O, F,G) an ASPP-
decomposition of Π, and G◦ = Π|F2k

. Let α ∈ F22k and β ∈ F∗
22k be decomposed

as β = γβφβ with γβ ∈ Γ◦ ∪ {1}, φβ ∈ F∗
2k . Finally, let G◦

γβ
be the function from

F2k to F2k defined by x 7→ TrF22k/F2k
(γβG◦(x)). Then WF22k ,Π(α, β) = SG◦ + SF

where:

SG◦ = WF2k ,G◦
γβ

(
TrF22k/F2k

(α), φβ
)
−WF2k ,G◦

γβ
(0, φβ)

and SF =
∑
γ∈Γ◦

(−1)TrF22k /F2k
(βG(γ))

WF2k ,F

(
TrF22k/F2k

(αγ),TrF22k/F2k
(β)
)
.

Proof. WF22k ,Π(α, β) can be divided as WF22k ,Π(α, β) = SF2k
+ SF22k \F2k

where:

SF2k
=

∑
φ∈F2k

χF22k
(αφ+ βΠ(φ)) and

SF22k \F2k
=
∑
γ∈Γ◦

∑
φ∈F∗

2k

χF22k
(αγφ+ βΠ(γφ));

by dividing the sum over F22k = F2k ⊔ (F22k \ F2k) into two and using multiplicative
coordinates in the second sum. Let us now prove the announced formulas for both
halves. First, by using the trace linearity and transitivity, and by decomposing
β = γβφβ, we obtain:

SF2k
=

∑
φ∈F2k

χF22k
(αφ+ βΠ(φ))

=
∑
φ∈F2k

χF2k

(
φTrF22k/F2k

(α) + φβTrF22k/F2k
(γβΠ(φ))

)
= WF2k ,G◦

γβ

(
TrF22k/F2k

(α), φβ
)
.

Regarding the second sum, we observe that:

SF22k \F2k
=
∑
γ∈Γ◦

∑
φ∈F∗

2k

χF22k
(αγφ+ βF (φ) + βG(γ))

=
∑
γ∈Γ◦

χF22k
(βG(γ))

∑
φ∈F∗

2k

χF22k
(αγφ+ βF (φ))

=
∑
γ∈Γ◦

χF22k
(βG(γ))

∑
φ∈F2k

χF22k
(αγφ+ βF (φ))−

∑
γ∈Γ◦

χF22k
(βG(γ))

=
∑
γ∈Γ◦

χF22k
(βG(γ))WF2k ,F

(
TrF22k/F2k

(αγ),TrF22k/F2k
(β)
)
−
∑
γ∈Γ◦

χF22k
(βG(γ));
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where we use the decomposition of Π, change the sum over F∗
2k into a sum over

F2k , observe that F (0) = 0 and finally use the trace linearity and transitivity.
Finally, because G(Γ◦) = Π(F2k), we get:∑

γ∈Γ◦
χF22k

(βG(γ)) =
∑
φ∈F2k

χF22k
(βΠ(φ)) = WF2k ,G◦

γβ
(0, φβ).

The decomposition WF22k ,Π(α, β) = SG◦ + SF is then deduced from SG◦ = SF2k
−

WF2k ,G◦
γβ

(0, φβ) and SF = SF22k \F2k
+WF2k ,G◦

γβ
(0, φβ)

Corollary B.7 (The case β ∈ F∗
2k). Let Π be a function satisfying the ASPP,

(Γ◦,O, F,G) be an ASPP-decomposition of Π, and G◦ = Π|F2k
. Let α ∈ F∗

22k , and
α−1 be decomposed as α−1 = φα−1γα−1 , γα−1 ∈ Γ, φα−1 ∈ F∗

2k . Let β ∈ F∗
2k . Then:

WF22k ,Π(α, β) =
{

0 , if α ∈ F∗
2k

WF2k ,G
◦
1

(
TrF22k/F2k

(α), β
)

+ 2kεα,β , if α ̸= F2k ,

where G◦
1 : x 7→ TrF22k/F2k

(G◦(x)), and εα,β = (−1)TrF22k /F2k
(βG(γα−1 )).

Proof. Since β ∈ F∗
2k , we apply Prop. B.6 with γβ = 1 and φβ = β. By construction,

Π(F2k) = O so G◦
1 = TrF22k/F2k

◦Π|F2k
is bijective. As β ̸= 0, we get WF2k ,G

◦
1
(0, β) =

0. We deduce that:

SG◦ = WF2k ,G
◦
1

(
TrF22k/F2k

(α), β
)
.

Moreover, because TrF22k/F2k
(β) = 0, the sum SF becomes:

SF =
∑
γ∈Γ◦

χF22k
(βG(γ))WF2k ,F

(
TrF22k/F2k

(αγ), 0
)

(B.5)

We now use that WF2k ,F (u, 0) = 2k · 10(u) and TrF22k/F2k
(αγ) = 0 if and only if

γ ∈ α−1F2k = γα−1F2k . In other words, when γ ∈ Γ◦, TrF22k/F2k
(αγ) = 0 if and

only if γ = γα−1 . We distinguish two cases.

The case α ∈ F∗
2k . In that case, α−1 ∈ F∗

2k and γα−1 = γ◦. Thus, TrF22k/F2k
(αγ)

is never zero when γ goes over Γ◦ and SF = 0. Finally,

WF22k ,Π(α, β) = SG◦ = WF2k ,G
◦
1

(
TrF22k/F2k

(α), β
)

= WF2k ,G
◦
1

(0, β) = 0.

Indeed, G◦
1, is a bijection, and β ̸= 0.

The case α ∈ F22k \ F2k . In that case, only a single term of the sum in Eq. (B.5)
remains: SF = 2kχF22k

(βG(γα−1)), so that:

WF2k ,G
◦
1

(0, β) = WF2k ,G
◦
1

(
TrF22k/F2k

(α), β
)

+ 2kχF22k
(βG(γα−1)) .
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We now consider a very specific choice of multiplicative system of representatives.
Indeed, because 22k−1 = (2k +1)(2k−1), the group G of order 2k +1 exists within
F∗

22k . If a is a primitive element, then G =
〈
a2k−1

〉
. Moreover, gcd(2k−1, 2k+1) =

gcd(2k − 1, 2) = 1 because 2k − 1 is odd, so according to the Chinese Remainder
Theorem, any non-zero element can be uniquely decomposed as ai(2k−1)+j(2k+1).
This implies that G is a multiplicative system of representatives. This choice, known
as the polar coordinate system or polar representation (see for instance [Car21,
page 191]), has especially been studied to design Boolean functions with notable
properties [CF08, CM10, Lou+12, Zhe+13]. More generally, any set S with 2k + 1
elements is a multiplicative system of representatives if and only if it satisfies
Θ(S) = G where Θ: F22k → F22k , x 7→ x2k−1. In [Göl15], Göloğlu introduces the
trace-0/trace-1 representation which corresponds to Γ = {1} ∪ Tr−1

F22k/F2k
({1}). In

the following proposition, using the polar representation, we construct functions
satisfying the ASPP and which have a linearity which is at most twice the smallest
known linearity for an Sbox over F22k .

Proposition B.8. Let Π be a function satisfying the ASPP, with (Γ◦,O, F,G)
such that Γ◦ = G \ {1} where G ⊂ F∗

22k is the group of order 2k + 1 and F = Id.
Then L(F ) ≤ 2k+2.

Proof. Let α, β ∈ F∗
22k . We observe that

∣∣∣WF22k ,Π(α, β)
∣∣∣ ≤ |SG◦ |+ |SF |. First of

all,

|SG◦ | =
∣∣∣WF2k ,G◦

γβ

(
TrF22k/F2k

(α), φβ
)
−WF2k ,G◦

γβ
(0, φβ)

∣∣∣
≤

∣∣∣WF2k ,G◦
γβ

(
TrF22k/F2k

(α), φβ
)∣∣∣+ ∣∣∣WF2k ,G◦

γβ
(0, φβ)

∣∣∣
≤ 2k+1.

Then,

|SF | =

∣∣∣∣∣∣
∑
γ∈Γ◦

χF22k
(βG(γ))WF2k ,Id

(
TrF22k/F2k

(αγ),TrF22k/F2k
(β)
)∣∣∣∣∣∣ .

So we focus on bounding the remaining sum. We obviously know that
WF2k ,Id(u, v) = 2k · δu,v for any u, v ∈ F22k . In our case, TrF22k/F2k

(αγ) =
TrF22k/F2k

(β) if and only if γ ∈ α−1(β + F2k). Let us suppose that there exists
φ ∈ F2k such that γ = α−1(β + φ). In that case, because γ ∈ G, we get
(α−1(β + φ))2k+1 = γ2k+1 = 1. This means that (β + φ)2k+1 = α2k+1. The
left-hand side can be rewritten as:

(β + φ)2k+1 = (β + φ)(β + φ)2k = (β + φ)(β2k + φ2k) = β2k+1 + (β + β2k)φ+ φ2;

by successively using the linearity of x 7→ x2k , and the fact that φ2k = φ because
φ ∈ F2k . All in all, we obtain φ2 + TrF22k/F2k

(β)φ+β2k+1 = α2k+1. This quadratic
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equation in φ has at most 2 solutions (in F2k), so in any case we get,∣∣∣∣∣∣
∑
γ∈Γ◦

χF22k
(βG(γ))WF2k ,Id

(
TrF22k/F2k

(αγ),TrF22k/F2k
(β)
)∣∣∣∣∣∣ ≤ 2× 2k.

Finally, we obtain:∣∣∣WF22k ,Π(α, β)
∣∣∣ ≤ |SG◦ |+

∣∣∣SF2k

∣∣∣ ≤ 2k+1 + 2× 2k = 2k+2.

In practice, we can even build such permutations with L(F ) ≤ 3× 2k: for n =
8, 10, 12, 14 and 16 bits, we obtained linearities equal respectively to 44, 80, 156, 300
and 568. It is very counter-intuitive and quite surprising to obtain such low
linearities by using, as subcomponent, the identity mapping. This points out that
this subclass of functions, and more generally functions satisfying ASPP, should
deserve more attention.



Appendix C

Contexte et résumé des travaux

C.1 Contexte général
Cryptographie. La cryptographie est la science assurant la sécurité de
l’information, qu’elle soit en transit (échanges lors de la connexion à un site internet)
ou bien au repos (données enregistrées sur un disque dur). L’opération dite de
chiffrement consiste à transformer un message clair en une forme inintelligible,
tandis que le déchiffrement est le processus inverse. Pour que le chiffré obtenu soit
réellement inintelligible, il faut que la transformation dépende d’une information
complètement inconnue d’une personne extérieure à la communication. Cette
information inconnue, appelée communément clé, peut être la transformation tout
entière mais il est d’usage de considérer la transformation comme complètement
publique. La clé est alors un paramètre de la transformation. Cette clé est aussi
nécessaire pour le déchiffrement. On parle de chiffrement symétrique lorsque la
même clé est utilisée pour les deux procédés et de chiffrement asymétrique lorsque
les clés prennent des formes différentes. Cette thèse porte sur la cryptographie
symétrique.

Standardisation. Les algorithmes cryptographiques utilisés aujourd’hui pour
la plupart des communications en ligne sont en réalité en nombre restreint : il
s’agit de standards. En particulier, ceux émis par les États-Unis d’Amérique via le
National Institute for Standards and Technology (NIST) sont souvent amenés à
être ultérieurement adoptés par d’autres acteurs nationaux ou internationaux.
Par exemple, l’Avanced Encryption Standard [DR02] (AES) est l’algorithme
de chiffrement symétrique le plus largement utilisé dans le monde depuis sa
standardisation aux États-Unis en 2002 [Aes]. À cause de l’émergence de nouvelles
technologies, ces standards doivent néanmoins régulièrement être mis à jour par les
autorités publiques. C’est la raison pour laquelle, le NIST a récemment choisi en
2023 [Dob+19], après un processus de plus de 7 ans, de promouvoir l’algorithme
Ascon [Dob+21] comme futur standard de cryptographie dite “légère”.

359
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Cryptographie légère. Cette branche de la cryptographie symétrique vise
notamment à répondre aux besoins de sécurisation des objets connectés et de
“l’Internet des objets” (IoT). En effet, les algorithmes actuellement standardisés
nécessitent des ressources substantielles en terme de temps de calcul et d’énergie et
ne peuvent pas être utilisés par un objet ayant une faible puissance de calcul [BP17].
Par exemple, une primitive implémentée sur des microcontrôleurs ne peut pas
exiger un grand nombre de cycles de CPU car le temps pris par son évaluation
deviendrait alors un goulet d’étranglement pour l’application de plus haut niveau
l’utilisant. De manière similaire, le nombre de portes logiques disponibles pour le
chiffrement sur une puce RFID est extrêmement restreint.

La cryptographie légère correspond à ces cas d’utilisation. De très nombreux
algorithmes légers [Bor+12, Bei+16, Ban+15, Dob+21, Ava+23] ont été proposés au
cours des deux dernières décennies dans des conférences, journaux de référence, mais
aussi dans des compétitions internationales [Cae13, Nis17] comme celle organisée
par le NIST. Ces algorithmes sont de natures très diverses [BP17], tant au niveau
du type de primitive de base (permutation, chiffrement par bloc avec tweak) que
des détails de conception de celle-ci (ARX, fonction de tour quadratique, structure
de chiffrement à flot). Malheureusement, ils ont un point commun : ils ne peuvent
jamais être prouvés complètement sûrs. En effet, il n’est possible de vraiment faire
confiance à un algorithme cryptographique que s’il résiste à une analyse de sécurité
intense et continue, comme c’est par exemple le cas avec l’AES.

Cryptanalyse. Face à ce constat, il est donc nécessaire de ne jamais stopper
l’effort de cryptanalyse. Pour cela, des méthodes désormais très classiques existent.
C’est le cas par exemple de la cryptanalyse différentielle [BS91b, BS91a] qui étudie
la distribution de probabilité de la différence entre deux chiffrés correspondant à
des clairs dont la différence est choisie, ou encore de la cryptanalyse linéaire [TG92,
Mat94] qui estime la distance entre la fonction de chiffrement et l’ensemble des
fonctions affines. Ces méthodes continuent de mettre en avant des failles de sécurité
dans des algorithmes récents, alors même que ceux-ci ont été conçus pour résister
à ce type d’analyse. Même si ces méthodes sont désormais relativement bien
comprises [CV95, BN13, Bey21, BR22], beaucoup de problèmes restent ouverts,
notamment au sujet de l’existence et de la construction de fonctions qui résistent
de manière optimale à une analyse différentielle [Car15].

Avec l’avènement de la cryptographie légère, de nouveaux types d’attaques ont
été inventés afin de tirer profit des choix de conceptions qui ont, par construction,
été choisis pour réduire les coûts d’implémentation. En effet, s’il est vite tentant
d’utiliser des constructions très structurées, des états de petite taille ou encore des
composants non-linéaires émanant de fonctions quadratiques afin de garantir un
coût réduit, ces choix de conception sont autant de potentiels leviers dont peut
tirer avantage le cryptanalyste.
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Mise en contexte. Cette thèse s’inscrit donc dans ce contexte. Dans un premier
temps, deux généralisations des attaques différentielles, toutes deux très différentes,
sont analysées et appliquées à des chiffrements symétriques légers. Ces approches
reposent néanmoins sur une utilisation commune et continue de la représentation,
désormais classique [Can16, Car21], des fonctions booléennes, c’est à dire des
fonctions dont les entrées et sorties sont des bits, comme des polynômes multivariés
dont les coefficients sont également des bits. Dans un deuxième temps, c’est
précisément ces objets mathématiques que sont les fonctions booléennes qui sont
considérés, et en particulier les fonctions dites APN [NK93] (Almost Perfect Non-
linear) qui résistent de manière optimale à l’analyse différentielle. Enfin, après
l’analyse, nous nous tournons vers la conception de primitives de cryptographie
symétriques pour des usages autres que la cryptographie légère.

C.2 Analyse différentielle d’ordre supérieur et applica-
tion à Ascon

Analyse différentielle d’ordre supérieure. La première généralisation de
l’analyse différentielle considérée dans cette thèse est appelée analyse différentielle
d’ordre supérieur [Knu95, Lai94], ou analyse intégrale [KW02], ou encore “par
cubes” [DS09]. Cette méthode s’intéresse à l’analyse très précise de la forme
normale algébrique (ANF en anglais) du chiffrement, c’est à dire à sa représentation
polynomiale mentionnée plus haut. En particulier, lorsqu’il est possible de détecter
la présence (ou l’absence) d’un monôme précisément identifié dans l’ANF du
chiffrement, il est tout de suite possible de distinguer la primitive d’une bijection
aléatoire. C’est là une première faiblesse : dans une situation idéale, il est préférable
que la suite des chiffrés successifs ressemblent à une suite complètement aléatoire.
Lorsqu’à cette détection s’ajoute la connaissance exacte de l’expression du coefficient
ciblé, en fonction de la clé secrète, il est alors possible de monter une attaque par
recouvrement de clé. Dans ce cas, la clé secrète peut être (en partie) récupérée
par un adversaire extérieur à la communication et la confidentialité est alors
compromise. Puisque la fonction de chiffrement est considérée publique, son
expression polynomiale l’est aussi. Il est donc en pratique nécessaire que cette
expression soit aussi dense que possible, au point de ne pas pouvoir être stockée
sous forme développée et de ne pas pouvoir être facilement analysée.

Application à Ascon. Les attaques différentielles d’ordre supérieur sont donc
particulièrement redoutables lorsque les composants utilisés pour construire le
chiffrement sont tous de bas degré, typiquement, tous linéaires ou quadratiques.
Dans ce cas, le chiffrement (ou une version simplifiée) n’atteint pas toujours le degré
ou la “densité” attendue pour une bijection aléatoire. C’est précisément le cas pour
Ascon. Ce chiffrement est un chiffrement authentifié [Rog02] qui assure à la fois la
confidentialité de la communication, mais qui est aussi muni, par construction, d’un
moyen de certifier que le message n’a pas été modifié pendant la communication,
et qu’il provient bien de la personne attendue. Pour cela, Ascon utilise un mode
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de chiffrement dit en éponge [Ber+07] qui est décrit en Figure C.1. Dans ce
mode, une bijection publique p : {0, 1}320 → {0, 1}320 de 320 bits est utilisée et
successivement composée plusieurs fois avec elle même pour obtenir p ◦ p . . . ◦ p.
Mais cette brique de base p est très creuse et de degré seulement 2, alors qu’une
bijection de 320 variables peut monter, jusqu’au degré 319. Ce bas degré est une
contrainte de construction pour obtenir de très bonnes performances, mais aussi
une faiblesse algébrique. Nous montrons en effet avec ce travail que lorsque qu’une
paire (k,N) (à gauche en Figure C.1) est utilisée pour chiffrer de l’ordre de 240

messages, alors Ascon ne permet pas d’assurer la confidentialité de tous les futurs
messages chiffrés avec cette même paire. En effet, dans ce cas, l’état noté ΣAD est
fixé (car il ne dépend que de k,N et de IV qui est une constante connue) et peut
être récupéré complètement grâce à une attaque différentielle d’ordre supérieure
visant la bijection interne prin où rin = 6. Contrairement à une attaque d’ordre
supérieur classique, cette attaque est basée sur la récupération d’une information
incomplète sur des coefficients, qui permet donc de retrouver de l’information sur
ΣAD seulement de manière conditionnelle. L’avantage de cette méthode est qu’elle
ne nécessite pas le calcul trop coûteux de la forme polynomiale développée. Cette
attaque nécessite beaucoup de prérequis, notamment une mauvaise utilisation de N
qui doit normalement être changé à chaque chiffrement d’un nouveau message, ainsi
qu’un grand nombre de paires clair/chiffré connues de l’attaquant. En revanche,
sa complexité en temps est aussi de l’ordre de 240 et sa complexité en mémoire
suffisamment basse pour être mise en œuvre en pratique. Ce travail collaboratif
avec Anne Canteaut & Léo Perrin est publié dans le journal IACR Transactions
on Symmetric Cryptology, 2022(4) [BCP22].
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Figure C.1: Le mode de chiffrement authentifié d’Ascon.
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C.3 Analyse commutative, analyse de chiffrements
conjugués et analyse différentielle basée sur des
lois de groupes alternatives

Attaques par invariants. La deuxième analyse considérée dans cette thèse
s’inscrit quant à elle dans la lignée des attaques qui cherchent à mettre en avant
une propriété restant invariante [Guo+16, TLS19, Bey18] à travers le chiffrement.
En effet, la plupart des chiffrements ont une structure dite itérée où, comme dans
Ascon mentionné plus haut, une fonction de tour est composée successivement
avec elle-même. Lorsque qu’un adversaire peut établir qu’une propriété reste
satisfaite avant ou après l’application de cette fonction, il n’est pas rare que cette
propriété “traverse” le chiffrement tout entier. Par exemple, lorsqu’un ensemble
de messages clairs E ⊂ {0, 1}n vérifie F (E) ⊂ E pour une fonction de tour
F : {0, 1}n → {0, 1}n alors nécessairement E ⊂ FR(E) pour R itérations de F .
Une telle propriété permet alors de nouveau de distinguer le chiffrement d’une
bijection aléatoire puisqu’un message choisi dans E produira toujours un chiffré
appartenant lui aussi à E. Le plus grand rempart à ce type de propriétés est
l’ajout de clé de tour, c’est à dire le fait d’intercaler, entre deux applications de F ,
l’addition d’une valeur dépendante de la clé. En pratique, les clés de tours brisent ce
type de symétries et réduisent à un petit nombre les clés pouvant satisfaire de telles
invariances. Cela dépend néanmoins très largement de la complexité de l’algorithme
de cadencement qui génère les clés de tours en fonction de la clé. Cette partie du
chiffrement peut parfois être coûteuse et est souvent réduite au strict minimum
dans les chiffrements légers. C’est par exemple le cas dans Midori [Ban+15], un
chiffrement léger très inspiré de l’AES, où les clés de tours ne peuvent prendre que
deux valeurs (qui dépendent de la clé) selon si l’indice du tour est pair ou impair.
C’est une des raisons pour lesquelles les attaques par invariants sont si redoutables
contre Midori [Bey18, BCL18, TLS19, Bey21]. Ce qui est beaucoup plus étonnant
est que ce type d’attaque met aussi en évidence des faiblesses (pour certaines clés)
qui relèvent du domaine de la cryptanalyse linéaire [Bey18], alors même que Midori
est conçu pour favoriser la résistance à de telles attaques.

Analyse de Midori. Nous présentons dans ce travail une conclusion similaire vis
à vis de faiblesses face à des attaques différentielles. Initialement, Midori peut être
décrit sous la forme:

Ek := Tk(R) ◦ F ◦ Tk(R−1) ◦ F ◦ . . . ◦ F ◦ Tk(0) ,

où k(i) est la clé de tour i et Tc : x 7→ x + c est l’addition (ou translation) par c.
Dans notre étude, nous considérons une représentation alternative, en utilisant une
bijection non-linéaire G bien choisie servant de changement de variables. En effet,
puisque G−1 ◦G = Id, la fonction de chiffrement Ek pour la clé k peut être décrite
comme:

Ek = Tk(R) ◦G−1 ◦G ◦ F ◦G−1 ◦G ◦ Tk(R−1) . . . F ◦G−1 ◦G ◦ Tk(0) .
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Un adversaire ayant le contrôle de l’entrée et de la sortie de Ek (sans pour
autant connaitre k), peut dès lors tout à fait décider d’étudier G◦Ek ◦G−1, quitte à
appliquer des transformations avant et après Ek. Autrement dit, un adversaire peut
étudier un chiffrement conjugué, et, grâce aux applications G ◦G−1 intercalées plus
haut, une telle analyse peut être faite en étudiant les conjugués de la fonction de
tour G◦F ◦G−1 et de l’addition de clé de tour G◦Tki

◦G−1. Une telle observation est
d’ailleurs indépendante du type d’attaque effectuée et a déjà été appliquée [BCL18]
à Midori dans le contexte de cryptanalyse linéaire. Dans le contexte différentiel,
l’étude du conjugué de la fonction de tour, ou de ses composants (une fonction
de tour étant souvent elle-même décomposable en sous-fonctions sous la forme
F = F1 ◦ F2 ◦ F3) est globalement similaire. La seule différence notable est qu’un
composant linéaire, Fi, peut avoir un conjugué G ◦ Fi ◦G−1 non-linéaire puisque
G et G−1, sont par construction non-linéaires. En revanche, l’étude des conjugués
de translations est elle très différente du cas usuel. En temps normal, étant donnée
une paire (x, x+ d) qui diffère1 de d, une telle paire devient (x+ c, x+ c+ d) après
une translation par c, mais diffère toujours de d, quel que soit x. Cette propriété
n’est a priori plus vérifiée par tous les conjugués G ◦Tc ◦G−1, mais seulement pour
certaines valeurs de c. Il s’agit donc d’une analyse qui s’applique uniquement à
certaines clés faibles. Cette analyse fournit un distingueur déterministe qui permet
de distinguer une version modifiée de Midori d’une bijection aléatoire avec seulement
deux paires clair/chiffré choisies, lorsque Midori est utilisé avec une clé faible.

Multiples interprétations. Nous montrons aussi comment cette propriété
peut s’interpréter comme la capacité des différents composants à commuter avec
une application affine bien spécifique. Cette analyse peut de nouveau être faite
composant par composant, mais cette fois-ci sur la description initiale du chiffrement.
Cela permet notamment d’identifier ce phénomène comme un cas particulier d’auto-
similarité [Bou+10, LMR15]. Une troisième interprétation est également possible,
cette fois-ci comme une propriété différentielle pour une autre de loi de groupe que
l’addition modulo 2, comme cela a déjà été proposé [CBS19], mais jamais réellement
instancié sur un chiffrement grandeur nature. Enfin, dans le cadre différentiel
classique, ce même distingueur met en avant des propriétés différentielles très
étonnantes pour un chiffrement conçu pour y résister. La plupart de ces observations
sont aussi applicables au chiffrement Scream. Une première partie de ce travail
collaboratif avec Patrick Felke, Gregor Leander, Patrick Neumann, Léo Perrin
& Lukas Stennes est publié dans le journal IACR Transactions on Symmetric
Cryptology, 2022(4) [Bau+23]. Une deuxième partie, en collaboration avec les
mêmes co-auteurs et Christof Beierle, est en cours de soumission.

1Notons que la différence modulo 2 est la même opération que l’addition modulo 2.



C.4. Analyse de fonctions vectorielles booléennes, propriétés des fonctions APN
et cryptanalyse d’une boîte-S 365

C.4 Analyse de fonctions vectorielles booléennes, pro-
priétés des fonctions APN et cryptanalyse d’une
boîte-S

Boites-S et fonctions APN. Dans un troisième temps, nous abordons l’analyse
théorique de fonctions booléennes vectorielles utilisées en cryptographie et en
particulier des fonctions non-linéaires de petite taille. Il s’agit là des fonctions avec
peu de bits en entrée et en sortie qui sont communément appelées boîtes-S. Ces
composants sont indispensables pour la conception de chiffrements par blocs et
beaucoup d’arguments de sécurité, mais aussi de failles, sont très directement liés
au choix des boîtes-S utilisées. Les fonctions dites APN [NK93] (Almost Perfect
Non-linear) sont les fonctions qui résistent de manière optimale aux attaques
différentielles. Ces objets optimaux sont très mal compris [Car15] et les exemples
sont peu nombreux. En effet, à mesure que le nombre de bits en entrée/sortie
augmente, les recherches exhaustives deviennent très vite impossible à mener et
cette propriété n’est presque jamais vérifiée par une fonction tirée aléatoirement.
Dès lors, l’analyse mathématique rigoureuse des fonctions APN reste l’une des
seules options afin de mieux cerner cette propriété.

Fonctions APN et auto-équivalence. Dans cette optique, nous mettons en
avant une propriété géométrique partagée par de nombreuses fonctions APN et en
particulier par la plus mystérieuse de toutes, connue sous le nom de fonction de
Kim [Bro+10]. Cette fonction APN de six variables (en entrée et en sortie) est
en effet la seule à être équivalente (pour une notion d’équivalence bien précise) à
une bijection APN, lorsque le nombre de variables est pair. Le “grand problème
APN” posé il y a plus de 10 ans est de déterminer s’il existe ou non d’autres
fonctions de ce type. Ce travail s’inscrit donc dans cet axe de recherche. La
propriété dite de cyclotomie, partagée par de nombreuses fonctions APN, généralise
la notion de fonction monomiale, c’est à dire une fonction pouvant être décrite
par un polynôme univarié de la forme P (X) = Xd, dans un certain corps F2n . Il
est probable que cette propriété commune soit due au facteur humain. En effet,
les premières fonctions APN connues étaient toutes monomiales [Nyb94, Kas71,
Dob99a, Dob99b, Dob01] et les constructions qui ont suivies ont nécessairement
été très largement inspirées des précédentes. Ce lien n’avait pourtant jamais été
établi. Plus généralement, les fonctions cyclotomiques sont auto-équivalentes, une
propriété partagée par la (quasi) totalité des fonctions APN connues. Nous tentons
donc de clarifier ce lien entre le caractère APN et l’auto-équivalence. Une première
partie de ce travail collaboratif avec Anne Canteaut & Léo Perrin a été présentée à
la conférence internationale The Thirteenth International Workshop on Coding and
Cryptography (WCC 2024) [BCP24]. Un article associé est en cours de soumission.
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Cryptanalyse d’une boîte-S. Enfin, les outils de géométrie des corps finis
de caractéristique 2 utilisés dans cette analyse permettent également l’analyse
ad-hoc de certains composants de standards cryptographiques, lorsque les analyses
des concepteurs sont lacunaires. Nous montrons en particulier comment ils
peuvent préciser un peu plus la nature de la boîte-S, déjà préalablement passée
au crible [Per19, PU16, BPU16], qui est utilisée dans le chiffrement par bloc russe
Kuznyechik [Fed15] et la fonction de hachage cryptographique Streebog [Fed12].

C.5 Conception de primitives de cryptographie symétrique
pour des usages émergents

Jeu d’instruction AES. Enfin dans un dernier temps, nous nous penchons sur
la conception de primitives de cryptographie symétrique pour des usages émergents.
Le premier cas est proche du cas de la cryptographie légère, mais cherche à obtenir
de très hautes performances par des moyens différents. En effet, l’utilisation très
répandue de l’AES a poussé les fabricants de processeurs, et Intel [Gue08] en
particulier, à étendre le jeu d’instructions de certaines architectures d’ordinateurs
afin d’y intégrer la fonction de tour de l’AES. Alors que celle-ci est loin d’être linéaire,
sa vitesse est désormais comparable à celles de quelques OU EXCLUSIF logiques.
La fonction de tour de l’AES est donc devenue ces dernières années un composant à
part entière de nombreux algorithmes ultra-rapides, comme en témoigne la présence
d’AEGIS-128 [WP14] et Deoxys-BC [Jea+21] parmi les candidats de la compétition
CAESAR [Cae13]. Pourtant, aucun code d’authentification de message (MAC en
anglais) dédié2 n’a été conçu en se basant sur le jeu d’instructions AES-NI.

MACs basé sur l’AES. C’est le problème que nous abordons donc en premier.
Les constructions de MACs que nous proposons sont basées sur un type particulier
de primitives cryptographiques, les fonctions de hachage universelles, desquelles
des MACs peuvent être dérivés en utilisant par exemple le mode d’opération
EWCDM [CS16]. Nous portons une attention toute particulière aux garanties
de sécurité des fonctions de hachage universelles construites, mais aussi aux
performances de celles-ci. Pour cela, nous coordonnons et automatisons l’utilisation
de deux solutions souvent dissociées : d’une part la résolution de problèmes linéaires
en nombres entiers à l’aide d’un solveur qui nous permet d’estimer la résistance à la
cryptanalyse différentielle, et d’autre part, la mesure précise des performances des
candidats. En effet, la résolution d’un fastidieux problème d’optimisation peut-être
évitée si le candidat ne permet pas d’obtenir des performances satisfaisantes. À
l’inverse, il est inutile de tester les performances d’un candidat qui peut être très
rapidement écarté à cause de notables problèmes de sécurité. Nous obtenons ainsi
le MAC sécurisé atteignant les meilleurs performances à ce jour sur PC. Ce travail
collaboratif avec Augustin Bariant, Gaëtan Leurent, Clara Pernot, Léo Perrin

2Il existe en revanche des chiffrements authentifiés basés sur l’AES, comme Tiaoxin [Nik14],
qui peuvent être utilisés uniquement pour leur fonctionnalité d’authentification et ainsi jouer le
rôle de MAC.
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& Thomas Peyrin est publié dans le journal IACR Transactions on Symmetric
Cryptology, 2022(4) [Bar+24].

Chiffrement homomorphe. Enfin, nous abordons le cas du transchiffrement
dans le cadre d’un chiffrement asymétrique complètement homomorphe (FHE),
souvent appelé plus simplement chiffrement homomorphe. Le chiffrement
homomorphe permet en théorie de réaliser n’importe quelle opération sur des
données chiffrées, sans jamais déchiffrer celles-ci. Un utilisateur pourrait donc
en théorie demander à un moteur de recherche le chemin le plus court entre son
domicile et son lieu de travail, sans que jamais le moteur n’ait accès aux-dites
positions en clair. C’est donc autant de données personnelles qui pourraient être
théoriquement protégées. Pendant longtemps, les solutions homomorphes proposées
n’étaient pas réalisables en pratique. Le problème majeur était l’accumulation d’un
bruit tout au long des calculs qui rendait le déchiffrement impossible après trop
d’opérations. La technique dite de “bootstrapping” [Gen09] a permis de pallier ce
problème en rafraichissant les chiffrés pendant le calcul, afin de ramener ce bruit à
un niveau acceptable et de pouvoir continuer.

Pourtant, en pratique, les solutions actuelles sont toujours lentes et coûteuses,
en particulier en terme de données échangées. En effet, les chiffrés FHE ont des
tailles qui dépassent très largement celles des messages clairs initiaux, ce qui n’est
pas le cas de chiffrés symétriques qui conservent la même taille.

Transchiffrement. Puisqu’un chiffrement FHE peut appliquer n’importe quel
algorithme sur des données chiffrées (en FHE) et/ou des données publiques et
retourner un chiffré FHE du résultat, il est tout à fait possible d’évaluer un
déchiffrement, à la donnée d’une clé et d’un chiffré. Il est donc possible de chiffrer
tous les messages initiaux en utilisant un chiffrement symétrique, de transmettre les
chiffrés symétriques publiquement, la clé symétrique chiffrée en FHE et de calculer
homomorphiquement le déchiffrement symétrique. Cela permet ainsi d’obtenir le
chiffré FHE des données initiales en limitant la bande passante, puisque le seul
chiffré FHE transmis est celui de la clé. La contrepartie est un temps de calcul
allongé puisque le déchiffrement symétrique en FHE est désormais nécessaire avant
toute opération sur les données. Il est donc important de limiter le coût de cette
opération.

Bootstrapping. L’implémentation de FHE à laquelle nous nous intéressons se
nomme TFHE [Chi+20] où le “T” signifie “tore”. Dans ce contexte, les mesures
de coût et les contraintes du chiffrement symétrique sont très différentes des cas
d’utilisation classiques. En particulier, TFHE utilise nativement l’arithmétique
modulaire, car il est basé sur le problème d’apprentissage avec erreurs, plus
communément appelé LWE [Reg05]. De plus, cette implémentation est munie
d’une opération de bootstrapping dite programmable qui permet, en plus du
rafraichissement d’un chiffré, d’évaluer n’importe quelle fonction (donnée par sa
table de valeurs), et ce, sans surcout. Dans notre cas, cela semble donc tout à fait
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propice à l’évaluation “gratuite” d’une boîte-S qui sera choisie seulement pour ses
garanties de sécurité et non pour sa facilité d’implémentation.

Chiffrement à flot pour FHE. Dans ce contexte, nous présentons un
chiffrement à flot basé sur le corps à 17 éléments et dont la construction s’inspire
à la fois des chiffrements à flot classiques, mais aussi des chiffrements par blocs.
Notre schéma utilise en effet une fonction de tour proche de celle de l’AES pour
mettre à jour un état interne. Après chaque mise à jour, une clé de tour (générée
par un registre à décalage à rétroaction linéaire, ou LFSR) est additionnée à l’état.
Par la suite, certains mots de l’état sont extraits et masqués par l’addition de mots
générés par un deuxième LFSR. La suite ainsi obtenue est la suite de masques de
notre chiffrement. Grâce à une nouvelle approche inspirée des chiffrements par
blocs, nous pouvons fournir des garanties de sécurités robustes, souvent difficiles
à obtenir dans le cas des chiffrements à flots. Les performances du chiffrement
sont de plus compétitives au vu des mesures de performance effectuées. Ce travail
collaboratif avec Christina Boura, Nicolas Bon, Sonia Belaïd, Anne Canteaut,
Gaëtan Leurent, Pascal Paillier, Léo Perrin, Matthieu Rivain & Yann Rotella est
en cours de soumission à une conférence internationale.
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